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1 Proofs of Propositions, Lemmas and Theorems

Proposition 1 The CMH test has a minimum attainable p-value  
cmh

(S), which can be computed
in O(k) time as a function of the margins {n

j

, n1,j , xS,j

}k
j=1 of the k 2⇥ 2 contingency tables.

Proof: Equation (1) in the main document can be rewritten as:

pS = 1� F

�

2
1

0

B@

⇣
aS,tot

�
P

k

j=1
xS,jn1,j

nj

⌘2

P
k

j=1
n1,j

nj

⇣
1� n1,j

nj

⌘
xS,j

⇣
1� xS,j

nj

⌘

1

CA

= 1� F

�

2
1
(TS(aS,tot

,xS))

where aS,tot

=

P
k

j=1 aS,j

and xS = (xS,1, . . . , xS,k

). Because F
�

2
1
(·) is a monotonically in-

creasing function of its argument TS(aS,tot

,xS), pS is minimized when TS(aS,tot

,xS) is maxi-
mized. TS(aS,tot

,xS) depends on aS,tot

as a quadratic function with positive definite Hessian,
hence, pS is minimized as a function of aS,tot

at the most extreme values aS,tot

can attain.
Since aS,j

2 JaS,j,min

, aS,j,max

K 8j = 1, . . . , k, with aS,j,min

= max(0, xS,j

� n2,j) and
aS,j,max

= min(xS,j

, n1,j), we have aS,min

 aS,tot

 aS,max

, where aS,min

=

P
k

j=1 aS,j,min

and aS,max

=

P
k

j=1 aS,j,max

. Thus:

 

cmh

(S) = 1� F
�

2
1
(Tmax

S (x

S

)) (1)

with Tmax

S (x

S

) = max (TS (aS,min

,xS) , TS (aS,max

,xS)) satisfies pS �  

cmh

(S). Also,
 

cmh

(S) as defined above depends only on {n
j

, n1,j , xS,j

}k
j=1 and can be evaluated in O(k) time,

which completes the proof. ⇤

Lemma 1 Let S,S 0 2 I
PP

be two potentially prunable feature subsets such that S ✓ S 0. Then,
e
 

cmh

(S)  e
 

cmh

(S 0
) holds.

Proof: The statement follows directly from the definition of the lower envelope for the CMH mini-
mum attainable p-value. We have e 

cmh

(S) = min

S00◆S
 

cmh

(S 00
) and e 

cmh

(S 0
) = min

S00◆S0
 

cmh

(S 00
),

respectively. Also, S 00 ◆ S 0 ) S 00 ◆ S. Thus, the set of feature subsets over which  
cmh

(S 00
) is

minimized to compute e 
cmh

(S 0
) is a subset of the set of feature subsets over which  

cmh

(S 00
) is

minimized to compute e 
cmh

(S). ⇤
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Theorem 1 Let S 2 I
PP

be a potentially prunable feature subset such that e 
cmh

(S) > �. Then,
 

cmh

(S 0
) > � for all S 0 ◆ S, i.e. all feature subsets containing S are non-testable at level � and

can be pruned from the search space.

Proof: Let S 0 be an arbitrary feature subset containing S , i.e. S 0 ◆ S . Then we have  
cmh

(S 0
) �

e
 

cmh

(S 0
) �

Lemma 1

e
 

cmh

(S). Therefore, e 
cmh

(S) > � )  

cmh

(S 0
) > �. This proves that all

feature subsets containing S are non-testable at level �. Moreover, since during the enumeration
procedure described in Algorithm 2 in the main document the significance threshold � can only
decrease, those patterns can be pruned from the search space. ⇤

Lemma 2 Let S 2 I
PP

be a potentially prunable feature subset. The optimum x

⇤
S0 of the discrete

optimization problem min

xS0xS
 

cmh

(xS0
) satisfies x⇤

S0
,j

= 0 or x⇤
S0

,j

= xS,j

for each j = 1, . . . , k

Proof: From the proof of Proposition 1 above, we have  
cmh

(S) = 1 � F
�

2
1
(Tmax

S (x

S

)) with
Tmax

S (x

S

) = max (TS (aS,min

,xS) , TS (aS,max

,xS)). Since S 2 I
PP

, we can write:
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where we have used that S 2 I
PP

