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1 Proof of Theorem 3.1

Proof. We prove it by induction that requires p steps to find a causal ordering that is consistent with
the DAG. Without loss of generality, assume that one of the true causal ordering π∗ is {1, 2, ...p}.
For ease of notation, let Fs = {X1, X2, · · · , Xs}. Let k = 1 be the first step:

Var(Xj) = E(Var[Xj |Fj−1]) + Var(E[Xj |Fj−1]),

where the outer expectation and variance is taken over X1, X2, ..., Xj−1. Since the conditional dis-
tribution Xj |Fj−1 ∼ Poisson(gj(XPa(j))), we have Var[Xj |Fj−1] = E[Xj |Fj−1] = gj(XPa(j)).
Hence,

Var(Xj) = E(E[Xj |Fj−1]) + Var(gj(XPa(j)))

= E(Xj) + Var(gj(XPa(j))),

yielding that

Var(Xj)− E(Xj) = Var(gj(XPa(j))).

Clearly, if Pa(j) is empty, meaning the node is the first component of the causal ordering,
Var(gj(XPa(j))) = 0. Otherwise, Var(gj(XPa(j))) > 0 by the assumption. Hence for any node
that can not be the first in the ordering, Var(Xj) − E(Xj) > 0. Hence we pick any node Xk such
that Var(Xk) − E(Xk) = 0 as being the first element of the causal ordering and X1 satisfies the
above equation.

For k = m, assumeX1, X2, ..., Xm is a valid causal ordering for the firstm nodes. Now we consider

Var(Xj |Fm) = E(Var[Xj |Fj−1]|Fm) + Var(E[Xj |Fj−1]|Fm),

for j = m + 1,m + 2, ..., p, where the expectation and variance are taken over the variables
X1, X2, ..., Xm. Again, for any j = m+ 1,m+ 2, ..., p, we have Var[Xj |Fj−1] = E[Xj |Fj−1] =
gj(XPa(j)). Further, since X1, X2, ..., Xm is a valid causal ordering for the first m nodes,

Var(Xj |Fm) = E(E[Xj |Fj−1]|Fm) + Var(E(Xj |Fj−1)|Fm)

= E(Xj |Fm) + Var(gj(XPa(j))|Fm).

Hence, following on similar lines,

Var(Xj |Fm)− E(Xj |Fm) = Var[gj(XPa(j))|Fm].

Hence if Pa(j) \ {1, 2, ...,m} is empty, Var(gj(XPa(j))|Fm) = 0 and Var(Xj |Fm)−E(Xj |Fm) =

0. Any such node can be next on the causal ordering and Xm holds the above property. On the
other hand, for any node in which Pa(j)\{1, 2, ...,m} is non-empty Var(Xj |Fm)−E(Xj |Fm) > 0
which excludes it from being next in the causal ordering. Hence X1, X2, ..., Xm+1 is a valid causal
ordering for the first m+ 1 nodes. This completes the proof by induction.
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2 Proof of Theorem 4.2

Proof. Let X(i) = (X
(i)
1 , ..., X

(i)
p ) be the i.i.d n samples from the given DAG model. Let π∗ be a

true causal ordering and π̂ be the estimated causal ordering. Without loss of generality, assume that
the true causal ordering π∗ is {1, 2, ...p}. For an arbitrary permutation or causal ordering π, let πj
represent its jth element.

Let Eu denote the set of undirected edges corresponding to the moralized graph (i.e. the directed
edges without directions and edges between nodes with common children). Recall the definitions
N (j) := {k ∈ {1, 2, ..., p} |(j, k) ∈ Eu} denote the neighborhood set of j in the moralized graph
and K(j) = {k|k ∈ N (j − 1) ∩ {j, ..., p}} denote a candidate set for πj and Cjk = N (k) ∩
{π1, π2, ..., πj−1} which is the intersection of the neighbors of k with {1, 2, ..., j − 1}.
Recall that for ease of notation for any j ∈ {1, 2, ...p}, and S ⊂ {1, 2, ..., p} let µj|S and rep-
resent E[Xj |XS ] and σ2

j|S = Var(Xj |XS). Also, denote µj|S(xS) and represent E[Xj |XS =

xS ] and σ2
j|S(xS) = Var(Xj |XS = xS). Let nS(xS) =

∑n
i=1 1(X

(i)
S = xS) and nS =∑

xS
n(xS)1(n(xS) ≥ c0.n) for an arbitrary c0 ∈ (0, 1).

