
Appendix A: Derivation of Posterior for PPG Data

Restating Bayes’ rule (Equation 1):

Pr(c, z|~y, θ) =
Pr(~y|c, z, θ) Pr(z|c, θ) Pr(c|θ)∑

c′

∫
Pr(~y|c′, z′, θ) Pr(z′|c′, θ) Pr(c′|θ)dz

.

Defining Pr(c|θ) = 1/C, Pr(c|θ) drops:

Pr(c, z|~y, θ) =
Pr(~y|c, z, θ) Pr(z|c, θ)∑

c′

∫
Pr(~y|c′, z′, θ) Pr(z′|c′, θ)dz

.

Inserting the likelihood and prior of z:

Pr(~y|c, z, θ) =

D∏
d=1

Pois(yd; zWcd); Pr(z|c, θ) = Gam(z;αc, βc),

Bayes’ rule becomes:

Pr(~y|c, z, θ) =

∏
d

(zWcd)yd exp(−zWcd)
yd!

zαc−1 exp(−zβc)βαcc
Γ(αc)∑

c′

∫ ∏
d

(zc′Wc′d)yd exp(−zc′Wc′d)
yd!

z
α
c′−1

c′ exp(−zc′βc′)β
α
c′

c′
Γ(αc′)

dzc′

=
(
∏
dWcd

yd) z
∑
d yd exp(−z

∑
dWcd)z

αc−1 exp(−zβc)βαcc Γ(αc)
−1∑

c′ (
∏
dWcd

yd)
∫
z
∑
d yd exp(−z

∑
dWcd)zαc−1 exp(−zβc)βαcc Γ(αc)−1dzc′

.

Imposing the constraint
∑
dWcd = 1 and letting ŷ =

∑
d yd:

=
(
∏
dWcd

yd) zŷ exp(−z)zαc−1 exp(−zβc)βαcc Γ(αc)
−1∑

c′ (
∏
dWcd

yd)
∫
zŷ exp(−z)zαc−1 exp(−zβc)βαcc Γ(αc)−1dzc′

=
(
∏
dWcd

yd) zŷ+αc−1 exp(−z(βc + 1))βc
αcΓ(αc)

−1∑
c′ (
∏
dWc′d

yd)
∫
zc′ ŷ+αc′−1 exp(−zc′(βc′ + 1))βc′

αc′Γ(αc′)−1dzc′
.

We can get rid of the integral by introducing the factors (βc + 1)ŷ+αc and Γ(ŷ + αc)
−1:

=
(
∏
dWcd

yd)
βαcc

(βc+1)ŷ+αc
Γ(ŷ+αc)

Γ(αc)
zŷ+αc−1 exp(−z(βc + 1)) (βc+1)ŷ+αc

Γ(ŷ+αc)∑
c′ (
∏
dWc′d

yd) βαcc
(βc+1)ŷ+αc

Γ(ŷ+αc)
Γ(αc)

∫
zŷ+αc−1 exp(−z(βc + 1)) (βc+1)ŷ+αc

Γ(ŷ+αc)
dz
,

and recognizing the integrand as a Gamma distribution, which must integrate to 1. The correspond-
ing term in the numerator is also a Gamma distribution:

=
(
∏
dWcd

yd)
βαcc

(βc+1)ŷ+αc
Γ(ŷ+αc)

Γ(αc)∑
c′ (
∏
dWc′d

yd)
β
α
c′

c′

(βc′+1)ŷ+αc′
Γ(ŷ+αc′)

Γ(αc′)

Gam(z;αc + ŷ, βc + 1)

Multiplying the numerator and denominator by (ŷ!)−1:

=
(
∏
dWcd

yd)
βαcc

(βc+1)ŷ+αc
Γ(ŷ+αc)
Γ(αc)ŷ!∑

c′ (
∏
dWc′d

yd)
β
α
c′

c′

(βc′+1)ŷ+αc′
Γ(ŷ+αc′)
Γ(αc′)ŷ!

Gam(z;αc + ŷ, βc + 1),

we can now recognize the ratios in the numerator and denominator as negative binomial distribu-
tions. Thus Equation 1 can be written as:

Pr(c, z|~y, θ) =
(
∏
dWcd

yd) NB(ŷ;αc,
1

βc+1)∑
c′ (
∏
dWc′d

yd) NB(ŷ;αc′ ,
1

βc′+1)
Gam(z;αc + ŷ, βc + 1).

We can now easily obtain Pr(c|~y, θ) by integrating Pr(c, z|~y, θ) over z:

Pr(c|~y, θ) =
(
∏
dWcd

yd) NB(ŷ;αc,
1

βc+1)∑
c′ (
∏
dWc′d

yd) NB(ŷ;αc′ ,
1

βc′+1)

=
NB(ŷ;αc,

1
βc+1) exp (

∑
d yd lnWcd)∑

c′ NB(ŷ;αc′ ,
1

βc′+1) exp (
∑
d yd lnWc′d)

,

which is our claimed expression in Equation 2.