) xS,j

 min(n1,j , n2,j) 8 j = 1, . . . , k and defined the class
ratios �

j

:= min(n1,j , n2,j)/nj

for each j = 1, . . . , k. Note also that minimising  
cmh

(xS0
) on

xS0  xS is in this case equivalent to maximising the maximum between T
l

(xS0
) and T

r

(xS0
).

As a first step towards proving Lemma 2, we will show that the functions T
l

(xS0
) and T

r

(xS0
)

are both maximised with respect to a single argument xS0
,i

while keeping the other arguments
xS0

,j

, j 6= i fixed at either: (I) xS0
,i

= 0 or (II) xS0
,i

= xS,i

. To show that, we compute the partial
derivative of T

l
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) and T

r
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) with respect to xS0
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:
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Because ⇤
l

(xS0
) � 0 and ⇤

r

(xS0
) � 0, the sign of the partial derivatives are determined by the

sign of A
l

(xS0
) and A

r

(xS0
) respectively. In both cases, A(xS0

) can be expressed as A(xS0
) =

2



b(x¬i,S0
) + µ(x¬i,S0

)xS0
,i

, with x¬i,S0 containing {xS0
,j

}k
j=1,j 6=i

. That is, A(xS0
) is an affine

function of xS0
,i

where the intersect and slope is controlled by all other k � 1 variables. Moreover,
for any x¬i,S0 we have µ(x¬i,S0

) � 0. Therefore the partial derivatives are either always positive,
always negative, or negative until a unique point where it crosses zero and then positive. As a
consequence, it follows that the only possible maximizers of T

l

(xS0
) and T

r

(xS0
) with respect to

xS0
,i

are at the boundary of the domain, i.e. either xS0
,i

= 0 or xS0
,i

= xS,i

. In other words, we have

max

xS0xS
T
l

(xS0
) = max

✓
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x¬i,S0x¬i,S
T
l

(x¬i,S0 , 0), max

x¬i,S0x¬i,S
T
l

(x¬i,S0 , xS,i

)

◆
. Since this holds

for any i = 1, 2, . . . , k and xS0  xS , the argument can be applied recursively to each of the two
terms in the RHS of the last expression. This completes the proof. ⇤

Theorem 2 Let S 2 I
PP

be a potentially testable feature subset and define �l
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=
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nj
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=
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nj
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for j = 1, . . . , k. Let ⇡

l

and ⇡
r

be permutations ⇡
l

,⇡
r

: J1, kK 7!
J1, kK such that �l

S,⇡l(1)
 . . .  �l

S,⇡l(k)
and �r

S,⇡r(1)
 . . .  �r

S,⇡r(k)
, respectively.

Then, there exists an integer  2 J1, kK such that the optimum x

⇤
S0 = argmin

xS0xS

 

cmh

(xS0
) satisfies

one of the two possible conditions: (I) x⇤
S0

,⇡l(j)
= xS,⇡l(j) for all j   and x⇤

S0
,⇡l(j)

= 0 for all
j >  or (II) x⇤

S0
,⇡r(j)

= xS,⇡r(j) for all j   and x⇤
S0

,⇡r(j)
= 0 for all j > .

Proof: The functions T
l
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) and T

r

(xS0
) defined in the proof of Lemma 2 above can be rewritten

generically as:
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⌘
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r
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). Since T is

permutation invariant, we assume without loss of generality that the indices j = 1, . . . , k have been
sorted a priori to guarantee that �

j

 �
i

whenever j  i.