The overdispersion score of k ∈ K(j) for the jth component of the causal ordering, de-
fined in the second step of our ODS algorithm only considers elements of X (Ĉjk) = {x ∈
{X(1)

Ĉjk
, X

(2)

Ĉjk
, ..., X

(n)

Ĉjk
} | n(x) ≥ c0.n} so we only count up elements that occur sufficiently fre-

quently.

According to the ODS algorithm, the truncated sample conditional expectation and variance of Xj

given XS = x for j ∈ {1, 2, ...p} and any subset S ⊂ {1, 2, ...p} \ {j} be following: for x ∈ X (S),

µ̂j|S(x) =
1

nS(x)

n∑
i=1

X
(i)
j 1(X

(i)
S = x)

σ̂2
j|S(x) =

1

nS(x)− 1

n∑
i=1

(X
(i)
j − µ̂j|S(x))

21(X
(i)
S = x)

The overdispersion score of k ∈ K(j) for the jth element of the causal ordering is for x ∈ X (Cjk),
ŝjk(x) = σ̂2

k|Ĉjk
(x)− µ̂k|Ĉjk

(x)

ŝjk = ÊĈjk
(ŝjk(x)) =

∑
x∈X (jk)

nĈjk
(x)

nĈjk

ŝjk(x).

And the correct overdispersion score is
s∗jk = ECjk

[σ2
k|Cjk

− µk|Cjk
] = ECjk

[Var(gk(Pa(k))|Cjk)].

Let us define some events for the proof and d denote the maximum degree of the moralized graph.
For any j ∈ {1, 2, ..., p} and k ∈ K(j),

ξ1 = {max
j,k
|ŝjk − s∗jk| < m/2}

ξ2 = {max
k

max
i=1,...,n

X
(i)
k < n

1
5+d }

We prove it by induction that requires p steps to recover a causal ordering that is consistent with the
Poisson DAG. Without loss of generality, assume that the true causal ordering π∗ is {1, 2, ...p}. For
the first step j = 1, a set of candidate element of π1 is K(1) = {1, 2, ...., p} and a candidate parent
set of each node C1k = ∅ for all k ∈ K(1).

P (π̂1 6= π∗1) = P
(
exists at least one k ∈ K(1) \ {1} s.t. ŝ11 > ŝ1k

)
≤ |K(1)| max

k∈K(1)\{1}

{
P
(
s∗11 +

m

2
> s∗1k −

m

2
|ξ1
)
+ P (ξc1|ξ2) + P (ξc2)

}
≤ p max

k∈K(1)\{1}

{
P
(
m > s∗1k|ξ1

)
+ P (ξc1|ξ2) + P (ξc2)

}
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By Assumption (A1), s∗1k > m and we will represent some Propositions that respectively control
P (ξc1|ξ2) and P (ξc2).

