Max-Margin Deep Generative Models

Part of Advances in Neural Information Processing Systems 28 (NIPS 2015)

Bibtex »Metadata »Paper »Reviews »Supplemental »


Chongxuan Li, Jun Zhu, Tianlin Shi, Bo Zhang


Deep generative models (DGMs) are effective on learning multilayered representations of complex data and performing inference of input data by exploring the generative ability. However, little work has been done on examining or empowering the discriminative ability of DGMs on making accurate predictions. This paper presents max-margin deep generative models (mmDGMs), which explore the strongly discriminative principle of max-margin learning to improve the discriminative power of DGMs, while retaining the generative capability. We develop an efficient doubly stochastic subgradient algorithm for the piecewise linear objective. Empirical results on MNIST and SVHN datasets demonstrate that (1) max-margin learning can significantly improve the prediction performance of DGMs and meanwhile retain the generative ability; and (2) mmDGMs are competitive to the state-of-the-art fully discriminative networks by employing deep convolutional neural networks (CNNs) as both recognition and generative models.