
Table 1: GALA and CELIS results on 18 non-overlapping 5003-voxel subvolumes within FIB-25 test region.
Each subvolume is identified by the (x, y, z) coordinates of its start corner.

Subvolume GALA CELIS

VI Rand F1 VI Rand F1

(3056, 2228, 5006) 0.710920 0.877058 0.639525 0.883413
(3684, 2228, 5006) 0.852962 0.807559 0.742159 0.847611
(2428, 2856, 5006) 0.550208 0.939376 0.543177 0.948212
(3056, 2856, 5006) 0.902916 0.763665 0.676395 0.801584
(3056, 2228, 5634) 0.825079 0.830070 0.674668 0.880949
(3684, 2228, 5634) 0.912993 0.843953 0.692192 0.868810
(2428, 2856, 5634) 0.806402 0.866520 0.731852 0.893787
(3056, 2856, 5634) 0.896207 0.882145 0.748106 0.903290
(2428, 2228, 6262) 0.724371 0.901122 0.579692 0.941264
(3056, 2228, 6262) 0.991092 0.848851 0.806581 0.897247
(3684, 2228, 6262) 0.971468 0.787515 0.747754 0.861740
(2428, 2856, 6262) 0.881123 0.869841 0.795054 0.897715
(3056, 2856, 6262) 1.113600 0.844898 0.877817 0.904204
(2428, 2228, 6890) 0.963757 0.902604 0.733394 0.953988
(3056, 2228, 6890) 0.983061 0.844851 0.870729 0.854900
(3684, 2228, 6890) 0.966499 0.883959 0.764519 0.910047
(2428, 2856, 6890) 1.380077 0.710782 0.869191 0.821951
(3056, 2856, 6890) 1.128732 0.713933 0.916494 0.846875

Table 2: Network architecture used for oversegmentation and image features.

Layer Input Transform Output # parameters Dropout (p)

1 1× 35× 35× 9 5× 5× 1 convolution, ReLU 64× 31× 31× 9 64 · (52 + 1) 0.9
2 64× 31× 31× 9 5× 5× 5 convolution, ReLU 64× 27× 27× 5 64 · (64 · 53 + 1) 0.9
3 64× 27× 27× 5 2× 2× 1 max pooling 64× 14× 14× 5 0.9
4 64× 14× 14× 5 5× 5× 5 convolution, ReLU 64× 10× 10× 1 64 · (64 · 53 + 1) 0.9
5 64× 10× 10× 1 2× 2× 1 max pooling 64× 5× 5× 1 0.9
6 64× 5× 5× 1 Fully-connected ReLU 512 512 · (64 · 52 + 1) 0.5
7 512 Fully-connected logistic 3 3 · (512 + 1)
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(a) Small-scale (b) Large-scale

Figure 1: Connectivity region tiling. The connected components of the segmentation within each connectivity
region C (shown in distinct colors) are maintained independently. The yellow rectangle within each connectivity
region indicates the bounds of Xs

C , the set of (type s) shape descriptor center positions computed using C,
which is simply the set of center positions for which the shape descriptor bounding box is contained within C.
The white rectangle (of size Bs) indicates the bounding box of the shape descriptor (necessarily contained
within C).
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Figure 2: Examples of cases where local boundary classification alone leads to false splits of neurites. A
cross-section of the raw data is shown on the left; the correct segmentation (determined by careful human
annotators) of the central neurite is overlayed on the right. Neuronal processes often narrow to nearly the
limit of the image resolution, and when this is coupled with a loss of contrast, it appears to be impossible
to determine the correct segmentation from local boundary information alone. These examples are from
a Drosophila larval neuropil dataset [4] imaged using Focused Ion Beam Scanning Electron Microscopy
(FIBSEM) [4].
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Figure 3: Examples of cases where independent neurite shape modeling breaks down. At these synapse sites,
the pre-synaptic and post-synaptic neurons each have characteristic shapes that are highly unlikely to occur
independently but are jointly very likely. Due to the close contact between the two neurons, local boundary
classification at these sites often results in false mergers, making correct shape modeling particularly critical.
A cross-section of the raw data is shown on the left; the correct segmentation (determined by careful human
annotators) is overlayed on the right. These examples are from a Drosophila larval neuropil dataset [4] imaged
using Focused Ion Beam Scanning Electron Microscopy (FIBSEM) [4].
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Figure 4: Distinction between local and global connectivity. In the cross-section of raw data on the left,
there is clear evidence that the two points indicated within the yellow bounding box are separated by cell
membrane. From the manual annotation overlaid on the right, it is clear, however, that they are nonetheless
part of the same cell, highlighted in red. Thus, within a sufficiently local area the two points are disconnected,
but globally they are connected. Distinguishing the connectivity of points at multiple scales is critical for
accurate shape modeling. If connectivity is represented only globally, as in prior agglomeration work [1, 4], it
may be impossible to reconcile strong local evidence of a cell boundary between two parts of the same sell
in cases of self-contact, leading to poor learning and incorrect predictions for these cases. This example is
from a Drosophila larval neuropil dataset [4] imaged using Focused Ion Beam Scanning Electron Microscopy
(FIBSEM) [4].
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A Local Connectivity

To reliably distinguish between local and global connectivity, we represent segmentations globally as an
undirected graph over voxels. The vertices of this graph correspond to positions in Z3, and edges are typically
limited to occur between neighboring voxel positions, for some definition of neighboring. We will define our
neighborhood N (x) to be the von Neumann neighborhood (6-connectivity), though the Moore neighborhood
or any other (symmetric) neighborhood could equally well be used.

The segments themselves are implicitly defined by the connected components of this graph, in contrast
to a representation defined by an explicit labeling of voxels by the component to which they belong. The
advantage of this representation is illustrated in Fig. 5.

B Local shape descriptors

Each connectivity region C is a rectangular subset of the full volume.

Definition 1. Given a shape descriptor specification s and connectivity region C, we denote by Xs
C the set

of (type s) shape descriptor center positions for which the descriptor bounding box is contained within C.

Remark. Note that Xs
C is a rectangular region obtained by simply shrinking the rectangular region C by

(Bs − 1)/2 on all sides (recall that Bs is the shape descriptor bounding box for type s shape descriptors).

We wish to represent shape information at multiple scales, and to represent both the joint shape of nearby
objects as well as the shape of individual objects. Therefore, rather than using a single shape descriptor
specification s and a single connectivity region tiling, we use a set of shape descriptor specifications s, each
implicitly associated with a particular choice of connectivity region size B̄s and stride strides (specified by
3-D vectors of integers) that define a overlapped tiling of the full segmentation space.

Definition 2. We define Cs to be the set of connectivity regions obtained as regular overlapping tiles of size
B̄s and stride strides.

To ensure that the bounding box for a shape descriptor at a given position is contained in exactly one
connectivity region, we constrain B̄s and strides as follows:

Bs ≤ B̄s;

Bs = B̄s − strides + 1.

These constraints ensure that Cs exactly partitions the set of shape descriptor center positions, which
allows us to make the following definition:

Definition 3. We denote by Cs(x) the single C ∈ Cs such that x ∈ Xs
C .

For convenience, we will also introduce some notation that applies to general undirected graphs that is
relevant to our discussion:

Definition 4 (Connected components). Given an undirected graph G, we denote by K(G) the partition of
the vertex set of G into connected components, and denote by K(v;G) the connected component G containing
the vertex v.

Definition 5 (Induced subgraph). Given an undirected graph G and a subset V ′ of its vertices, we denote
by G[V ′] the subgraph of G induced by V ′.