Next, we introduce k binary indicator variables �1, . . . , �k in T as:

T (�1, . . . , �k) =
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k

j=1 �j lj(�j

)
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P
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l
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Suppose further that:

argmax

�1,...,�k

T (�1, . . . , �k) = (1, 1, . . . , 1| {z }
r

, 0, 0, . . . , 0| {z }
k�r

) (6)

holds with r > 0. Informally, Equation (6) being true would imply that the maximum is achieved
by keeping the terms in the summation corresponding to the r smallest �

j

. From Lemma 2, we
know that T

l

(xS0
) and T

r

(xS0
) are maximised for x⇤

S0
,j

= 0 or x⇤
S0

,j

= xS,j

for all j = 1, 2, . . . , k.
Thus, if Equation (6) holds and we have �

i

> �
j

and x⇤
S0

,i

= xS,i

then it follows that x⇤
S0

,j

= xS,j

.
The alternative case x⇤

S0
,j

= 0 cannot occur, since it would contradict Equation (6). This would
suggest the following strategy to solve min

xS0xS
 

cmh

(xS0
). Firstly, as shown in the proof of Lemma 2,

argmin

xS0xS
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max (T
l
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)). Next, we obtain and sort the coefficients

�
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k
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�
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k

j=1
corresponding to the representation of T

l

and T
r

in the form of Equation (4).
The computational complexity of that step would be dominated by the sorting steps, hence being
O(k log(k). Then, by Equation (6) and Lemma 2, we can solve the subproblems argmax T

l

(xS0
)

xS0xS

and argmax T
r

(xS0
)

xS0xS

in O(k) time each, increasing the candidate r in Equation (6) from 1 up to at
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most k. Note that this is exactly the strategy suggested by Theorem 2. In summary, proving Theorem
2 amounts to showing the validity of Equation (6) for functions of the form given in Equation (5).

We will prove it by induction. First, we show that the statement holds for k = 2. That is, we want to
show that:

argmax

�1,�2

T (�1, �2) 2 {(1, 0), (1, 1)} (7)

The only possible contradicting case would be argmax

�1,�2

T (�1, �2) = (0, 1), since the case (0, 0)

yields a trivial value for the function T. We show directly that under the assumption �1  �2, the
contradiction cannot happen. Indeed we have:

(l1(�1) + l2(�2))
2

�1l1(�1) + �2l2(�2)
� l22(�2)

�2l2(�2)
=

(l1(�1) + l2(�2))
2�2l2(�2)� l22(�2)(�1l1(�1) + �2l2(�2))
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(8)
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2
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�2l1(�1)l2(�2) + (2�2 � �1)l

2
2(�2)

(�1l1(�1) + �2l2(�2))�2l2(�2)

Since l
i

(�
i

) � 0 and �1  �2, it follows that the numerator in the expression above is positive, thus
T (1, 1) > T (0, 1) contradicting the statement that argmax

�1,�2

T (�1, �2) = (0, 1).

Next we prove the induction step. Suppose the statement holds for an arbitrary dimension k, we will
show then it also holds for dimension k + 1. That is, if we have:
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R
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Then we want to show that:
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0
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Then the statement is trivially true. Suppose now that equation (12) does not hold. We show next
that:
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k
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which would complete the proof. To show that equation (13) is true when equation (12) does
not hold, we proceed by contradiction in two steps. First we prove that there is at most a single
j 2 {1, . . . , k} | ˆ�

j

= 0. To see that, suppose 9j | ˆ�
j

= 0 and define:
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j
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have:
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Moreover, since equation (12) does not hold, it follows that:

(

˜�1, . . . , ˜�j�1, ˜�j+1, . . . , ˜�k, ˜�k+1) = argmax

�1,...,�j�1,�j+1,...,�k,�k+1

eT (�1, . . . , �j�1, �j+1, . . . , �k, �k+1)

(16)
satisfies ˜�

k+1 = 1 (otherwise equation (12) would be true). But, since the monotonicity property is
assumed to be true for problems of dimension k, it turns out that ˜�

i

= 1 for i = 1, . . . , j � 1, j +
1, . . . , k as well. And, since ˜�

k+1 = 1, then:

max

�1,...,�j�1,�j+1,...,�k,�k+1
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which in turn implies ˆ�

i

= 1 for i = 1, . . . , j � 1, j + 1, . . . , k. Thus, j is the only dimension which
could satisfy ˆ�

j

= 0.

