Appendix A: Derivation of Posterior for PPG Data

Restating Bayes’ rule (Equation [I):
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Defining Pr(c|f) = 1/C, Pr(c|d) drops:
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Inserting the likelihood and prior of z:
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Bayes’ rule becomes:
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Imposing the constraint ), W.q = 1 and letting § = >, ya:
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We can get rid of the integral by introducing the factors (3. + 1)97% and T'(§ + ) ™%
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and recognizing the integrand as a Gamma distribution, which must integrate to 1. The correspond-
ing term in the numerator is also a Gamma distribution:
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Multiplying the numerator and denominator by (§!)~!:
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we can now recognize the ratios in the numerator and denominator as negative binomial distribu-
tions. Thus Equation[I]can be written as:
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We can now easily obtain Pr(c|7, #) by integrating Pr(c, z|¥, 0) over z:
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which is our claimed expression in Equation 2]
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Appendix B: Derivation of M-Step Update Rules

Expectation-Maximization (EM) maximizes a lower bound of the log-likelihood called the free en-
ergy F (6., 6.1), which is a function of the parameter values from the previous and current iteration
of EM:
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where H (6.1) is the Shannon entropy as a function of the old parameter values only.

The M-step update rule for the parameters A, is found by taking the partial derivative of the free
energy and setting it to zero:
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The partial derivative of all terms in the sum on ¢’ are zero, except for ¢/ = ¢. Also, the Shannon
entropy is a function of the old parameter values only. Thus, Equation [§|becomes:
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Since the prior Pr(c|6;) = 1/C is independent of A ., its derivative is zero. The likelihood of a data
point is:
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As shown in Appendix A, this integral is tractable:
D (n)

Wc Ya ~(n ~(n
Pr(7™ e, 6) = <1‘[ (f§3'> (GDONB(G"); i B

d=1 Ya

In the limit that ar. ; — oo while o /Be.r1 is held constant, the likelihood of a data point simplifies

to:
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Its derivative with respect to A has a compact form:
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Equation [§|can then be written as:
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Rearranging:
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The update rule for the weights W, are also found analogously, except for the presence of the
constraint that ), W4 = 1. This constraint is enforced by introducing Lagrangian multipliers A.:
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The partial derivative of all terms in both sums on ¢’ are zero, except for ¢’ = c. Also, the Shannon
entropy is a function of the old parameter values only The derivative of the free energy is then:

OF (6, 0.1) Zpr c| " g 3Wm[ Pr(5™|c, 6, N 3Wd Pr(c|6)
C OWeay 7700 | — g 8y Pr(c|0,)

Since Pr(c|¢;) = 1/C is independent of the weights, its derivative is zero. The derivative of
Pr(¢™|c, 6;) has a compact form:
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so the derivative of the free energy is:
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The partial derivative of all terms in the sum on d’ are zero, except for d’ = d. Equation [9]is then:
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Multiplying through by W4, summing over d, and letting >, Weq, = 1, we find A.:
A= ZZPrdy”)G ().

Inserting A, into Equation [10] m and rearranging for W g (:
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This is the same updating rule for the weights as that derived in Keck et. al [9]. Notice that if we
sum W4 over d, the sum must be 1 as required.
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Appendix C: Neural Network Learning Approximates EM

If our neural network’s synaptic Weights are normalized at convergence, then Keck et. al. [9] showed
that those weights approximate those given by the EM algorlthm for PPG data. Here, we only show
that the sum of the weights for each hidden unit W, = Y, W4 converges to 1, and refer interested
readers to the complete proof in [9].

Recall the Hebbian plasticity rule for the synapse connecting input neuron d to hidden neuron c:
Ach = 6I/V(Scycl - SC)\CWCWCd)'

Summing both sides over d: - ~
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Assume that the weights have converged, and let the network observe a batch of NV data points. The
change in W, given the batch of [V data points is:

Assuming that the inputs (") are drawn from a stationary distribution Pr((")), and assuming a

small learning rate and a large batch size, we can accurately approximate the sum with an expecta-
tion:
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Inserting s. = Pr(c|y, 9), the left expectation may be written as:
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If the true data distribution is the same as the distribution learned by the model, then Pr(¢]6) and
Pr(y) cancel:
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We can rewrite the sum as a conditional expectation:
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Using the tower property of conditional expectations and evaluating them for our generative model:
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The right expectation in Equation [TT]is:
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If the true data distribution is the same as the distribution learned by the model, then Pr(%]¢) and
Pr(¥) cancel:
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Inserting our expressions for (scf)p, ;7 and (sc)p,( into Equation
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This expression has stationary points at W, = 1 and 0. The stationary point at 1 is stable, while the
stationary point at 0 is unstable. If the weights are initialized to be positive and the learning rate is
sufficiently small, ¥/, converges to 1.

Intrinsic Parameters

Recall the learning rule for the intrinsic parameter of hidden neuron c:
AN = ex(Scl — SeAe).

Consider the change in A, given a batch of N data points. Again assuming that the inputs are
drawn from a stationary distribution, and assuming a small learning rate and large batch size, we can

approximate A/\éN) with expectations:
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This equation has a stable stationary point at:
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Comparing this with Equation 4}
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we see that the intrinsic parameters achieve stability when they approximate the expression yielded
by the EM algorithm.
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