
A Omitted Proofs

Proof of Lemma 2. To obtain the inequality of the lemma, define for every t = 1, . . . ,T and i =
2, . . . ,K the indicator variable z

t
i which returns 1 when I t = i and Nt

i � ](Di,d), and returns 0
otherwise. We can show that z

t
i = 1 with probability smaller than 2d.

Note that if I t = i then the upper confidence estimate for i was larger than that of action 1. More
precisely, it must be that µ̂t

i + V(Nt
i ) � µ̂t

1 + V(Nt
1). For this to occur, either we had (a) a large

underestimate on µ1, that is µ̂t
1 + V(Nt

1)  µ1. Or, (b) we had a major overestimate on µi, that is,
µ̂t

i + V(Nt
i )� µ1. It is clear that (a) occurs with probability less than d by construction of V.

To analyze (b), note that µ1 = µi +Di, and we are also given that Nt
i � ](Di,d) which implies that

V(Nt
i ) Di/2.

µ̂t
i + V(Nt

i )� µ1 =) µ̂t
i � µi + V(Nt

i ) =) µ̂t
i �µi � V(Nt

i ),

and of course the latter happens with probability no more than d.

Since

F(NT+1
2 , . . . ,NT+1

K ) = 2
K

Â

i=1

NT+1
i

Â

N=0
V(N) 2

K

Â

i=1

 
](Di,d)

Â

N=0
V(N)+

T

Â

t=1
z

t
i

!

We can conclude that

E[F(NT+1
2 , . . . ,NT+1

K )] F(](D2,d), . . . ,](DK ,d))+2E[
K

Â

i=2

T

Â

t=1
z

t
i] F(](D2,d), . . . ,](DK ,d))+4T 2

d.

Proof Sketch of Theorem 2. The proof follows much in the same way as that of Theorem 1. The
regret suffered on round t of DKWUCB is exactly Fi⇤(ct )(ct)�FIt (ct). Let x

t be the indicator equal
to 0 on the event that both Fi⇤(ct )(ct) F̂i⇤(ct )(ct)+V(Nt

It ,d) and F̂It (ct) FIt (ct)+V(Nt
It ,d), where V

was chosen so that E[xt ] 2d. On x

t = 0, the KWUCB selection rule guarantees that Fi⇤(ct )(ct)�
FIt (ct) 2V(Nt

It ,d) 2V(Ñt
It ,d) (c.f. Lemma 1 for details). Thus, we can bound Fi⇤(ct )(ct)�FIt (ct)

2V(Ñt
It ,d)+x

t .

Noting that F(Ñt+1
1 , . . . , Ñt+1

K )�F(Ñt
1, . . . , Ñ

t
K) = 2V(Ñt

It ,d) when i⇤(ct) 6= It and 0 otherwise, we
can bound cummulative regret by telescoping F, giving us

E[RegretT (DKWUCB)] E[F
�
ÑT+1

1 , . . . , ÑT+1
K

�
]+E[

T

Â

t=1
x

t ] E[F
�
ÑT+1

1 , . . . , ÑT+1
K

�
]+2T d

Now define z

t
i as the indicator variable which returns one on the event that It = i, i⇤(ct) 6= i, and

Ñt
i > min j2M Di( j). By similar arguments to Lemma 2, one can bound E[zt

i]  2d. Since with
probability one F(ÑT+1

1 , . . . , ÑT+1
K ) 2

Â

K
i=1

⇣
Â

](min j Di( j),d)
N=0 V(N)+

Â

T
t=1 z

t
i

⌘
, we have

E[RegretT (DKWUCB)] F(](min
j

D1( j),d), . . . ,](min
j

DK( j),d))+O(T 2
d)

The remainder of the proof follows identically to that of Theorem 1, by bounding the sum
F(](min j D1( j),d), . . . ,](min j DK( j),d)) =

Â

K
i=1 Â

](min j Di( j),d)
N=0 V(N,d), and tuning d.