To end the proof, we need to show that, indeed, it’s not possible to have ˆ�
j

= 0 either. To do so we
will show that the statement of monotonicity holds for k = 3, then we could easily show ˆ�

j

= 1. We
use a change of variables to make it clearer.

Indeed, we rewrite T (�1, �2, ..., �j , ..., �k�1, �k) the following way :

T (�1, �2, ..., �k�1, �k) =
(f0 + f

j

�
i
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k

)

2
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j

f
j

�
i

+ �
k

f
k

with
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X
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f
l
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f0�0 =

X
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f
l

�
l
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P
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Then, if equation (12) does not hold, we would have:
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�1,...,�k,�k+1
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where we know, by assumption, that the optimum in the right hand side is achieved when �0 = 1 and
�
k+1 = 1. If we knew monotonicity holds for k=3, it would then follow that �

j

= 1 if �
j

� �0.

To rephrase it, we want to show that the two following cases: T (�
j

= 1, �0 = 1, �
k

= 1) < T (�
j

=

0, �0 = 1, �
k

= 1) with �
j

< �0 and T (�
j

= 1, �0 = 1, �
k

= 1) < T (�
j

= 0, �0 = 1, �
k

= 1)
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with �
j

> �0 are impossible with the hypothesis that 8 {�1, �2, ..., �k�1} T (�1, �2, ..., �k�1, 0) <
max

�1,...,�k�1T (�1, �2, ..., �k�1, 1)
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T (�
j

= 1, �0 = 1, �
k

= 1)� T (�
j

= 0, �0 = 1, �
k

= 1) (19)

=

l
j

(l0�0 + l
k

�
k

)(l
j

�
j

+ l0�0 + l
k

�
k

)

(l20(2�0 � �
j

) (20)

+ l2
k

(2�
k

� �
i

) + l0lk(2�0 + 2�
k

� �
j

+ l0lj�0 + l
k

l
j

�
k

)) > 0 (21)

As �
j

< �0 < �
k

, all the terms of the previous sum are positive, which implies that T (�
j

= 1, �0 =

1, �
k

= 1) > T (�
j

= 0, �0 = 1, �
k

= 1).

In a second time we want to show that the case T (�0 = 1, �
j

= 1, �
k

= 1) < T (�0 = 1, �
j

= 0, �
k

=

1) with �
j

> �0 is not possible either. In this case we use a Reductio ad absurdum: we are going
to show that we can not have both T (�0 = 1, �

j

= 0, , 1) > T (1, 1, 1) and T (�0 = 1, �
j

= 0, 1) >
T (�0 = 0, �

j

= 1, 0). Indeed after developing both inequalities, we find

T (�0 = 1, �
j

= 0, 1) > T (1, 1, 1) , �0 <
1

l0
(�

j

(l0 + l
k

)

2

2(l0 + l
k

) + l
j

� �
k

l
k

) (22)

T (�0 = 1, �
j

= 0, 1) > T (�0 = 1, �
j

= 0, 0) , �0 >
l0

2l0 + l
k

�
k

(23)

The first inequality of 22 can be simplified the following way, by using the following inequalities
�0 < �

j

< �
k

and 8i l
i

> 0.

�0 <
1

l0
(�

i

(l0 + l
k

)

2

2(l0 + l
k

) + l
j

� �
k

l
k

) (24)

<
1

l0
(�

k

(l0 + l
k

)

2

2(l0 + l
k

) + l
j

� �
k

l
k

) = �
k

(

1

l0

(l0 + l
k

)

2

2(l0 + l
k

) + l
j

� l
k

) (25)

Using 22 and 24 we have the following result :

l0
2l0 + l

k

�
k

< �0 < �
k

1

l0
(

(l0 + l
k

)

2

2(l0 + l
k

) + l
j

� l
k

) (26)

) l0
2l0 + l

k

<
1

l0
(

(l0 + l
k

)

2

2(l0 + l
k

) + l
i

� l
k

) (27)

) 0 < �(l0 + l
k

)

2
(l
k

+ l
j

) (28)

The last line of the previous equation set shows clearly the contradiction.