While globally we will represent a segmentation S as a voxel graph, within a given connectivity region C
we are concerned only with the connected components K(S[C]) in the subgraph of S induced by C. Note that

because the vertices of S correspond to voxels, i.e. positions in Z3, K(S[C]) ⊂ 2Z
3

. Based on these definition,
we can more precisely state how local shape descriptors are defined.
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(a) Graph representation
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(b) Component representation
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(c) Component representation

Figure 5: Advantage of voxel graph representation. The top row shows a representation of a segmentation as
either a voxel graph or a component labeling. The bottom row shows the effect of restricting the segmentation
to a sub-region. Each square corresponds to a voxel. In the graph representation, a white line between two
voxels indicates an edge, while a black line indicates the lack of an edge. In the component representation,
each voxel is labeled by a component identifier (0 or 1). The different colors (red, blue, and grey) correspond
to different connected components. The graph representation, shown on the left, correctly disconnects the
two parts when restricted to the sub-region. The component labeling representation, shown in the middle, is
unable to represent the presence of a boundary between the two parts, and therefore incorrectly results in a
single connected component even when restricted to the sub-region. It is possible to emulate a voxel graph
using a component representation by indicating boundaries with a 1-voxel wide background component, as
shown on the right, but this tends to be cumbersome.
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Definition 6. Given a full segmentation S, for each shape descriptor specification s, we define the |s|-bit
local binary shape descriptor rs(x;S) at position x by

r{a,b}s (x;S) := 1K(x+a;S[C])=K(x+b;S[C]) for {a, b} ∈ s,

where C = Cs(x).

Definition 7. Given a segmentation S, we define the component visibility set Vs(x;S) ⊆ K(S[C]) of a
position x to be the set of connected components at positions sampled by the shape descriptor s:

Vs(x;S) := {K(x+ c;S[C]) | c ∈ {a, b} ∈ s},

where C = Cs(x).

Lemma 1. Let a shape descriptor specification s, a position x, and segmentations S and S′ be given.
Let C = Cs(x). If Vs(x;S) = Vs(x;S′) (in particular if K(S[C]) = K(S′[C])), then rs(x;S) = rs(x;S′).
Furthermore, in the case that s is center-based, then if K(x;S[C]) = K(x;S′[C]), then rs(x;S) = rs(x;S′).

Proof. The first statement follows directly from Definition 6.
To prove the second statement, suppose that s is center-based. Note that for all {a, b} ∈ s, {a, b} = {~0, c}

for c ∈ {a, b}. Thus, we have

r{a,b}s (x;S) = r{
~0,c}

s (x;S)

= 1K(x;S[C])=K(x+c;S[C])

= 1(x+c)∈K(x;S[C]) for {~0, c} = {a, b} ∈ s.

The result follows.

Remark. For general shape descriptor specifications s, rs(x;S) depends on S only by way of the subset of
K(S[Cs(x)]) that are sampled, and for center-based shape descriptor specifications, rs(x;S) depends on S
only by way of K(x;S[Cs(x)]), the single component in S[C] that contains x.

C Efficient energy minimization

Näıvely, computing the energy for just a single segmentation requires computing shape descriptors and
then evaluating the energy model at every voxel position with the volume; a small volume may have tens
or hundreds of millions of voxels. At each stage of the agglomeration, there may be thousands, or tens of
thousands, of potential next agglomeration steps, each of which results in a unique segmentation. In order
to choose the best next step, we must know the energy of all of these potential next segmentations. The
computational cost to perform these computations directly would be tremendous.

We will discuss several computational tricks that allow us to efficiently compute these energy terms
incrementally. Because the cost of evaluating the local energy model for a single shape descriptor is many
times more expensive than computing the shape descriptor, we structure our computation such that we
only recompute a local energy term if the shape descriptor on which it depends has changed. This ensures
that the total cost of evaluating the local energy terms is minimized, but even computing just the shape
descriptors at each position within the volume for each potential agglomeration action at each step would
still be prohibitively expensive. We therefore rely on geometric and region graph information to prune out
the vast majority of this computation as well. Collectively, these tricks reduce the computational cost by
several orders of magnitude; the effectiveness of these techniques is ultimately data-dependent, however.
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C.1 Action representation

Recall that each agglomeration action e corresponds to a set of additional voxel edges to be added to the
current segmentation state St. While in principle agglomeration could be defined with respect to arbitrary sets
of voxel edges, we will carefully choose the set of actions to be considered in order to preserve the distinction
between local and global connectivity while also allowing for a computationally-efficient implementation.

We will define actions in terms of adjacent supervoxels K,K ′ ∈ K(S0) in the initial segmentation:

Definition 8. For any two distinct connected components K,K ′ ∈ K(S0), let

eK,K′ := {{x, x′} |x′ ∈ N (x) ∧ (x, x′) ∈ K ×K ′}.

Remark. If K and K ′ are not adjacent, then eK,K′ = ∅.

Note that we represent edges in the undirected voxel graph simply as two-element sets of voxel positions.

Definition 9. We define the supervoxel merge action set

AS := {eK,K′ 6= ∅ |K,K ′ ∈ K(S) ∧K 6= K ′}.

We will use A0 := AS0 as our set of actions for agglomeration. Note that each action corresponds to
a set of voxel graph edges. At each step t of agglomeration, we choose an action et ∈ At. The set of
remaining actions At after step t is simply the subset of actions in A that have not yet been performed, i.e.
At+1 = At − {et}. The segmentation state St+1 := St + et.

Definition 10. If e is a set of edges and C is a set of vertices, we denote by e[C] the restriction of e to
vertices in C, i.e. the subset of edges in e that are incident to two vertices in C. If S is a graph, we define
e[S] := e[vertices(S)] to be the restriction of e to vertices in S.

Given a graph S and a partition T of vertices(S), we denote by G/T the contraction of G by T .

Definition 11. A set e of voxel edges is said to be a supervoxel merge in a voxel graph S of components
K,K ′ ∈ K(S) if e[S] is a non-empty set of edges between components K and K ′, or equivalently, that every
edge in e[S] corresponds to the edge {K,K ′} in S/K(S).

Definition 12. A set e of voxel edges is said to be a redundant merge in a voxel graph S, corresponding to
the component K ∈ K(S), if e[S] is a non-empty set of edges within component K, i.e. {{K(a;S),K(b;S)} |
{a, b} ∈ e} = {{K}}, or equivalently, that every edge in e corresponds to a self edge {K} in S/K(S).

Lemma 2. If e is a redundant merge in S, then K(S + e) = K(S).

Proof. This follows from the fact that adding an edge between two vertices already part of the same connected
component does not change set of connected components.

Definition 13. Let e, e′ be supervoxel merges in S. We say that e is incident to a connected component
K ∈ K(S) in S if every edge in e is incident to a voxel in K, i.e. e is incident to K in S/K(S). We say that e
is incident to e′ in S if there exists K ∈ componentsS to which both e and e′ are incident, i.e. e is incident
to e′ in S/K(S).

Lemma 3. If e is a supervoxel merge in S and S is a spanning subgraph of S′, then e is a supervoxel merge
or redundant merge in S′. If e is a redundant merge in S, then e is a redundant merge in S′.

Proof. Suppose e is a supervoxel merge in S, corresponding to K,K ′ ∈ K(S). There must exist a components
J, J ′ ∈ K(S′) with K ⊆ J and K ′ ⊆ J ′. If J = J ′, then e is a redundant merge in S′; otherwise e is a
supervoxel merge of {J, J ′}.

Suppose e is a redundant merge in S corresponding to K ∈ K(S). There must exist a component J ∈ K(S′)
with K ⊆ J . Hence, e is a redundant merge in S′ corresponding to J .

9



Remark. S is necessarily a spanning subgraph of S + e for any merge action e.

Lemma 4. At all steps t, all e ∈ A are either supervoxel merges or redundant merges in St.

Proof. This follows from Lemma 3 and the fact that all e ∈ A are supervoxel merges in S0.

The consequence of this lemma is that globally each merge action corresponds to a pair of connected
components. Within the induced subgraph St[C] of St restricted to a given connectivity region C, however,
this lemma does not necessarily hold, even for S0[C], because a connected component of S0 may correspond
to more than one connected component of S0[C]. For computational reasons that will be made apparent in
Appendix C.2, we would like to ensure that it does hold, so that each merge action also corresponds to a pair
of connected components within each connectivity region C (or is redundant within C).

To do this, we will assume that each connected component of S0 is a clique. Our assumption sacrifices
any distinction between local and global connectivity within the original supervoxels of S0, but this is a small
sacrifice given that they are expected to be small.

Lemma 5. Given a connectivity region C, if e is a supervoxel merge in S0 and e[C] is non-empty, then e is
either a supervoxel merge or a redundant merge in St[C] for all t.

