Supplementary material

A Proof of Theorem 1

Note: This proof is inspired by one of Bach [1]. We extend their result to the case of a gen-
eral sketching matrix S. Moreover, we believe their argument contains two problematic statements
(about monotonicity of the bias) that we rectify with Lemma [2] and Lemma [3] below. Their result
therefore holds also true with minimal change based on this argument.

For kernel ridge regression, the bias of the estimator f K can be expressed as
bias(K)? = nA\?|| (K + n\I) "' £*|2
= X2 T (K 4 )2 %

For v > 0, we consider again the regularized approximation L., = KS(STKS + nyI)"1STK
with S € R™*P the sketching matrix. The result of the theorem follows from the three following
lemmas.

Lemma 1. Let K = UXU " where U is orthogonal and ¥ diagonal positive. We have
L,<XL<K. (1

Moreover, let
D=3o—-02UuTSSTUS/?
<

with ® = (X + nyI) L If Anax (D) < tfort € (0,1) then

Lemma 2. If0 < K — L, < ™2 then bias(L.,) < (1 + %) bias(K).

1-t

1-t n
increasing. This in particular implies that under the same conditions, bias(L) < bias(L.,).

Lemma 3. [f0 < K — L, < 2T and X > 75|52, - 2wl yhon the map v — bias(L.) is

We next prove the above lemmas.
Proof()fLemma With K = UXU " and R = 2Y20UTS, E7 =R(R"R+nvyI)"'RT, we have
L,=USY2L 32y,
Due to the matrix inversion lemma, we have
L,=RR"(RR" +nyIl)~*
=1-ny(RR" +nyI)™*
=TI -ny(X+nyI+RR" —%)7!
=T —ny(Z +nyl)"V2(I — D)"Y (Z + nyl) /2
with
D= (S +ny)"Y2(2 — RR")(Z + nyI) /2
=0 —0Y2UTssTUd /2,
and ® = X(X + nvyI)~!. This shows that for any y > 0
L,<XL=<K.

Now if Apax(D) < tfort € (0,1),



which implies

0= K~ Ly % L K(K +myl) ™ = 1,

Proof of Lemma 2] This proof was communicated to us by Francis Bach [2].

Since K — L., commutes with the identity, we have

?’LQ’YQ

(K —L,)? < WI.

Now,

I(Zy +nAD)THF* = (K 4+ nA) T (|2 = [[(Ly + nX)THE = Ly) (K + 0 )72
<Ly +nAD)HE = Lo lop - [ (K +nAD) 7|2

On the other hand,
[(Ly +nX) ™K = Ly) 13, = [|(Ly + nAD) ™ (K = Ly)*(Ly +nA) ™ op

n272 B
< WH(LW"'TU‘I) 2HOP
77/2’72

—112
SWH(Lv"’")\I) l15p-

This yields,
1Ly +nXD) T 2 < N+ nAD) T2+ 1Ly +0X)TH = (K +nA) 7 2

—1 px ny _
<0 4D e (14 I, + D) o

< +man el (1412,

Hence we have the bias inequality

bias(L,) < (1 + 17/_);> bias(K).

O

Proof of Lemma|3| Let o(v) = f*T(L,, +nAI)~2f*. The task is to prove that ¢ is increasing if
A > |S]2 Amax(K) e do so by computing the derivative of ¢ and showing that ¢’ > 0. Let

op n

v, > 0. We have

0(7) — (V) = " ((Ly +nA) "2 = (Ly +nA)72) f*
= (L + M) 72 ((Ly +nM)? = (Ly +nA)?) (Ly +nA) 72 f*
= f*T(Ly +nA) "2 (L2, — L2) + 2n\(Ly — L)) (Lo + nA) 72 f.

2 2.
Now we compute the terms L, — L, and L7, — L7:

Ly—L,=KS(STKS+nyI)7'STK — KS(STKS +nyI)"'STK
=KS(STKS+ny'I)™  (n(y=+") (STKS +nyl)"'STK.



And
L2, — L2 =KS(STKS +nyI) 'STK*S(STKS +nyI)'STK
—~KS(STKS +nyI)"'STK?2S(STKS +nyl)"'STK
= KS(STKS+ny'I)"'STK?S(STKS +ny'I)7'STK
~KS(STKS +nyI)"'STK?S(STKS +nyI)"'STK
+ KS(STKS +nyI)"'STK2S(STKS 4+ nyI)"'STK
—KS(STKS +nyI)"'STK2S(STKS 4+ nyI)"'STK
=KS(STKS+nyI)'STK?S [(STKS +nyI)™' — (STKS +nyI)"' STK
+KS[(STKS+nyI)™' — (STKS +nyI) '] STK*S(STKS +nyI)"'STK.
The first term is the last equality above is equal to
n(y—+'") KS(STKS +nyI)"'STK?S(STKS +nyI) Y (STKS +nyI)"'STK,
and the second one is equal to
n(y—+")-KS(STKS+nyI)"Y(STKS +nyI)"'STK2S(STKS +ny' 1) 'STK.
Now combining the above and taking the limit 7/ — ~ we have
V’Igv@g()v —SDW(’; -
Ly +nM)2KS(STKS + D)~ - Q- (STKS +nyI) " ST K(Ly 4+ nA) 2 f*,
with
Q=2n\+STK2S(STKS +nyI)™' + (STKS +nyI)"'STK?2S := 2n\I + Q.