For the j − 1 step, assume (π̂1, π̂2, ..., π̂j−1) is a valid ordering for the first j − 1 nodes. Note that
with the correct N (j), Ĉjk = Cjk. Now, we consider π∗j . The probability of a false recovery of
π∗j given the true undirected edges of the moralized graph and the true causal ordering before j is
following:

P(π̂j 6= π∗j |π̂1 = π∗1 , ..., π̂j−1 = π∗j−1)

= P
(
exists at least one k ∈ K(j) \ {j} s.t. ŝjj > ŝjk

)
≤ |K(j)| max

k∈K(j)\{j}

{
P
(
ŝjj +m/2 > s∗jk −m/2|ξ1

)
+ P (ξc1|ξ2) + P (ξc2)

}
≤ |K(j)| max

k∈K(j)\{j}

{
P
(
m > s∗jk|ξ1

)
+ P (ξc1|ξ2) + P (ξc2)

}
By Assumption (A1), s∗jk > m and we represent some Propositions that respectively control
P (ξc1|ξ2) and P (ξc2). Furthermore we also show a condition on c0.

Proposition 2.1. For all j ∈ {1, 2, ..., p}, k ∈ K(j), c0 ≤ n−
d

5+d given ξ2 is a sufficient that a
candidate parents set X (Cjk) is not empty

Proposition 2.2.

P (ξc1|ξ2) ≤ 2p2n
d

5+d
{

exp
(
− m2n1/(5+d)

18

)
+ exp

(
− m2n1/(5+d)

9

)
+ exp

(
− m2n3/(5+d)

9

)}
,

where m is the constant in Assumption (A1).

Proposition 2.3.

P (ξc2) ≤ npMexp
(
− n1/(5+d) log 2

)
where M is the constant in Assumption (A2).

Hence for any j ∈ {1, 2, ...p} with c0 = n−
d

5+d ,

P(π̂j 6= π∗j |π̂1 = π∗1 , ..., π̂j−1 = π∗j−1)

≤ p max
k∈K(j)\{j}

{
P
(
m > s∗jk|ξ1

)
+ P (ξc1|ξ2) + P (ξc2)

}
≤ 2p3n

d
5+d
{

exp
(
− m2n1/(5+d)

18

)
+ exp

(
− m2n1/(5+d)

9

)
+ exp

(
− m2n3/(5+d)

9

)}
+ np2Mexp

(
− n1/(5+d) log 2

)
(1)

By using the above probability bound (1),

P (π̂ 6= π∗)
(E1)

≤ P (π̂1 6= π∗1) + ...+ P (π̂p−1 6= π∗p−1|π̂1 = π∗1 , ..., π̂p−2 = π∗p−2)

(E2)

≤ 2p4n
d

5+d
{

exp
(
− m2n1/(5+d)

18

)
+ exp

(
− m2n1/(5+d)

9

)
+ exp

(
− m2n3/(5+d)

9

)}
+ np3Mexp

(
− n1/(5+d) log 2

)
The first inequality (E1) is followed from P (A ∪ B) = P (A) + P (B ∩ Ac) = P (A) +
P (B|Ac)P (Ac) ≤ P (A) + P (B|Ac) for some events A,B. And (E2) is directly from (1).

Hence, there exists some positive constants C1, C2, C3 > 0 such that

P (π̂ 6= π∗) ≤ C1exp
(
− C2n

1/(5+d) + C3 logmax{p, n}
)
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2.0.1 Proof of Proposition 2.1

Proof. Let |XS | denote the cardinality of a set {X(1)
S , X

(2)
S , ..., X

(n)
S } and |X (S)| denote the car-

dinality of a set X (S). In worst case where |X (S)| = 1, for all x ∈ {X(1)
S , X

(2)
S , ..., X

(n)
S },

nS(x) = c0.n − 1 except for only one component y ∈ X (S). In this case, the sample size
n = nS(y) + (|XS | − 1)(c0.n− 1). A simple calculation yields that

nS(y) = n− (|XS | − 1)(c0.n− 1) = n− c0.n|XS |+ c0.n+ |XS | − 1.

Hence c0.n ≤ nS(y) is equivalent to c0 ≤ n+|XS |−1
n.|XS | . Since 1

|XS | ≤
n+|XS |−1

n|XS | , if c0 ≤ 1
|XS | there

exists at least one component y ∈ X (S). In addition under the event ξ2, |XS | ≤ n
d

5+d which is all
possible combinations. Hence if c0 ≤ n−

d
5+d , |X (S)| 6= 0.