Proof. Suppose e is a supervoxel merge in S0 of components K1,K2 ∈ K(S0). For all {a, b} ∈ e[C], without
loss of generality we can assume a ∈ K1 and b ∈ K2. By our assumption that K1 and K2 are cliques in S0,
K1 ∩ C,K2 ∩ C ∈ K(S0[C]). By the definition of e[C], we have a ∈ K1 ∩ C and b ∈ K2 ∩ C. Hence, e is a
supervoxel merge in S0[C]. The result follows from Lemma 3.

C.2 ∆ representation

Recall that we defined the forward discrete derivative of f with respect to S by:

∆e
Sf(S) := f(S + e)− f(S).

We also define the second discrete derivative:

∆e,e′

S f(S) := ∆e
S∆e′

S f(S).

To efficiently implement a local search over agglomerations, at each step t of agglomeration, for each
possible next agglomeration action e, we maintain the discrete derivative ∆e

StE(St; I), where St denotes the
current segmentation at step t. Although our energy model is defined without any reference to supervoxels or
merges, we prove a number of key properties that enable us to very efficiently compute and update these
discrete derivative terms.

To maintain ∆e
StE(St; I), conceptually we must initially compute ∆e

S0Es(x;S0; I) for each position x and
action e, and then at each subsequent step t, agglomeration action at is taken and we update

∆e
St+1E(St+1; I)

= ∆e
StE(St; I)

+
∑
s

∑
x

∆e,et

St Es(x;St; I) for all e ∈ At+1.

Theorem 1 (Descriptor-based pruning). Let a position x and image I be given. Let r̄(S′) := rs(x;S′)
and Ē(S′) := Es(x;S′; I). Given a segmentation S, and merge e, if r̄(S) = r̄(S + e), then ∆e

SĒ(S) = 0.
Furthermore, for any merge e′,

d := ∆e,e′

S Ē(S) =

+Ē(S) −Ē(S + e)
−Ē(S + e′) +Ē(S + e′ + e),

10



where some or all of the 4 terms can be canceled based on whether r̄(S) = r̄(S + e), r̄(S) = r̄(S + e′),
r̄(S + e) = r̄(S + e′ + e), and/or r̄(S + e′) = r̄(S + e′ + e). In particular,

r̄(S) = r̄(S + e) ∧ r̄(S + e′) = r̄(S + e′ + e)

=⇒ d = 0;

r̄(S) 6= r̄(S + e) ∧ r̄(S + e′) = r̄(S + e′ + e)

=⇒ d = Ē(S)− Ē(S + e);

r̄(S) = r̄(S + e) ∧ r̄(S + e′) 6= r̄(S + e′ + e)

=⇒ d = Ē(S + e′ + e)− Ē(S + e′).

By symmetry of the theorem with respect to e and e′ we also have:

r̄(S) = r̄(S + e′) ∧ r̄(S + e) = r̄(S + e′ + e)

=⇒ d = 0;

r̄(S) = r̄(S + e′) ∧ r̄(S + e) 6= r̄(S + e′ + e)

=⇒ d = Ē(S + e′ + e)− Ē(S + e);

r̄(S) 6= r̄(S + e′) ∧ r̄(S + e) = r̄(S + e′ + e)

=⇒ d = Ē(S)− Ē(S + e′).

Proof. For the first statement, if r̄(S) = r̄(S + e), we have

Ē(S) = Ês (r̄(S);φ(x; I))

= Ês (r̄(S + e);φ(x; I))

= Ē(S + e).

The result follows.
The second statement is a straightforward result of the same cancellation principle.

Remark. This theorem allows us to skip a large fraction of evaluations of the local energy model, which is in
general significantly more expensive than just computing the shape descriptors (which must still be done in
order to check the conditions of this theorem). If a packed bitvector representation is used, the cost of the
descriptor comparisons is negligible.

C.3 Connectivity region-based pruning

Recall that for every merge action e exactly one of the following is true:

1. e is a supervoxel merge in St[C];

2. e is a redundant merge in St[C];

3. e[C] = ∅.

Definition 14. For each connectivity region C, we define the active action set At[C] ⊆ At to be the subset
of actions at step t that are supervoxel merges in St[C].

Lemma 6. Given a connectivity region C, if e 6∈ At[C], then e 6∈ At′ [C] for all t′ > t.

Proof. Suppose e 6∈ At[C]. Then either e[C] = ∅ or e is a redundant merge in St[C]. If e[C] = ∅, then
e 6∈ At′ [C] for any t′. Alternatively, if e is a redundant merge in St[C], then since St[C] is a spanning
subgraph of St′ [C], by Lemma 3 e is a redundant merge in St′ [C].

11



Theorem 2 (Connectivity region-based pruning). Given a position x, time step t, and merge e ∈ At, let
C = Cs(x) and let A′ = At[C]. If e 6∈ A′, then ∆e

StEs(x;St; I) = 0. Furthermore, if {e, e′} 6⊆ A′, then

∆e,e′

St Es(x;St; I) = 0.

Proof. We will begin by proving the first statement. Suppose e 6∈ A′. By definition of A′, it follows that e is a
redundant edge in St[C], i.e. K(St[C]) = K((St + e)[C]). By Lemma 1, we have rs(x;St) = rs(x;St + e) = r.
The result follows from the first part of Theorem 1.

Next we will consider the second statement. Since ∆e,e′

St Es(x;St; I) = ∆e′,e
St Es(x;St; I), the second

statement is symmetric with respect to e and e′. It is sufficient, therefore to again consider the case that
e 6∈ A′. By the first statement, ∆e

StEs(x;St; I) = 0. Since St is a spanning subgraph of St + e′, it is likewise
the case that e is a redundant merge in (St + e′)[C], which implies that rs(x;St + e′) = rs(x;St + e′ + e).
The result follows from the second part of Theorem 1.

Remark. Because each action is typically active in only a tiny fraction of the connectivity regions, this
theorem allows us to dramatically limit our computation.

C.4 Graph-based pruning

Lemma 7. Let a segmentation S and a supervoxel merge e in S be given. Let K ∈ K(S) be a connected
component of S. If e is not incident in S to K, then K ∈ K(S + e), i.e. merging e in S does not affect K.

Proof. This follows from the fact that by definition of incidence of a supervoxel merge, no edge in e is incident
to any voxel in K.

Theorem 3 (Graph-based pruning). Suppose s defines a center-based descriptor. Let a segmentation S,
position x, and supervoxel merges e and e′ in S be given. Let C = Cs(x). If e is not incident in S[C]
to K(x;S[C]), then rs(x;S) = rs(x;S + e) and ∆e

SEs(x;S; I) = 0. Furthermore, if e is not incident in

(S + e′)[C] to K(x; (S + e′)[C]), or e′ is not incident to e in S[C], then ∆e,e′

S Es(x;S; I) = 0.

Proof. We will being by proving the first statement. Suppose e is not incident in S[C] to K := K(x;S[C]).
By Lemma 7, we have K = K(x; (S + e)[C]). By Lemma 1 this implies that rs(x;S) = rs(x;S + e). The
result follows from the first part of Theorem 1.

Next we will consider the second statement. Note that the condition that e is incident in (S + e′)[C]
to K(x; (S + e′)[C]) is equivalent to the condition that e is incident in S[C] to K := K(x;S[C]), or e′ is a
supervoxel merge of K and K ′ in S[C] (i.e. incident to e in S[C]) and e is incident to K ′ in S[C].

There are two cases to consider: suppose e is not incident in (S + e′)[C] to K(x; (S + e′)[C]). Then since
S is a spanning subgraph of S + e′, it follows that e is also not incident in S[C] to K(x;S[C]). The result
follows from applying the first statement of the theorem to both S and S + e′ and then using Theorem 1.

Alternatively, suppose e′ is not incident to e in S[C]. This implies that K(x;S[C]) is incident to at most
one of {e, e′} in S[C]. By the symmetry of the theorem with respect to e and e′, we will assume without loss
of generality that e is not incident to K(x;S[C]) in S[C]. By our note above, we can infer that the condition
for our first case, that e is not incident to K(x; (S + e′)[C]) in (S + e′)[C], holds.

Remark. This theorem demonstrates that for center-based descriptors, we can significantly limit computation
based on the agglomeration graph structure. The cost of maintaining the incidence information is negligible.