Those two results 19 and 26 end the proof.

⇤

2 Experimental results

2.1 Implementation details

All algorithms considered in the experiments used the same closed itemset mining algorithm for
enumerating patterns: a simplified version of the Eclat algorithm based on an implementation by
the author in [4]. All approaches were implemented using C++ and compiled with the same flags.
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In this way, the runtime differences among methods due to implementation, rather than algorithmic
considerations, should be minimal.

All experiments for which runtime values are reported were carried out using a single thread running
on a Intel Xeon E5-2680v3 CPU, clocked at 2.5 GHz. While the maximum amount of RAM available
in the system was 64 GB, less than 8 GB were needed throughout the experiments.

2.2 Simulation experiments

2.2.1 Data generation

We generate synthetic transaction databases containing n observations {u
i

}n
i=1 and p binary features

each. Each feature u
i,j

2 {1, . . . , p} takes the value 1 in each observation {u
i

}n
i=1 according to the

realization of a Bernoulli random variable with parameter µ. Different realizations are i.i.d. across
observations and features. In addition, each of the observations u

i

was assigned a binary class label
y
i

and a categorical covariate c
i

2 {1, . . . , k}.

A true associated feature combination z

true

was generated as a binary vector correlated to the label-
vector y but not correlated to the covariate-vector c. In addition, a confounded feature combination
z

conf

was generated as a binary vector almost fully correlated to the covariate-vector c. Those two
feature combinations were further decomposed into 5 feature vectors such that the AND operation of
all those individual feature vectors gives the respective combination features. Those 10 feature vectors
replace 10 observations chosen at random in the generated dataset. The strength of the correlations
between the true associated feature combinations is controlled by ⇢

true

. ⇢
conf

strictly controls the
association between the class label and the covariate c, and as a consequence the association between
the confounded itemset and the class label, because their correlation almost reaches one (c.f. the
following paragraph). As an example, those parameters set to one indicate a perfect match.

Generating distribution We now describe a procedure for generating a confounded significant
feature combination. Consider the covariance matrix

⌃ =

 
1 0 ⇢true
0 1 ⇢conf

⇢true ⇢conf 1

!

Consider sampling a single drawing o from the multivariate Bernoulli distribution with mean
(0.5, 0.5, 0.5) and covariance matrix ⌃. This can be done in R using the bindata package, which
results in a three-vector o = (u, c, y).

This o will be three-dimensional; the first component o1 is an indicator function, which indicates (1)
if that feature u

i

will contain the studied combination for sample i, or not (0). The second component
o2 is the categorical label, and the third component z3 will be the class label y

i

. In this way we
generate the class vector c and the true associated significant itemset u

true

.

For the confounded itemsets, each feature combination z

conf,i

is obtained from the values of the
categorical covariate c

i

by flipping its value with a low probability p
✏

= 0.05. To be clear, we sample
✏ ⇠ B(1, p

✏

) and then
z
conf,i

= c
i

� ✏,

where � is the xor operator. By looking at ⌃, we see that the parameter ⇢conf controls the degree of
association between c and y. For high values of ⇢con, the vectors c and z

conf

will be highly correlated
with y .

Let p ⇠ B(µ), f written such that f = AND(o2, p) is partly a confounded itemset, because its subset
contains a confounded feature.

2.2.2 Runtime evaluation

We evaluated the speed of our method while varying two fundamental parameters: the number of
features p and the number of categories for the covariate k, while keeping n = 500 and µ = 0.1.