Proof of Lemma 4. At time t, let tk be the index t of the kth time step at which I t = i and ct � j. By
defenition, we have that k  Nt

i ( j). We also define Y0 = 0 and Yk = Â

k
l=1 (Fi( j)� I[Atl � j]) for each
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k 2 {0,1,2, . . . ,Nt
i ( j)}. Note that

E [Yk|Yk�1, . . . ,Y1] = E [Yk|Yk�1] = E
⇥
Yk�1 +Fi( j)� I[Atk � j]|Yk�1

⇤

= E [Yk�1|Yk�1]+E
⇥
Fi( j)� I[Atk � j]|Yk�1

⇤

= Yk�1 +E
⇥
Fi( j)�Pr(Xtk

i � j|ctk � j)|Yk�1
⇤

= Yk�1 +E [Fi( j)�Fi( j)|Yk�1] = Yk�1.

Therefore, the sequence Y1,Y2, . . . ,YNt
i ( j) forms a martigale, and |Yk �Yk�1|  1 for each k. By

Azuma’s inequality, for any e > 0,

Pr
⇣
|YNt

i ( j)|� eNt
i ( j)

⌘
 2exp

⇣
� e

2Nt
i ( j)
2

⌘
.

Note that YNt
i ( j) = Nt

i ( j)
�
Fi( j)� F̂t

i ( j)
�
, we have

Pr
�
|F̂t

i ( j)�Fi( j)|� e

�
 2exp

⇣
� e

2Nt
i ( j)
2

⌘
,

which concludes the lemma.

Proof of Theorem 5. At an epoch k, denote the set of arm indices at the beginning as Lk
j for a threshold

value j 2 M. By the property of uniform exploration, we have

Ntk
i ( j)� (m� j+1)k 8i 2 Lk

j. (9)

By Lemma 4, we have that for any i 2 Lk
j, the difference between Fi( j) and F̂tk

i ( j) is upper bounded
by
p

4log(T k)/(m� j+1)k with probability at least 1�1/T 2k2, i.e.,

Pr

 
|F̂tk

i ( j)�Fi( j)|�

s
4log(T k)

(m� j+1)k

!
 1

T 2k2 . (10)

Note that
Â

•

k=1 1/k2 = p

2/6 < 2, by applying union bound three times, we have

Pr

 
|F̂tk

i ( j)�Fi( j))|

s
4log(T k)

(m� j+1)k

!
� 1� 2

T
(11)

holds for all epoch index k, arm index i, and threshold value j. Therefore, with probability at least
1�2/T, i⇤( j) is never eliminated from L j for all j 2 M. Therefore, the expected regret for missed
elimination is O(T ·2/T ) = O(1).

We then bound the number of times a sub-optimal arm is pulled for a level j conditioning on i⇤( j) is
not eliminated from Lk

j for k = 1,2, . . . ,T/Km. In the worst case, to eliminate all sub-optimal arms i
from Lk

j, KMUCB needs to come to an epoch k such that

|L j0 |= 1 8 j0 < j, (12)

F̂tk
i⇤( j)( j)� F̂tk

i ( j)�

s
16log(T k)
(m� j+1)k

8i 2 [K]\{i⇤( j)}. (13)

By Equation 11, we have with probability at least 1�4/T,

F̂tk
i⇤( j)( j)� Fi⇤( j) ( j)�

s
4log(T k)

(m� j+1)k
(14)

and

F̂tk
i ( j) Fi ( j)+

s
4log(T k)

(m� j+1)k
8i 2 [K] (15)
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hold. Therefore, if for all i 6= i⇤( j), k satisfies that

Fi⇤( j) ( j)�

s
4log(T k)

(m� j+1)k
�
 

Fi ( j)+

s
4log(T k)

(m� j+1)k

!
�

s
16log(T k)
(m� j+1)k

, (16)

which is equivalen to

k � 128logT
(m� j+1)mini2[K] D

2
i ( j)

, (17)

then with probability at least 1�4/T, k satisfies inequality 13.

But ineuality (12) implies that k would also need to be greater than or equal to
max j0< j

128logT
(m� j+1)mini2[K] D

2
i ( j)

in order all for sub-optimal arms to be removed from Lk
j. Therefore,

it would be sufficient to set

k =
128logT

(m� j+1)mini2[K], j2M D

2
i ( j)

. (18)

Using the fac that
Â

m
j=1

1
j = logm, this contributes a total of

Â

K
i=1 logm 128max j2M Di( j) logT

mini2[K], j2M D

2
i ( j)

to the regret.

Also noting that the regret comes from failing to remove any sub-optimal index i from any L j is
O(T ·4/T ) = O(1), the total regret is

K

Â

i=1
logm

128max j2M Di( j) logT
mini2[K], j2M D

2
i ( j)

+O(1). (19)
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