C.5 Visibility-based pruning

Lemma 8. Let a position x, segmentation S and supervoxel merge e of components K1 and K2 in S[C], where
C = Cs(x), be given. If e is incident in S[C] to at most one component in Vs(x;S), then rs(x;S) = rs(x;S+e).
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Proof. There are two cases to consider. If e is not incident in S[C] to any component in Vs(x;S), then by
Lemma 7, Vs(x;S) = Vs(x;S + e). The result follows from Lemma 1. If e is incident in S[C] to exactly
one component K1 ∈ Vs(x;S), then Vs(x;S + e′) = Vs(x;S) + {K ′1 ∪K ′2} − {K1}, i.e. merging e′ in S adds
additional voxels (not part of any visible component) to one visible component. Since these additional voxels
are, by definition, not sampled by the shape descriptor, it follows that rs(x;S) = rs(x;S + e).

Theorem 4 (Visibility-based pruning). Given a position x, and segmentation S, let C = Cs(x) Let e′ be
a supervoxel merge of components K1 and K2 in S[C]. If e′ is not incident in S[C] to any component

K1 ∈ Vs(x;S), then ∆e
SEs(x;S; I) = 0, and ∆e,e′

S Es(x;S; I) = 0 for all supervoxel merges e in S[C]. If e′ is
incident in S[C] to exactly one component K1 ∈ Vs(x;S), then for all supervoxel merges e of K ′1,K

′
2 in S[C]

not incident to K2 in S[C], i.e. K2 6∈ {K ′1,K ′2}, ∆e,e′

S Es(x;S; I) = 0.

Proof. To prove the first statement, suppose e′ is not incident in S[C] to any component in Vs(x;S). For any
supervoxel merge e in S[C], it must be the case that e′ is incident in (S + e)[C] to at most one component
in Vs(x;S + e). By applying Lemma 8 to both S[C] and S[C + e], we have rs(x;S) = rs(x;S + e′) and
rs(x;S + e) = rs(x;S + e+ e′). The result follows from Theorem 1.

To prove the second statement, suppose e′ is incident in S[C] to exactly one component K1 ∈ Vs(x;S).
As for the first statement, by Lemma 8 we have rs(x;S) = rs(x;S + e′). Let e be a supervoxel merge of
K ′1,K

′
2 in S[C] not incident to K2 in S[C]. If e is incident to K1, then e′ is incident in (S + e)[C] to exactly

one component (K ′1 +K ′2) ⊇ K1. If e is not incident to K1, then e′ is incident in (S + e)[C] to exactly the
one component K1. Therefore, by Lemma 8 we have rs(x;S + e) = rs(x;S + e+ e′) and the result follows
from Theorem 1.

Determining whether a given component K ∈ S[C] is a member of the exact visibility set Vs(x;S) for
all positions x ∈ Xs

C is computationally expensive, i.e. Θ(|Xs
C | · |s|). However, to satisfy the conditions

of Theorem 4, it is sufficient to check membership in any superset of the visibility set; this restricts the
conditions under which pruning is done, but we can choose a superset in which membership can be checked
much more efficiently.

Definition 15. For d-dimensional vectors ~a,~b ∈ Zd, we denote by R
~b
~a the hyperrectangle

R
~b
~a := {~x ∈ Zd |~a ≤ ~x <~b}.

Definition 16. Given a segmentation S, we define the approximate component visibility set V̂s(x;S) ⊆
K(S[C]) of a position x to be the set of connected components at positions within a bounding box of size Bs

centered at x:

V̂s(x;S) :=
{
K(x+ c;S[C])

∣∣∣ c ∈ R(Bs−~1)/2
−(Bs−~1)/2

}
,

where C = Cs(x).

Lemma 9. Given a segmentation S, V̂s(x;S) ⊆ Vs(x;S).

Proof. This follows from the fact that {a, b} ⊂ R(Bs−~1)/2
−(Bs−~1)/2

for all {a, b} ∈ s.

Definition 17. For two coordinate vectors a and b, a� b denotes the element-wise product.

For a given component K ∈ S[C], by first computing a summed area table [3], we can efficiently determine
whether K ∈ V̂s(x;S[C]) for all positions x ∈ Xs

C , as described in Algorithm 1. The computational cost is
Θ(|C|). To check the conditions of Theorem 4 for a given supervoxel merge e′ of K1,K2 ∈ S[C], we simply
apply Algorithm 1 to both K1 and K2. Alternatively, to check only the (more limited) first condition that
{K1,K2} ∩ Vs(x;S) = ∅, then it is sufficient to apply Algorithm 1 just once to K1 ∪K2.

At agglomeration steps t > 0, we can apply Theorem 4 with e′ = at−1 and e ∈ At[C] in order to limit

the set of positions x and edges e for which the change in local energy ∆e,et

St Es(x;St; I) must be computed.
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Algorithm 1 Optimized membership test for approximate component visibility sets.

Require: (G,+) is a commutative group with identity 0G.
1: function ComputeSummedAreaTable(A : Rb

a → G, Rb
a)

2: Declare array T : Rb+~1
a → G

3: for x ∈ Rb+~1
a : ‖x− a‖0 < d do

4: T (x)← 0G
5: end for
6: for x ∈ Rb

a+~1
do . Iteration over x must respect the usual partial ordering on Zd.

7: T (x)← A(x−~1) +
∑

z∈{0,1}d−{~0}

(−1)1+‖z‖1 · T (x− z)

8: end for
9: return T

10: end function
11: function SummedAreaTableLookup(T : Rb+~1

a → G, Rb′
a′ ⊆ Rb

a)

12: return
∑

z∈{0,1}d
(−1)‖z‖1 · T (b+ (a− b)� z)

13: end function
14: function ComputePositionsWithVisibility(s, S, C, K ∈ S[C])
15: Define A(x) := 1K=K(x;S[C])

16: T ← ComputeSummedAreaTable(A,C)
17: X ← ∅
18: for x ∈ Xs

C do

19: if SummedAreaTableLookup(T,R
x+(Bs−~1)/2
x−(Bs−~1)/2

) > 0 then

20: X ← X ∪ {x}
21: end if
22: end for
23: return X
24: end function
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In principle, we could apply Theorem 4 to all candidate actions e′ ∈ At[C] at a given agglomeration step t,
but this would require computing separate summed area tables for all components K ∈ K(St[C]) incident to
a candidate action, which would involve considerable overhead. Therefore in practice the theorem is only
applicable for t > 0.

C.6 Zone-based pruning

In the case of a pairwise shape descriptor specification s, we cannot apply Theorem 3, and consequently
based only on Theorem 2, for each position x we must compute shape descriptors for all actions e ∈ At[Cs(x)].
Theorem 4 primarily allows us to prune positions x but not actions e, and is not applicable at the initial
state t = 0.

At t = 0, the number of positions that must be considered within a given connectivity region C is exactly
|Xs

C |; at later steps t > 0 the number of positions may be reduced due to Theorem 4 but nonetheless tends
to grow linearly with |Xs

C |. The size of the active set At[C] tends to grow superlinearly in |C|. Hence, the
computational cost of shape descriptor computation based only on the pruning theorems we’ve introduced
thus far grows superquadratically in |C|.

To mitigate this effect, we could of course simply ensure that connectivity regions are very small. A
larger number of small connectivity regions does, however, introduce additional overhead, as explained
in Appendix D, and therefore may actually increase the computational cost. Furthermore, reducing the
connectivity region size also affects the extent to which shape descriptors reflect local or global connectivity,
and we would like to be able to choose that independently of computational concerns.

We therefore introduce a subdivision of connectivity regions into zones.

Definition 18. For each connectivity region C ∈ Cs, the zone set Zs,C is a partition of Xs
C .

We can extend our definition of component visibility sets, previously defined only for individual positions
in Definition 7, to sets of positions:

Definition 19. The component visibility set Ws(Z;S) for a zone Z is defined by

Ws(Z;S) := ∪x∈ZVs(x;S).

Definition 20. The zone visibility set W−1s (K;C) is the set of zones whose component visibility set contains
K:

W−1s (K;C) := {Z ∈ Zs,C |K ∈Ws(Z;S)},
where S is some segmentation for which K ∈ K(S[C]).