Figure 1.(a) (c.f. main text) shows the runtime as a function of the number of items, p. This is a
fundamental parameter, as databases in the applications we target, such as computational biology,
are often characterized by a small sample size n and a large number of input features p. The main
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observation one can derive from Figure 1.(a) is that, again, FACS is virtually as fast as state-of-the-art
unconditional contrast pattern mining. We can also notice that methods using Tarone’s testability
criterion are vastly more efficient than the Bonferroni-based method Bonf-CMH. The difference in
performance gets particularly relevant for sufficiently large p.

Figure 1.(b) (c.f. main text) shows the runtime as a function of the number of categories for the
covariate, k. The runtime of FACS can be seen to scale slowly with k, as expected from the result in
Theorem 2. The overhead with respect to unconditional pattern mining, represented by LAMP-�2, is
small even for as many as k = 26 different categories for the covariate. In contrast, the runtime of
mk-FACS, which uses a naive-implementation of the pruning criterion, and 2

k-FACS, which uses a
suboptimal implementation based on Lemma 2, increases exponentially with k. In summary, this
experiment demonstrates that FACS can scale to large values of k with only a minor overhead and
shows the importance of our efficient implementation of the pruning criterion to achieve that result.

2.2.3 Evaluation of precision and false positive detection

In the main text, we describe the performance of FACS in terms of: (a) precision, defined as the
proportion of itemsets deemed significant which are true positives, and (b) false positive detection,
defined as the proportion itemsets deemed significant which are confounded. To do so, we generated
300 synthetic databases as described in Section 2.2.1 for different values of ⇢

true

and ⇢
conf

. In our
simulations, we assume that the strength of the association between the true itemset and the label
⇢
true

, and the confounded itemset and the label, ⇢
conf

, are identical, i.e. that ⇢
true

= ⇢
conf

. In
this way, we do not favor the detection of true itemsets over confounded itemsets or vice versa. All
synthetic databases were generated using n = 200, p = 5000 and µ = 0.1. Each itemset reported
by a method as significantly associated will be considered a true positive detection if strictly more
than half of its items belong to the true itemset. Analogously, they will be considered a false positive
detection if strictly more than half of its items belong to the confounded itemset. Itemsets that
contain as many items belonging to the true associated feature combination as items belonging to the
confounded feature combination count as half of an itemset for each of the category when summing
the number of hits (true and false hits).

Figures 1.(c) in the main text compare FACS, LAMP-�2 and Bonf-CMH. The precision of FACS and
LAMP-�2, both of which employ Tarone’s testability criterion, is superior to that of BONF-CMH, as
expected. Differences are more accentuated for moderate association strengths, which correspond to
signals strong enough to be detectable yet not considerably above the noise level. More importantly,
in Figure 1.(d) we observe that unconditional significant discrimative itemset mining methods such
as LAMP-�2 have an unacceptably high proportion of confounded items being deemed significant. In
contrast, FACS greatly reduces the false positive detection by conditioning on an appropriate covariate.
Finally, the false positive detection of BONF-CMH is even lower than that of FACS, a consequence of
the low statistical power of methods based on Bonferroni’s correction.

2.3 Experiments on biomedical datasets

As mentioned in the main text we apply our method to solve two different biological questions.

2.3.1 Dataset descriptions and preprocessing

A. thaliana GWAS We analyze a widely used collection of Arabidopsis thaliana GWAS datasets
from [3], which we obtained from the easyGWAS online resource [7]. We chose two representative
datasets among the ones exhibiting the highest amount of confounding, as measured by the genomic
inflation factor � described in [6]. The two datasets chosen concern the disease LY (yellowing
leaves) and avrB (hypersensitive-response traits). They contain 84 and 95 samples respectively and
approximately 214,000 binary features. A feature takes value 1 if the corresponding position in the
genomic sequence is a minor allele, i.e. the less frequent genomic variant in the population, and value
0 otherwise.