Appendix B: Derivation of M-Step Update Rules

Expectation-Maximization (EM) maximizes a lower bound of the log-likelihood called the free en-
ergy F(θt, θt-1), which is a function of the parameter values from the previous and current iteration
of EM:

F(θt, θt-1) =
∑
n

∑
c′

Pr(c′|~y(n), θt-1)(ln Pr(~y(n)|c′, θt) + ln Pr(c′|θt)) +H(θt-1).

where H(θt-1) is the Shannon entropy as a function of the old parameter values only.

The M-step update rule for the parameters λc is found by taking the partial derivative of the free
energy and setting it to zero:

∂F(θt, θt-1)

∂λc,t
= 0. (8)

The partial derivative of all terms in the sum on c′ are zero, except for c′ = c. Also, the Shannon
entropy is a function of the old parameter values only. Thus, Equation 8 becomes:

0 =
∂

∂λc,t

∑
n

Pr(c|~y(n), θt-1)(ln Pr(~y(n)|c, θt) + ln Pr(c|θt))

=
∑
n

Pr(c|~y(n), θt-1)

(
∂

∂λc,t
Pr(~y(n)|c, θt)

Pr(~y(n)|c, θt)
+

∂
∂λc,t

Pr(c|θt)

Pr(c|θt)

)
.

Since the prior Pr(c|θt) = 1/C is independent of λc,t, its derivative is zero. The likelihood of a data
point is:

Pr(~y(n)|c, θt) =

∫
Pr(~y(n)|z, c, θt) Pr(z|c, θt)dz

=

∫ (D∏
d=1

Pois(yd; zWcd)

)
Gam(z;αc,t, βc,t-1)dz.

As shown in Appendix A, this integral is tractable:

Pr(~y(n)|c, θt) =

(
D∏
d=1

(Wcd,t)
y
(n)
d

y
(n)
d !

)
(ŷ(n)!)NB(ŷ(n);αc,t, βc,t-1).

In the limit that αc,t →∞ while αc,t/βc,t-1 is held constant, the likelihood of a data point simplifies
to:

Pr(~y(n)|c, θt) ≈

(
D∏
d=1

(Wcd,t)
y
(n)
d

y
(n)
d !

)
λc,t

ŷ(n)

exp (−λc,t).

Its derivative with respect to λc,t has a compact form:

∂

∂λc,t
Pr(~y(n)|c, θt) = Pr(~y(n)|c, θt)

(
ŷ(n)

λc,t
− 1

)
.

Equation 8 can then be written as:∑
n

Pr(c|~y(n), θt-1)

(
ŷ(n)

λc,t
− 1

)
= 0.

Rearranging:

λc,t =

∑
n Pr(c|~y(n), θt-1)ŷ(n)∑
n Pr(c|~y(n), θt-1)

.

The update rule for the weights Wcd are also found analogously, except for the presence of the
constraint that

∑
dWcd = 1. This constraint is enforced by introducing Lagrangian multipliers Λc:

∂F(θt, θt-1)

∂Wcd,t
+

∂

∂Wcd,t

∑
c′

Λc′

(∑
d′

Wc′d′,new − 1

)
= 0. (9)

The partial derivative of all terms in both sums on c′ are zero, except for c′ = c. Also, the Shannon
entropy is a function of the old parameter values only. The derivative of the free energy is then:

∂F(θt, θt-1)

∂Wcd,t
=
∑
n

Pr(c|~y(n), θt-1)

(
∂

∂Wcd,t
Pr(~y(n)|c, θt)

Pr(~y(n)|c, θt)
+

∂
∂Wcd,t

Pr(c|θt)

Pr(c|θt)

)
.

Since Pr(c|θt) = 1/C is independent of the weights, its derivative is zero. The derivative of
Pr(~y(n)|c, θt) has a compact form:

∂

∂Wcd,t
Pr(~y(n)|c, θt) = Pr(~y(n)|c, θt)

(
yd
Wcd,t

)
,

so the derivative of the free energy is:

∂F(θt, θt-1)

∂Wcd,t
=
∑
n

Pr(c|~y(n), θt-1)

(
y

(n)
d

Wcd,t

)
.

The partial derivative of all terms in the sum on d′ are zero, except for d′ = d. Equation 9 is then:∑
n

(
yd
Wcd,t

)
Pr(c|~y(n), θt-1) + Λc = 0. (10)

Multiplying through by Wcd,t, summing over d, and letting
∑
dWcd,t = 1, we find Λc:

Λc = −
∑
d

∑
n

Pr(c|~y(n), θt-1)y
(n)
d .