Remark. The zone visibility set does not depend on the segmentation S beyond the fact that K ∈ K(S[C]).
By definition, a merge that does not affect a connected component K ′ does not affect its zone visibility set
W−1s (K ′;C).

Theorem 5. Given a supervoxel merge e of K1,K2 in S[C], merging e in S has the effect of merging the
zone visibility sets of K1 and K2:

W−1s (K1 ∪K2;C) = W−1s (K1;C) ∪W−1s (K2;C).

Proof. To show that the W−1s (K1;C) ∪W−1s (K2;C) contains W−1s (K1 ∪K2;C), let Z ∈W−1s (K1 ∪K2;C)
be given. Then ∃x ∈ Z, c ∈ {a, b} ∈ s such that K(x+ c;S′[C]) = (K1 ∪K2), where S′ is the segmentation
that results from the merge of K1 and K2 in S. Hence, K(x+ c;S[C]) ⊂ {K1,K2}, and it follows that
Z ∈W−1s (K1;C) ∪W−1s (K2;C).

To show that W−1s (K1∪K2;C) contains W−1s (K1;C)∪W−1s (K2;C), let Z ∈W−1s (K1;C) be given. Then
∃x ∈ Z, c ∈ {a, b} ∈ s such that K(x+ c;S[C]) = K1. It follows that K(x+ c;S′[C]) = (K1 ∪ K2), and
therefore Z ∈W−1s (K1 ∪K2;C).

15



Definition 21. A supervoxel merge e of K1,K2 in S[C] is said to be active in zone Z of S[C] if Z ∈
W−1s (K1;C) ∩W−1s (K2;C).

Definition 22. We denote by At
Z [C] the active action set of zone Z of connectivity region C at time t, the

set of actions e in At[C] that are active in zone Z of St[C].

Theorem 6. If a supervoxel merge e in S[C] is not active in zone Z, then for all positions x ∈ Z we have
rs(x;S) = rs(x;S + e), ∆e

SEs(x;S; I) = 0. Furthermore, given a supervoxel merge e′ in S[C], if a supervoxel

merge e in (S + e′)[C] is not active in zone Z, then for all positions x ∈ Z, ∆e,e′

S Es(x;S; I) = 0.

Proof. To prove the first statement, suppose the supervoxel merge e in S[C] of components K,K ′ is not active
in zone Z, and x ∈ Z. Then by Definition 21, {K,K ′} 6⊆ Vs(x;S). Hence, by Lemma 8 rs(x;S) = rs(x;S+e),
and the result follows from Theorem 1.

To prove the second statement, suppose the supervoxel merge e of components K1,K2 in (S + e′)[C] is
not active in zone Z of (S + e′)[C]. By the first statement of the theorem, this implies that rs(x;S + e′) =
rs(x;S + e′ + e) for all x ∈ Z. It remains to be shown that e is also not active in zone Z of S[C]. By
Definition 21,

Z 6∈W−1s (K1;C) ∩W−1s (K2;C). (1)

There are two cases to consider:

1. If e is not incident to e′ in S[C], then {K1,K2} ⊂ K(S[C]) and it follows from Eq. (1) and Definition 21
that e is also not active in zone Z of S[C].

2. Alternatively, if e is incident to e′ in S[C], then without loss of generality we can assume that
K2 ⊂ K(S[C]) and K1 = K ′1 ∪ K ′2, where e′ is a supervoxel merge of K ′1,K

′
2 in S[C], and e is a

supervoxel merge of K ′1,K2 in S[C]. Then by Theorem 5,

W−1s (K1;C) = W−1s (K ′1 ∪K ′2;C)

= W−1s (K ′1;C) ∪W−1s (K ′1;C).

It follows that Z 6∈W−1s (K ′1;C) ∩W−1s (K2;C), which by Definition 21 implies that e is not active in
zone Z of S[C]. By the first statement of the theorem, we have rs(x;S) = rs(x;S + e) for all x ∈ Z.
The result follows from Theorem 1.

If we ensure that the total number of zones, |Zs,C |, is limited to a small constant, e.g. 64, then we can
efficiently represent the zone visibility set W−1s (K;C) for each component K as a bit vector. Maintaining
these visibility sets over the course of agglomeration, per Theorem 5, requires only bitwise disjunction
operations; determining whether a supervoxel merge e is active in a zone Z, per Definition 21, requires only
bitwise conjunction.

Based on Theorem 6, the cost of computing all unpruned shape descriptors within a connectivity region
C can be formulated as ∑

Z∈Zs,C

[
(|Z|+ α) · |At

Z [C]|
]

+ β(|Zs,C |),

where α represents the overhead per action active in a zone, and β is a non-decreasing function that specifies
an additional overhead for a given number of zones; α and β may represent either computational or memory
costs.

Minimizing this cost exactly is in general a hard integer programming problem. We find a locally-optimal
solution using an approach that mirrors our approach for minimizing the global energy E(S; I): we start
with an initial set of zones, either single-voxel zones or a regular grid, and greedily merging zones in order to
reduce the cost.
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if E(St + et; I) > E(St; I) + τ

For each agglomeration step t

2. Initialize action scores
∆e

S0E(S0 + e; I) ∀e ∈ A0

Image features
x 7→ φ(x; I)

1. Precompute image features

Image I

Initial supervoxels S0

3. Pick action et to
minimize E(St + et; I)

5. Stop agglomeration

4. Update action scores ∀e ∈ At+1

∆e
St+1E(St+1 + e; I)
← ∆e

StE(St + e; I)

+ ∆e,et

St E(St + e; I)

t← 0

if E(St + et; I) ≤ E(St; I) + τ
t← t+ 1

Figure 6: High-level CELIS agglomeration procedure. Arrows show the flow of data (indicated by rectangles)
and control (indicated by rounded rectangles). At a high-level, agglomeration proceeds in a sequential
manner. At each agglomeration step t, the next action et if selected to greedily minimize the global energy
E(St + et; I). If the best et decreases the energy by more than τ , i.e. ∆et

StE(St; I) < τ , then agglomeration
continues. Otherwise, agglomeration terminates. To save computation at the cost of greater memory use, the
image feature vector φ(x; I) for all positions x are precomputed prior to the start of agglomeration. The
parallel pipeline used to initialize and update the action scores (steps 2 and 4) is shown in detail in Fig. 8;
the details of the data structures that are updated by these steps are shown in Fig. 7.
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D Implementation

A high-performance implementation of our agglomeration procedure is critical for testing and applying it
to the large datasets inherent to neuronal reconstruction. The implementation challenges are, however,
considerable:

• Conceptually the local search over the space of agglomerations depends on the value of an enormous
number of distinct local energy terms.

• The pruning tricks described in Appendix C greatly reduce the number of shape descriptor and local
energy model computations, but at the cost of significant algorithmic complexity.

• We wish to be able to use a high-dimensional image feature representation φ(x; I). Storing the
precomputed 512-dimensional image features over just as a small 2563 voxel volume in 32-bit floating
point format requires 34 GB of memory. While in absolute terms this is not a large amount of memory,
it limits the number of independent volumes that may be agglomerated in parallel on a single machine,
and for reasonable cost-effectiveness it is necessary, therefore, that a single agglomeration be able to
take advantage of multiple cores.

• The computational steps required are not primarily standard operations like convolutions, Fourier
transforms, matrix multiplications, or other linear algebra operations for which there has already been
extensive study of efficient implementation techniques and for which high-performance implementations
(for single and multiple CPU cores, as well as for GPU platforms) are already available.

To address these challenges, we designed a parallel pipeline that, at agglomeration step t, determines
which shape descriptors and local energy terms need to be computed, performs those computations, and
updates ∆e

StE(St; I) for candidate actions e, in order that the action e that greedily minimizes E(St + e; I)
may be chosen.

D.1 Data structures maintained during agglomeration

This pipeline is based around several interlinked data structures, as shown in Fig. 7:

• The initial segmentation S0 serves to define the agglomeration space over which our local search
will operate. While conceptually we represent segmentations as an undirected graph over voxels
(as described in Appendix A), we assume for simplicity that each initial supervoxel, i.e. connected
component u ∈ K(S0), is a clique, as described in Appendix C.1. This allows us to unambiguously
represent S0 by labeling each voxel with an integer that uniquely identifies the supervoxel that contains
it. Note that it is not in general the case that the connected components of St at steps t > 0 are
cliques, meaning that we cannot unambiguously represent St by a component labeling. In fact we do
not explicitly represent the segmentation St at later steps; instead it is represented implicitly by the
initial segmentation S0 and the sequence of actions a1, . . . , at that have been performed.