We consider the datasets of each plant trait, LY or avrB, and downsample the two datasets into smaller
datasets: (1) according to the chromosome belonging to the genomic bases because interactions
between chromosomes are very unlikely and (2) by downsampling evenly every 20 bases, and using
different starting position each time - indeed it is well known in biology that there is a very strong
correlation between close-by variants, approximately 10 kilo bases (kb) for A. thaliana, because
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of evolutionary reasons. This enables us to get rid of redundancy between bases while looking for
middle to long range interactions. We note that each genomic base is included in one and only one
dataset, and each chromosome is split in 20 subdatasets.

Combinatorial regulation of gene expression in breast cancer cells: The breast cancer data set,
as used in [10], includes 12, 773 genes classified into up-regulated or not up-regulated. Each gene is
represented by 397 binary features which indicate the presence/absence of a sequence motif in the
neighborhood of this gene. We aim to find combinations of motifs that are enriched in up-regulated
genes.

2.3.2 Categories representative of population structure

A. thaliana GWAS For the two datasets LY and avrB, we condition on the categorical covariate
that is representative of the population structure; one can think of this covariate representing the
subpopulation membership of a plant. We obtain this categorical covariate by running k-means on
the first five principal components of the kinship matrix of the dataset, which represents the genetic
relatedness of the plants [8, 9]. We select the number of clusters k in a range from 2 to 8 that results
in the best genomic inflation factor, a popular statistic in genetics for measuring the inflation of test
statistics [6]. It results in k = 3 subpopulation clusters for avrB and k = 5 for LY. The genomic
inflation factor is the ratio between the median of the distribution of the p-values of each tested feature
combination and the median of the null distribution that is the �2 distribution. Indeed, biologists
manipulate large-p datasets, where most of the features are supposed to be independent to the label
and only a few combinations bear the significant associated signal. If the ratio is � 1, then the
genomic factor is inflated and the dataset is confounded, leading to many spurious associations.
Conditioning on the correct covariates enables one to reduce the inflation factor by getting the p-value
distribution closer to the null distribution.

Combinatorial regulation of gene expression in breast cancer cells: The covariate, with k = 8

and k = 16 categories, used with FACS was obtained by the same method as used with A. thaliana.
Biologically, this means that we condition the analysis on groups of genes sharing similar motifs and
try to find up-regulation associated motifs within these groups.

While one should acknowledge that it may be difficult to find biological justification for grouping
the genes in this way in order to create categorical covariates, there is no natural alternative for
this particular dataset, and the goal was to show that FACS can be handle real-world datasets with a
relatively large number of categorical covariates.

2.4 How to evaluate correcting for confounders?

Validating the ability to correct for confounded patterns in real-world datasets is challenging, as the
ground-truth is hardly ever known. In addition to the genomic inflation factor described above, a tool
extensively used for that purpose when analyzing biological datasets are Q-Q plots. When applied to
our setup, the x-axis corresponds to quantiles of the expected distribution of the p-values pS , under
the assumption that no pattern S is significantly associated. The y-axis corresponds to quantiles
of the empirical distribution actually observed in our data sample. Since in practice most patterns
will not be significantly associated, one expects the empirical distribution to approximately match
the expected distribution. When this occurs, the plot approximately follow the identity y = x, with
possible discrepancies towards the top-right part of the plot, corresponding to the few truly associated
patterns. However, when confounding is present, the plots often look inflated, considerably deviating
from the identity line upwards from the beginning of the plot.

2.4.1 Computing the inflation factor �

The inflation factor � that is computed in the experimental analyses was first suggested by [6, p
1001] in the context of GWAS analysis (for single markers). A brief description of its computation is
provided here, since it may not be well-known outside of the statistical genetics community.

First, statistics estimating the association of a marker with a phenotype are computed using the
Cochran-Armitage [5, 2, 1] test. Under the null hypothesis of no association, these test statistics
are approximately chi-squared distributed. Suppose there are n markers, and the test statistics are

9



Figure 1: QQplot for the breast cancer dataset with the two methods, FACS and LAMP-�2. The
covariate is split into 16 categories.

Y 2
1 , Y

2
2 , . . . , Y

2
n

. Then, the inflation factor � is computed as

� =

median{Y 2
1 , Y

2
2 , . . . , Y

2
n

}
0.6752

.