2.0.2 Proof of Proposition 2.2

Proof. This problem is reduced to the consistency rate of a sample conditional mean and conditional
variance. For ease of notation, let njk = nCjk

and njk(x) = nCjk
(x). Suppose that c0 = n−

d
5+d .

Then for any j ∈ {1, 2, ..., p} and k ∈ K(j),

P (ξc1|ξ2) ≤ p2 max
j,k

P (|ŝjk − s∗jk| >
m

2
|ξ2)

≤ p2 max
j,k

P (
∑

x∈X (Cjk)

njk(x)

njk
|ŝjk(x)− s∗jk(x)| >

m

2
|ξ2)

(E1)

≤ p2 max
j,k

∑
x∈X (Cjk)

P (|ŝjk(x)− s∗jk(x)| >
m

2

njk
njk(x)

|ξ2)

(E2)

≤ p2 max
j,k
|X (Cjk)| max

x∈X (Cjk)
P (|ŝjk(x)− s∗jk(x)| >

m

2
|ξ2)

(E3)

≤ p2n
d

5+d max
j,k,x

P (|(σ̂2
k|Cjk

(x)− µ̂k|Cjk
(x))− (σ2

k|Cjk
(x)− µk|Cjk

(x))| > m

2
|ξ2)

≤ p2n
d

5+d max
j,k,x

{
P
(
|σ̂2

k|Cjk
(x)− σ2

j|Cjk
(x)| > m

3
|ξ2
)
+ P

(
|µ̂k|Cjk

(x)− µk|Cjk
(x)| > m

6
|ξ2
)}

(E4)

≤ 2p2n
d

5+d max
j,k,x

{
exp
(
− m2njk(x)

18n4/(5+d)

)
+ exp

(
− m2njk(x)

9n4/(5+d)

)
+ exp

(
− m2njk(x)

9n2/(5+d)

)}
(E5)

≤ 2p2n
d

5+d max
j,k,x

{
exp
(
− m2n1/(5+d)

18

)
+ exp

(
− m2n1/(5+d)

9

)
+ exp

(
− m2n3/(5+d)

9

)}
= 2p2n

d
5+d
{

exp
(
− m2n1/(5+d)

18

)
+ exp

(
− m2n1/(5+d)

9

)
+ exp

(
− m2n3/(5+d)

9

)}
.

(E1) is followed from that P (
∑

i ωiXi > δ) ≤
∑

i P (Xi > δ/ωi), and (E2) is from njk(x)
njk

< 1.
Since njk(x) ≥ c0.n for all x ∈ X (Cjk), |X (Cjk)| ≤ 1/c0 hence (E3) and (E5) hold. Moreover,
(E4) is followed from the Hoeffding’s inequality (Theorem 2 [1]) since samples are independent
and bounded above n1/(5+d) given ξ2.
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2.0.3 Proof of Proposition 2.3

Proof. For any j ∈ {1, 2, ..., p}, the conditional distribution ofXj givenXpa(j) is Poisson with rate
parameter gj(Pa(j)). Hence for k ∈ K(j),

P (ξc2) = P ( max
k∈K(j)

max
i=1,...,n

X
(i)
k > n1/(5+d))

(E1)

≤ np max
k∈K(j)

max
i=1,...,n

P (|X(i)
k | > n1/(5+d))

(E2)

≤ np max
k∈K(j)

max
i=1,...,n

Epa(k)
[
exp
(
− n1/(5+d) log 2 + gk(pa(k))

)]
(E3)

≤ np max
k∈K(j)

max
i=1,...,n

Mexp(−n1/(5+d) log 2)

= npMexp
(
− n1/(5+d) log 2

)
.

(E1) is followed from the union bound and |K(j)| < p. (E2) is from the moment generating
function of Poisson distribution with t = log 2. And, (E3) is from Assumption (A2).
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