• The global set of actions At. As described in Appendix C.1, each action e ∈ At corresponds to a
pair {u, v} ⊂ K(S0), i.e. e = eu,v. We represent each action eu,v by the pair of integer identifiers

corresponding to the supervoxels u and v. The action set at any step t > 0 is simply A0 − {et′ | t′ < t}.
For each action e ∈ At, we also maintain the set of connectivity regions C in which it is active, i.e.
e ∈ At[C]. This allows Theorem 2 to be applied efficiently. Recall that by Lemma 6, actions are
removed from At[C] during the course of agglomeration, but are never added. Thus, once an action e is
no longer active in any connectivity region, it ceases to affect the global energy.

• The key information that the pipeline serves to maintain is the change in global energy, ∆e
StE(St; I),

that would result from merging each action e. This change in energy is essentially a score associated
with the action. Our agglomeration procedure follows the greedy policy of choosing at each step the
action with the lowest (i.e. most negative) score. Therefore, for each active set e we store the associated
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Supervoxel disjoint sets
{u ∈ K(S0) |u ⊂ C} → K(St[C])
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Multigraph over (K(St[C]), At[C])

K
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· · · · · ·

Active set At[C]

· · · · · · · · ·

∀s : C ∈ Cs

Action set At

...

...

...

Action priority queue

...

...

...

u v

{u, u′} {v, v′}

{u, u′} {v, v′}

Zone bounding boxes Zs,C

Zone visibility sets: K(St[C])→ 2Zs,C

{u, u′}

{v, v′}

∆
ev,v′
St E(St; I)

∆
eu,u′
St E(St; I)

Initial segmentation S0

(Supervoxels)

Image feature map
x 7→ φ(x; I)

Figure 7: Data structures for implementing CELIS agglomeration. Arrows indicate the links that make up
the data structures.
For each connectivity region C, we maintain a disjoint sets data structure that maps supervoxels u ∈ K(S0)
to connected components of K ∈ K(St[C]). For each connected component K, we maintain a list of incident
supervoxel merge actions e ∈ At to allow for efficient application of Theorem 3. This represents the multigraph
obtained by contracting the connected components of St[C]. For each shape descriptor specification s for the
connectivity region is used, we also maintain the zone information and zone visibility sets (represented as bit
vectors) for each connected component K.
For each action e ∈ At, we store ∆e

StE(St; I), which serves as the ordering key for a priority queue over
actions used for greedy agglomeration. We also maintain for each action e the set of connectivity regions for
which e ∈ At[C], for efficient application of Theorem 2.
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score, and we also maintain a priority queue over the scores, to allow for efficiently finding the edge
with the lowest score.

• Another major component is a data structure representing the set of connectivity regions, i.e. the union
of the connectivity region tilings Cs for each shape descriptor specification s.1 The set of connectivity
regions remains fixed throughout agglomeration. For each connectivity region, we maintain the following
information:

– A mapping from global supervoxels u ∈ K(S0) (represented by unique integer identifiers) to
connected components K ∈ K(St[C]) within the connectivity region (also represented by unique
integer identifiers within each connectivity region, separate from the global supervoxel identifiers).
We handle the mapping of global supervoxel identifiers using a hash table, and we maintain the
connected components using a standard disjoint sets data structure based on union by rank and
path compression. [2, p. 505]

– The active set At[C] of actions that affect connectivity within C.

– For each component K ∈ K(St[C]), the set of incident actions e ∈ At[C]. Each incident action
corresponds to a supervoxel merge of K and some other component K ′ ∈ K(St[C]) in St[C]. There
may, however, be two distinct actions e, e′ ∈ At[C] that are both supervoxel merges of the same
two components K and K ′. These sets of incident actions therefore correspond to the adjacency
lists of the multigraph St[C]/K(St[C]).

– For each shape descriptor specification s for which C ∈ Cs (typically there may only be one such
s), we additionally maintain:

∗ The partition Zs,C of Xs
C . We represent each zone compactly as the union of disjoint

rectangular regions.

∗ For each component K ∈ K(St[C]), the zone visibility set W−1s (K;C) represented as a bit
vector.

• Because the image feature representation φ(x; I) is typically expensive to compute, and the same feature
is used for computing Es(x;S; I) for many different candidate segmentations S, we precompute the
image features for all positions x and store the feature vectors in a giant 4-D array. In practice the
maximum volume size that can be agglomerated is limited by the available memory for storing the
precomputed image feature array.

D.2 Parallel pipeline for updating action scores

The pipeline for updating action scores is shown in Fig. 8. The same overall flow of control and data is used
both (a) to compute the initial ∆e

S0E(S0; I) scores for all actions e ∈ A0 prior to agglomeration, and (b) to

incrementally update the ∆e
StE(St; I) scores from the prior agglomeration step by adding ∆e,et

St E(St; I) to
reflect the agglomeration action et chosen. At a high level, it consists of the following operations:

• Steps 2–6: Preprocessing to determine the set of (x, e) position/action pairs for which we must compute
shape descriptors rs(x;St), rs(x;St + e), and in the incremental case rs(x;St + et) and rs(x;St + et + e).
This preprocessing is where connectivity region-based pruning (Theorem 2), graph-based pruning
(Theorem 3), visibility-based pruning (Theorem 4), and zone-based pruning (Theorem 6) applies.

1In the typical case that different tile sizes B̄s and strides strides are used for each specification s, these tilings Cs will be
disjoint (but certainly overlapping, as they cover the same space), meaning that each connectivity region C is associated with
only one specification s. In general, though, there may be multiple shape descriptor specifications s for which C is used, i.e.
C ∈ Cs. Sharing a connectivity region for multiple shape descriptor specifications slightly reduces memory and computational
overhead, because the per-connectivity region data structures, namely the connected components K(K) and active action sets
At[C], only have to be stored and maintained once.
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8. For each batch of type s shape descriptors

5. For each zone Z ∈ Zs,C

3. For each connectivity region C and s : C ∈ Cs to update
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2. Determine
connectivity

regions
to update

1a. Before
agglomeration
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Figure 8: Pipeline for updating CELIS action ∆e
StE(St; I) scores. Arrows show the flow of data (indicated

by rectangles) and control (indicated by rounded rectangles). The same pipeline is used both to compute the
∆e

S0E(S0; I) scores non-incrementally (starting at 1a) at the start of agglomeration, and to incrementally

(starting at 1b) update the ∆e
StE(St; I) scores from the previous step by adding ∆e,et

St E(St; I). Dashed lines
indicate steps and dependencies that apply only to the incremental case. Green or red lines indicate steps and
dependencies that apply only to pairwise or center-based shape descriptor specifications s, respectively. To
limit the complexity of the diagram, the dependencies on the persistent data structures shown in Fig. 7 are
omitted. In the non-incremental case (1a), the set of connectivity regions to update will be the full set ∪sCs
and the set of merges to update (determined by step 2) will be the full active set A0[C]. In the incremental
case (1b), the zone visibility sets are updated in step 4 per Theorem 5 to reflect the merge of K ′1 and K ′2,
prior to computing shape descriptors, to allow the conditions of Theorem 6 to be checked conveniently; the
connected components (represented as disjoint sets of initial supervoxels K(S0)), which affect the component
label map Xs

C → K(St[C]), are updated in step 13 only after computing shape descriptors, because the
incremental update depends on computing shape descriptors rs(x;St) and rs(x;St+1) based on both the
existing and next segmentation state.
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• Step 7: Computation of shape descriptors rs(x;St), rs(x;St + e), and in the incremental case
rs(x;St + et) and rs(x;St + et + e) for the necessary (x, e) position/action pairs. According to
descriptor-based pruning (Theorem 1), we determine which local energy terms must be computed.

• Steps 9–10: Computation of local energy terms needed to compute non-zero ∆e
StEs(x;St; I) terms or,

in the incremental case, non-zero ∆e,et

St Es(x;St; I) terms.

