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A Convergence of the proposed algorithm

We now show how the convergence of our proposed algorithm follows effortless from [3]. Note the
the objective in (2) can be rewritten as function of the dictionary alone like so
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with each code Ûi is computed online by solving the Ridge problem (5). The following observations
are immediate:

• Assumption (A) of [3], that the data distribution admits compact support, is automatically
true for all MRI and PET data, because it is imposed by acquisition (for example, there is no
data beyond the bounding-box).

• Assumption (C), that the solution to the coding problem, which corresponds to (??)5) in
our case, is unique and Lipschitz continuous w.r.t to the incoming dataXt is automatically
satisfied for us since Ût(Xt) = (VTV + αI)−1VTXt, a linear transformation of Xt.

As a consequence, we have the classical convergence guarantees as in in [3]:

• Almost-sure convergence of the dictionary: V(t)−V(t− 1) = O(1/t) a.s. as t→∞.

• Almost-sure convergence of the risk:

– f̂t(V(t)) converges a.s. as t→∞.

– ft(V(t))− f̂(V(t))→ 0 a.s. as t→∞.
– ft(V(t)) converges a.s. as t→∞.

Finally, one notes that since constraints in problem (2) are separable in the dictionary atoms Vj , the
BCD dictionary-update algorithm Alg. 2 is guaranteed to converge to a global optimum. [1, 3].
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B Working in frequency domain, when it is possible.
To close this section, let us point out a few special instances cases of problem (7), for peculiar choices
of the constraint set Q. First note that the objective in problem (7) can be conveniently rewritten as
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We note that the matrix-inversion (I − γ̃∆)−1 that appears in the formula above is a Laplacian
filter, and can be efficiently applied in closed-form (i.e non-iteratively) in the Fourier / frequency
domain. Indeed, under periodic boundary conditions, the discrete Laplacian ∆ is Block-Circulant
with Circulant Blocks (BCCB) and so is diagonalizable in the Fourier domain. Precisely,

∆ = F∗ΛF (4)
where the complex orthonormal operator F represents the fast Discrete Fourier Transform (DFT),
and Λ is diagonal matrix made p eigenvalues (including multiplicities) of the Laplace operator ∆,
given by
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for ω = (ω1, ω2, ω3) ∈ [[0, n1 − 1]]× [[0, n2 − 1]]× [[0, n3 − 1]].

We note that the spectral norm of Laplace operator in D dimensions (here D = 3) is ‖∆‖2 =
γ̃max(−∆) = 2×D × (1 + 1) = 4D.
Now, one can then harvest the closed-form solution

(I− γ̃∆)−1a = (F−1(I− γ̃Λ)−1F)(a) = F−1 (s) , (5)

where s ∈ Rp is defined by s(ω) :=
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, with â := F(a). These DFT computations have

complexity O(p log p).
For applying the DFTs above, one can use the FFTW1 –or Fastest Fourier Transform in the West–
library for computing the forward and inverse Fourier transforms needed to apply the Laplacian filter
(refer to paragraph B).

Pure `2 constraint. Here, the constraint set C is an L2 ball (with radius = 1, w.l.o.g) in R2. By the
Rayleigh energy theorem (aka Parseval’s identity for the DFT), one has
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and so problem (7) can be written as
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a hyper-ellipsoid in standard position (i.e 0-centered and axes-aligned). Using elementary geometric
arguments, one can show that the projection PE( ˆ̃Vj) can be computed efficiently using a kind of
root-finding algorithm [2], and converges exponentially fast.

1FFTW is generally taught to be one of the fastest implementations of the FFT, yielding up to 3× speedup
against competing libraries like LAPACK.
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Non-negative Lasso. In case the constraint set C for the dictionary atoms is a simplex Sp(τ), the
simplex (see section 2), then the BCD update for the jth atom becomes
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which is a diagonal quadratic program with linear constraints, and can be effectively solved via the
well-known simplex method, for example.

C Analytic upper bound for regularization parameter in sparse-coding
Let V be the current dictionary at time t ≥ 0 (with the t subscript dropped for ease of notation), and
consider the sparse-coding problem

ut ← argmin
u∈Rk

1

2
‖Vu−Xt‖22 + α‖u‖1, (9)

which is equivalent to problem (5), with the choice of penalty φ = ‖.‖1 on the codes. Now, it follows
from the Lasso theory that ut above will be the zero vector if α ≥ αmax(t), where
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the first inequality being a consequence of the Cauchy-Schwarz and the second is due to the constraints
on the dictionary atoms ‖Vj‖1 ≤ 1. Defining,
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we then obtain the rule:

If α ≥ sup
t≥0

max
1≤j≤p

|Xj
t |, then ut = 0, ∀t ≥ 0. (10)

In particular, this means that a cross-validation procedure for selecting α only need to consider values
in the range 0 ≤ α ≤ ‖X‖∞,∞, which depends only on the input data matrix X.
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