The authors [6, p 1001] suggest that the term in the denominator enables a “robust” measure of �,
but no further justification was provided. However, we note that 0.6752 is close to the median of the
chi-squared distribution (with one degree of freedom) 0.454936..., which could be the origin of this
value; in fact we use the more precise estimate of the median in our computation of �.

In our analysis, the statistics Y 2
i

are computed for the all testable combinations. Although the
Cochran-Mantel-Haenszel (CMH) test statistic is used here, rather than the Cochran-Armitage test,
the CMH test statistic is also approximately chi-squared distributed under the null hypothesis, and so
the � is computed in the same way.

It should be noted that [6] also suggests using the value of � to adjust the chi-squared statistics before
computing the p-values; however, this practitioners often do not make this adjustment, since it does
not change the order of the p-values. In this paper we follow this practice of not using � to adjust the
statistics, but rather as only an indication of population structure.

Next, we describe the experimental setup specific to each of the two applications.

A. thaliana GWAS The number of hits given in the main text for each plant disease is the total sum
over all the chromosomes when taking all the genomic bases into account, i.e. all the 20 datasets
per chromosome. The reported genomic inflation is the average over all the 20 datasets of all the
chromosomes.

Combinatorial regulation of gene expression in breast cancer cells: Figure 1 shows Q-Q plots
of the p-values for this dataset, demonstrating that FACS exhibits a improvement over LAMP-�2.
These results, in addition to the reduction in number of hits, indicate that it is necessary to tackle
the inflation of test statistics in this setting and that conditioning on gene groups contributes to this
goal. It is also apparent from the Q-Q plots that more p-value inflation remains in the Breast Cancer
datasets than in the Arabidopsis dataset, which motivates future work in further reducing this inflation
by correcting for additional covariates.
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2.5 Summary of experimental results

We first discuss our experimental results on the biological datasets. In the case of A. thaliana, two
representative datasets which exhibited a high amount of confounding were chosen [3], while the
breast cancer dataset has been previously used in a significant pattern mining context [10].

Our results show that FACS can be applied to such real-world datasets, and can handle a moderate
number of covariates (at least up to 16), while the simulation results, shown in Figures 1(a) and
1(b) in the main paper, confirms the result suggested by Theorem 2 that FACS has a runtime of the
order O(k log k), and could potentially handle an even larger number of categories. Therefore, FACS
should be able to process datasets with a higher number of categorical covariates with only a minor
increase in computation time.

When analysing the real-world datasets, a preprocessing step that was introduced in the genetics
literature [8, 9], and is based on principal component analysis, was used to obtain the categorical
covariates. While it would be ideal to have datasets with pre-determined categorical covariates
which are known to be highly confounded with the class labels, such datasets — with strong domain
knowledge of the confounding mechanisms — were difficult to obtain. However, the simulation
results shown in Figures 1(c) and 1(d) of the main paper indicate that, in situations where we are
certain that there is confounding due to categorical covariates, FACS is able to account for such
confounding and ignore combinations that are significantly associated with a covariate, while still
finding the combinations that are truly associated with a phenotype.

As a final point, while the inflation factor � = 1.17 and � = 1.21 may seem high, this is not so
uncommon for plant data where the populations are highly homogeneous. Furthermore, inflation
factors of such a magnitude have been reported in meta-analyses of human height [11, Supp. Table 4].
While it may seem that one solution for lowering the inflation factor would be to consider additional
categorical covariates, it is worth reiterating that a range of categories was considered and the number
of categories corresponding to the lowest inflation factor was selected for these experiments. It is
possible that the inflation factor is not closer to 1 rather due to the inherent population structure in
these plant datasets and the low number of samples.

Overall, the results suggest that FACS is an important contribution in the development of significant
pattern mining algorithms and hope that it will find application in the GWAS community. The code
for FACS can be obtained from https://github.com/BorgwardtLab/FACS.
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