• Steps 11–12: Updating the global action scores based on the local energy changes.

Algorithm 2 Computation of a single shape descriptor.

Require: s is a shape descriptor specification.
Require: K is a set of components, represented by integers.
Require: F : Z3 → K maps shape descriptor offsets to components.

1: function ComputeDescriptor(s, F)
2: Declare |s|-bit vector r
3: if s is pairwise then
4: for {a, b} ∈ s do
5: r{a,b} ← 1F (a)=F (b)

6: end for
7: else
8: K ← F (~0)
9: for {a,~0} ∈ s do

10: r{a,~0} ← 1F (a)=K

11: end for
12: end if
13: return r
14: end function

The pipeline executes using all available processors on a single machine, through the use of a thread pool.
The low-level details of the pipeline steps are as follows:

1. (a) Before agglomeration/(b) Pick action et to minimize E(St + et; I).

2. Determine connectivity regions to update. In the non-incremental case, all connectivity regions
C ∈ ∪sCs must be processed. In the incremental case, per Theorem 2, only connectivity regions in
C ∈ {C ∈ ∪sCs | et ∈ At[C]} must be processed. Because we maintain this set of connectivity regions
for each action e ∈ At, there is only constant (low) overhead for each connectivity region processed, and
no cost for connectivity regions not processed.

3. Per-connectivity region processing: The connectivity regions that must be updated are processed
in parallel. While most processing is actually done at the finer per-zone granularity, certain information
is computed per-connectivity-region and per associated shape descriptor s : C ∈ Cs:

• Component label map: a 3-D array that maps positions in the space Xs
C to components in

K(St[C]), represented by integer identifiers. This is computed by mapping the supervoxel identifier
for each position x ∈ Xs

C , which is precisely what is stored to represent S0, to the corresponding
component based on the map from global supervoxels K(S0) to connected components K(St[C])
in C that we maintain.

• K ′1,K ′2 ∈ K(St[C]) merged by et (incremental only): We also use the global supervoxel to local
connected component map to translate the action et to the pair of components K ′1,K

′
2 ∈ K(St[C])

for which it is a supervoxel merge. Note that it is guaranteed that et is a supervoxel merge in C
because in the incremental case we only process connectivity regions C for which et ∈ At[C].
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Algorithm 3 Computation of shape descriptor changes (non-incremental case). The result is (a) a stream
of position/shape descriptors pairs produced by calls to EmitDescriptor(x, r), which returns the stream
position; (b) a separate stream of score adjustments produced by calls to EmitScoreAdjustment(m, i−, i+)
that associate a merge m = {K1,K2} with a negative and positive energy contribution corresponding to
previously emitted shape descriptors at stream positions i− and i+, respectively. The computation of
individual shape descriptors is shown in Algorithm 2.

Require: X ⊂ Z3 is a set of positions.
Require: L : X → K maps positions in X to components in K.
Require: M : K → 2[K]

2

maps components in K to sets of merges.
1: function ComputeDescriptorChanges(s, X, L, M)
2: Declare array ψ : K → K
3: for K ∈ K do
4: ψ(K)← K . Initialize ψ to the identity map.
5: end for
6: for x ∈ X do
7: r ← ComputeDescriptor(s, c 7→ L(x+ c))
8: i← −1 . −1 represents an invalid index
9: for {K1,K2} ∈ M(L(x)) do

10: ψ(K2)← K1

11: re ← ComputeDescriptor(s, c 7→ ψ(L(x+ c)))
12: ψ(K2)← K2 . Restore ψ to identity map.
13: if r 6= re then
14: if i = −1 then i← EmitDescriptor(x, r)
15: ie ← EmitDescriptor(x, re)
16: EmitScoreAdjustment({K1,K2}, i, ie)
17: end if
18: end for
19: end for
20: end function
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Algorithm 4 Computation of shape descriptor changes (incremental case).

Require: {K ′1,K ′2} ⊆ K is a merge.
1: function ComputeDescriptorChangesIncremental(s, {K ′1,K ′2}, X, L, M)
2: Declare arrays ψ,ψ′ : K → K
3: for K ∈ K do
4: ψ(K), ψ′(K)← K . Initialize ψ and ψ′ to the identity map.
5: end for
6: ψ′(K ′2)← K ′1
7: for x ∈ X do
8: r ← ComputeDescriptor(s, c 7→ L(x+ c))
9: re′ ← ComputeDescriptor(s, c 7→ φ′(L(x+ c)))

10: i, ie′ ← −1 . −1 represents an invalid index
11: for {K1,K2} ∈ M(L(x)) do
12: ψ(K2)← K1

13: J ′1 ← ψ′(K ′1), J ′2 ← ψ′(K ′2)
14: if K2 ∈ {K ′1,K ′2} then
15: ψ′(K1)← ψ′(K2)
16: else
17: ψ′(K2)← ψ′(K1)
18: end if
19: re ← ComputeDescriptor(s, c 7→ ψ(L(x+ c)))
20: re,e′ ← ComputeDescriptor(s, c 7→ ψ′(L(x+ c)))
21: ψ(K2)← K2 . Restore ψ to identity map.
22: ψ′(K1)← J ′1, ψ′(K2)← J ′2 . Restore ψ′ to initial value.
23: if re 6= re,e′ then
24: if re′ 6= re,e′ then
25: if ie′ = −1 then ie′ ← EmitDescriptor(x, re′)
26: ie,e′ ← EmitDescriptor(x, re,e′)
27: EmitScoreAdjustment({K1,K2}, ie′ , ie,e′)
28: end if
29: if r 6= re then
30: if i = −1 then i← EmitDescriptor(x, r)
31: ie ← EmitDescriptor(x, re)
32: EmitScoreAdjustment({K1,K2}, ie, i) . Note the order of ie and i.
33: end if
34: else if r 6= re′ then
35: if i = −1 then i← EmitDescriptor(x, r)
36: if ie′ = −1 then ie′ ← EmitDescriptor(x, re′)
37: EmitScoreAdjustment({K1,K2}, ie′ , i) . Note the order of ie′ and i.
38: end if
39: end for
40: end for
41: end function
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• Visibility summed area table (incremental only): We compute a single summed area table
for K ′1 ∪K ′2 based on the component label map according to Algorithm 1.

4. Determine the set of actions to update. In this step, for a given connectivity region, we determine
the set of actions e ∈ At[C] for which me may potentially need to compute shape descriptors rs(x;St),
rs(x;St + e), and in the incremental case rs(x;St + et + e), according to Theorem 2. Note that these
actions will additionally be filtered in step 6 on a per-zone basis. In the non-incremental case, and also in
the incremental case for pairwise s, all actions e ∈ At[C]− {et} must be (potentially) processed. In the
incremental case for center-based s, only actions e 6= et incident to et in St[C] must be processed, per
Theorem 3. Because we maintain the set of actions incident to each component in K(St[C]), computing
this set requires only constant time per action to be processed.

Outputs:

• Merges to update: the set MC of merges, i.e. pairs of components {K1,K2} ⊂ K(St[C])
(represented as pairs of integer component identifiers) merged by the actions to be processed.
Note that the same pair of components may correspond to more than one action e ∈ At, but
computation of shape descriptors depends only on the pair of components merged by the action.
We therefore use the component representation to avoid redundant computations.

• Merges to action map: a mapping from each component pair in MC to the set of one or more
corresponding actions:

{K1,K2} ∈MC 7→{
eu1,u2 ∈ At

∣∣u1 ∈ K1 ∧ u2 ∈ K2

}
.

This is implemented as a hash table mapping pairs of component identifiers to lists of actions.
Because energy terms will be locally computed per component pair rather than per action, but
globally we maintain per-action scores, this mapping is used to efficiently update all corresponding
global per-action scores according to each local per-component-merge score.

• Zone visibility sets (incremental only): The zone visibility sets, which are represented as a
mapping from integer component identifiers to bit vectors, are updated in this step per Theorem 5
to reflect the merge of K ′1 and K ′2 in (St + et)[C]. This simply involves taking the bit-wise OR of
the bit vectors.