Inserting Λc into Equation 10 and rearranging for Wcd,t:

Wcd,t =

∑
n yd Pr(c|~y(n), θt-1)∑

d′
∑
n yd′ Pr(c|~y(n), θt-1)

.

This is the same updating rule for the weights as that derived in Keck et. al [9]. Notice that if we
sum Wcd,t over d, the sum must be 1 as required.

Appendix C: Neural Network Learning Approximates EM

If our neural network’s synaptic weights are normalized at convergence, then Keck et. al. [9] showed
that those weights approximate those given by the EM algorithm for PPG data. Here, we only show
that the sum of the weights for each hidden unit W̄c ≡

∑
dWcd converges to 1, and refer interested

readers to the complete proof in [9].

Recall the Hebbian plasticity rule for the synapse connecting input neuron d to hidden neuron c:

∆Wcd = εW (scyd − scλcW̄cWcd).

Summing both sides over d:
∆W̄c = εW (scŷ − scλcW̄ 2

c).

Assume that the weights have converged, and let the network observe a batch of N data points. The
change in W̄c given the batch of N data points is:

∆W̄ (N)
c =

1

N

∑
n

εW (s(n)
c ŷ(n) − s(n)

c λcW̄
2
c).

Assuming that the inputs ~y(n) are drawn from a stationary distribution Pr(~y(n)), and assuming a
small learning rate and a large batch size, we can accurately approximate the sum with an expecta-
tion:

∆W̄ (N)
c ≈ εW

(
〈scŷ〉Pr(~y) − λcW̄

2
c 〈sc〉Pr(~y)

)
. (11)

Inserting sc = Pr(c|~y, θ), the left expectation may be written as:

〈scŷ〉Pr(~y) =
∑
~y

ŷPr(c|~y, θ) Pr(~y) =
∑
~y

ŷ
Pr(c, ~y|θ)
Pr(~y|θ)

Pr(~y).

If the true data distribution is the same as the distribution learned by the model, then Pr(~y|θ) and
Pr(~y) cancel:

〈scŷ〉Pr(~y) = Pr(c|θ)
∑
~y

ŷPr(~y|c, θ). (12)

We can rewrite the sum as a conditional expectation:∑
~y

ŷPr(~y|c, θ) =
∑
ŷ

ŷ
∑

∑
d ~y=ŷ

Pr(~y|c, θ) =
∑
ŷ

ŷPr(ŷ|c, θ) = 〈ŷ〉Pr(ŷ|c,θ) .

Using the tower property of conditional expectations and evaluating them for our generative model:

〈ŷ〉Pr(ŷ|c,θ) =
〈
〈ŷ〉Pr(ŷ|z,c,θ)

〉
Pr(z|c,θ)

=
〈
zW̄c

〉
Pr(z|c,θ) = W̄cλc.

Inserting W̄cλc for the sum in Equation 12:

〈scŷ〉Pr(~y) ≈ Pr(c|θ)W̄cλc.

The right expectation in Equation 11 is:

〈sc〉Pr(~y) =
∑
~y

Pr(c|~y, θ) Pr(~y) =
∑
~y

Pr(~y|c, θ) Pr(c|θ)
Pr(~y|θ)

Pr(~y)

If the true data distribution is the same as the distribution learned by the model, then Pr(~y|θ) and
Pr(~y) cancel:

〈sc〉Pr(~y) = Pr(c|θ)
∑
~y

Pr(~y|c, θ) = Pr(c|θ).

Inserting our expressions for 〈scŷ〉Pr(~y) and 〈sc〉Pr(~y) into Equation 11:

∆W̄ (N)
c ≈ εW Pr(c|θ)λcW̄c

(
1− W̄c

)
.

This expression has stationary points at W̄c = 1 and 0. The stationary point at 1 is stable, while the
stationary point at 0 is unstable. If the weights are initialized to be positive and the learning rate is
sufficiently small, W̄c converges to 1.

Intrinsic Parameters

Recall the learning rule for the intrinsic parameter of hidden neuron c:

∆λc = ελ(scŷ − scλc).

Consider the change in λc given a batch of N data points. Again assuming that the inputs are
drawn from a stationary distribution, and assuming a small learning rate and large batch size, we can
approximate ∆λ

(N)
c with expectations:

∆λ(N)
c ≈ ελ(〈scŷ〉Pr(ŷ) − λc 〈sc〉Pr(ŷ)).

This equation has a stable stationary point at:

λc =
〈scŷ〉Pr(ŷ)

〈sc〉Pr(ŷ)

.

Comparing this with Equation 4:

λc,t =

∑
n Pr(c|~y(n), θt-1)ŷn∑
n Pr(c|~y(n), θt-1)

,

we see that the intrinsic parameters achieve stability when they approximate the expression yielded
by the EM algorithm.