5. Per-zone processing: It is at the granularity of zones that shape descriptor computation actually
happens. All zones are processed independently, and in parallel (zones of separate connectivity regions
are also processed in parallel) to the extent that there are available cores. Zone processing does, however,
depend on certain read-only data structures that are computed per-connectivity region and shared by
all zones, including the component label map LC

s , the set of merges MC
s to potentially update, and in

the incremental case, the visibility summed area table.

6. Determine set of merge/position pairs to update in zone Z. The purpose of this step is to finish
preprocessing in order to finalize the set of (x, e) position/merge pairs for which we will compute shape
descriptor changes. Per Theorem 6 and Definition 21, we filter the set of per-connectivity-region merges to
updateMC

s based on the zone visibility setsMZ
s :=

{
{K1,K2} ∈MC

s

∣∣Z ∈W−1s (K∗1 ;C) ∩W−1s (K∗2 ;C)
}

,
where in the non-incremental case K∗ := K but in the incremental case K∗ is the component
K ∈ K((St + et)[C]) that contains K. Note that in the implementation this happens transpar-
ently because the zone visibility bit vectors that are maintained for each component identifier are
updated in the incremental case in step 4 to reflect St+1 = St + et. We output either this flat merge set
directly or a table of merges incident to each component in (St + et)[C], depending on whether s is
pairwise or center-based.

Outputs:
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• Positions Xs
Z to update: In the non-incremental case, the set of positions to update is simply

Xs
Z := Z. In the incremental case, we apply Algorithm 1 to the visibility summed area table

precomputed in step 3 in order to determine the subset of positions Xs
Z ⊆ Z that must be updated.

The time complexity is linear in |Z|. To limit preprocessing overhead, we only use the first
condition of Theorem 4 and do not test the more complicated second condition.

• Merge set MZ
s (pairwise s only): In the case of a pairwise shape descriptor specification s, we

can perform no further merge pruning, and must process all merges in MZ
s .

• Component to merge set map MZ
s (center-based s only): In the case of a center-based

shape descriptor specification s, the subset of merges in MZ
s that must be processed for a given

position x depends on K(x;St[C]) in the non-incremental case, or K(x; (St + et)[C]) in the

incremental case. We therefore compute a table MZ
s : K(St[C])→ 2M

Z
s that maps

K ∈ K(St[C]) 7→{
{K1,K2} ∈MZ

s

∣∣K∗ ∈ {K∗1 ,K∗2}},
where K∗ is defined as above. In the non-incremental case, each merge in MZ

s will occur exactly
twice in the table. In the incremental case, each merge will occur exactly 3 times in the table,
because every merge in MZ

s is necessarily incident in St[C] to (K ′1,K
′
2).

7. Compute shape descriptors: computation of shape descriptors rs(x;St), rs(x;St + e), and in the
incremental case rs(x;St + et) and rs(x;St + et + e) for all (x, e) position/merge pairs determined in
step 6. To abstract the difference between pairwise and center-based descriptors, in the case of pairwise

s, we defineMZ
s : K(St[C])→ 2M

Z
s as the constant function K 7→MZ

s . In the non-incremental case, we
invoke ComputeDescriptorChanges(s,Xs

Z , L
C
s ,MZ

s ) defined in Algorithm 3. In the incremental
case, we invoke ComputeDescriptorChangesIncremental (s, {K ′1,K ′2}, Xs

Z , L
C
s ,MZ

s ) defined in
Algorithm 4.

Outputs:

• Action score adjustments: the list of 〈{K1,K2}, x, r−, r+〉 tuples specifying updates to the
global action scores, implicitly associated with a particular shape descriptor specification s. Each
update in the list applies to the one or more global actions that are supervoxel merges of K1 and K2

in St[C], and corresponds to subtraction of Ês (r−;φ(x; I)) and addition of Ês (r+;φ(x; I)). Specif-
ically, if we let U denote the aggregate set of all action score adjustments 〈s, {K1,K2}, x, r−, r+〉,
then we have

∆
eu1,u2

St+1 E(St+1; I) (2)

= ∆
eu1,u2

St E(St; I) (3)

+
∑

〈s,{K1,K2},x,r−,r+〉∈U :u1∈K1∧u2∈K2

[
Ês

(
r+;φ(x; I)

)
− Ês

(
r−;φ(x; I)

)]
. (4)

We represent the connected components K1 and K2 by their corresponding integer identifiers. The
same shape descriptors r− and/or r+ may occur in multiple action score adjustments, e.g. if they
are equal to rs(x;St) or rs(x;St + et). To avoid redundant storage in memory and redundant
evaluation of the local energy model, we do not directly specify x, r−, and r+ in our representation
of the action score adjustments list. Instead, we specify r− and r+ as integer offsets i− and i+

into the list of shape descriptors and shape descriptor positions also output by this step.

• Shape descriptors/Shape descriptor positions: equal length lists specifying the non-redundant
shape descriptors/position pairs required by at least one action score adjustment. The lists are
constructed in such a way that the 〈r, x〉 pairs are guaranteed to be unique. The entries are
grouped by position x, meaning that if all 〈r, x〉 pairs for a given position x are contiguous.
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8. Per-batch processing of shape descriptors: Evaluation of the local energy model on single
shape descriptor/image feature pairs may be significantly more expensive than batch evaluation on
multiple such pairs. For example, the matrix-vector multiplication required for typical fully-connected
neural network activation can be much more efficiently implemented batch-wise as a matrix-matrix
multiplication. We therefore collect the shape descriptor/position pairs output from step 7 into batches
up to some maximum batch size, e.g. 256. Because different local energy models are used for each shape
descriptor specification s, batches are segregated by specification s. We

9. Extract image features. We simply copy the image feature vectors φ(x; I) for each position x in the
list of shape descriptor positions for the current batch from the in-memory precomputed image feature
array.

Output:

• Image feature vectors: temporary array holding the copied image feature vectors contiguous in
memory.

10. Compute local energy. We evaluate in local energy terms Ês (r; v) for the current batch of shape
descriptors r and image feature vectors v.

Output:

• Local energy terms: the list of local energy scores corresponding to the list of shape descriptors
in the current batch.

11. Update action scores. In this step, we update the global action scores according to Eq. (2), using the
local energy terms computed in step 10 that are referenced by the action score adjustments computed
in step 7. To determine the set of (global) actions that correspond to each pair of local connected
components specified in the action score adjustments, we we use the merge to action map computed in
step 4 for the connectivity region.

12. Update action priority queue. After all updates to global action scores are complete, we must
correct the ordering of the action priority queue. When performing the initial action score computation
prior to agglomeration, we can simply construct the heap in linear time. In the incremental case, we
correct the placement of just the action for which the score was updated.

13. Update connected components (incremental only). In the incremental case, after computing
the update action scores, we update within each affected connectivity region the disjoint sets data
structure over supervoxels and the multigraph over connected components to reflect the merge et. We
do not perform this update until after updating the action scores because in step 7 we need to compute
shape descriptors for the segmentation states St and St + e, which would not be possible after merging
et.

E Performance results

We also measured the effectiveness of each of the computational pruning tricks described in Appendix C.
Essentially the entire computational cost of CELIS is in computing shape descriptors and evaluating the local
energy models; the cost of performing the pruning and other preprocessing turns out to be negligible (less
than 1%). Therefore the savings in descriptors processed correspond directly to savings in overall runtime.
With pruning, computation of shape descriptors accounted for about 20% of the cost; the remainder was
spent evaluating the energy model. Without it, the cost is several orders of magnitude higher. The results
are shown in Fig. 9.
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Figure 9: Effect of pruning on number of shape descriptors computed. The vertical axis specifies the cumulative
number of shape descriptors computed during the course of agglomeration, using different combinations of
pruning rules. The horizontal axis specifies the agglomeration step t, with t = 0 indicating the computation
required to initialize the energy first derivative terms. Non-incremental corresponds a näıve implementation
that does no pruning or incremental computation whatsoever. The different combinations of CR, Visibility,
Zone, and Graph correspond to correspond to applying combinations of Theorem 2, Theorem 4, Theorem 6,
and Theorem 3, respectively. The actual number of descriptors that changed is shown as the lower bound,
since in the best case pruning would eliminate the computation of all but these descriptors. This is also the
number of evaluations of the energy model performed. If the combination of pruning techniques were perfect,
it would exactly match this lower bound. Results are shown for a 1003 portion of the training dataset.
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