Therefore, the function ¢ is increasing for all y such that () > 0, and the latter is true if 2n\ >

—Amin (Q). Moreover, since () is symmetric we have
Amin(@) 2 _”QHOp 2 _2||STK25(STKS + n’yI)_l ||0P7
and it is sufficient to verify the condition

nA > [|STE2S(STKS +nyI) ™ op. )

Now we finish the proof by showing that the above operator norm is smaller than
7715112, Amax (K ). We have
nySTK?*S(STKS +nyl)™t = STK2S(STKS +nyI) Y (nyI +STKS — STKS)
=STK?S - STK?S(STKS +nyI)"'STKS
=STK(K - KS(STKS+nyI)"'STK)S
=STK(K — L,)S.
Taking operator norms, and using the assumption 0 < K — L, = {41,

_ ny
”’Y||STK25(STKS+WYI) 1||op < HSTHOP 1K lop 1_+¢ 15 1op-

Hence, (@) is satisfied if n\ > | 512, Amax (K) therefore concluding the proof. O
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B Proof of theorem 2

The proof uses the matrix Bernstein inequality (see e.g. Theorem 6.1.1 in [3])):



Theorem 1. Consider a sequence (X},) of independent random symmetric matrices with dimension
d. Assume that E(X},) = 0, Amax(Xk) < R, and let Y =), X}, Furthermore, assume that there
exists o > 0 such that ||[E(Y?)||,p < 0% Then

Y
Pr(Amax(Y) > t) < dexp ((ﬂjg/g)

Next, we exhibit the sequence (Xj) and Y in our case. We have

T=>
1=1

and
wSsTut = Z i ZZ *Zzwz
z€I i=1 k= 1
where (2 )1<i<m are i.i.d. binary random vectors for k € {1,--- ,p} with Pr(zy, = 1) = p; (i.e.

(2ik)1<i<m is the indicator of the chosen column at trial k). Let Y = W " — U SSTWU T, then

ZZl—Z’iw

klzl

We choose X}, to be %Z?;l(l — Yibith for every k € {1,---,p}. Now we verify the as-
sumptions of the above theorem. The matrices X, inherit independence from the random vectors
(zik)1<i<m. and we have E(X}) = 0, and Apax(Xj) < %/\max(ZL i) = %)\max(\II\IJT).
Now we control the spectral norm of the second moment of Y. Again with E(X},) = 0 we have
E(Y?) =37% o E(XiXp) =>4_, E(X?). And for k € {1, ,p}

7 3 E((1-50) (- 52)) vt
zz/ 1 Pi

! Z < ZikZilk) _1) Yty i,

S\ iy

To proceed, observe that for ¢ # ', z;,2;x = 0 since only one column is chosen at a time. This
yields

QZ

W i, ——Zwl/

i,i/=1

EER L™ T

= ;:1 Py [ (p ;:1 Vit )
LSl o

= p? 4 pi it

Given that the probability distribution (p;) verifies p; > ﬁ”qéﬁl”zg, we get E(Y?) <
F

H\p”F S iy = H‘ZFF VW', Hence ||[E(Y?)]|op < “‘I’”F Amax (P T). We now apply the theo-
rem with R = EAmax(\IJ\I/T) and 02 = ”\IJHF )\max(\I/\IfT) which leads to the desired result.

C Proof of theorem 3

Monotonicity of the variance. First of all, we observe that the variance of the estimator f K 1S
matrix-increasing as a function of K. Indeed, we have

variance(K) = %Tr(KQ(K_;_n)\])*?) _7 Z (/\j(/\[z'()%’

j=1



2

where \;(K) is the jth eigenvalue of K arranged in a decreasing order. The function z — W:”T)Q

is increasing for x > 0. Moreover, if L < K then by the Courant-Fischer minimax principle

Aj(L) < Aj(K) forall j (e.g. see Corollary IIT.1.2 in [4])).

Risk bound. Now, using Theoremcombined with the above fact, we have

Eel|fr — £*]|3 = bias(L)? + variance(L)

2
< (1 + W) bias(K)? + variance(K)

(1 + W) (bias(K)? + variance(K))

1—
\ X
= (1+ 22 e - 8

We set 7 = Ac and ¢ = 1/2. The above holds if Amax (cp - c1>1/2UTSSTU<I>1/2) < ¢ and

nA > 7219112, Amax (K ). Now let ¥ = ®/2UT. Then we have ||¢;]|3 = ;(7) and [|¥[|3, = degr.

Using Theorem on W, and given that Apax (YW T) = Apax(®) < 1, for the result to hold with
2

probability at least 1 — p, it is sufficient to set p such that n exp ( M) < p which gives the

deir/B+1/6
desired lower bound p > 8(des/5 + 1/6) log (%)

Remark: Note that if one uses the regularized Nystrom approximation L, = KS(STKS +
nyI)™'STK with v = Xe instead of L = KS(STKS)'STK in the algorithm then the proof
would now be complete and the condition condition nA > |5 |2pAmax (/) is not necessary. If

one uses L, then this latter condition needs to be verified to insure monotonicity of the bias (see
Lemma 3).

Controlling ||S||op. Now it remains to control the operator norm of the sketching matrix .S ap-
pearing in the lower bound on A. To this end we use a variant of the matrix Bernstein inequality
(Theorem|T)) for controlling operator norms of random matrices (see Corollary 6.2.1 in [3]).

Theorem 2. Consider a sequence (X},) of independent random symmetric matrices with dimension
d x d. Assume that E(Xy) = 0, Nlop £ R, and letY =", Xy. Furthermore, assume that there
exists o > 0 such that ||[E(Y?)||,, < 0% Then

Pr(|Y]lgp > t) < 2d =t
o0 =t =P R )

We are interested in the sum

Y =98 —I=-= ZZ<M1> e,

klzl

and similarly to the previous section we consider the sequence X} = % > (Zp—k — 1)ese;) where
- K3

Zik 1S deﬁned as before and (e;)1<;<y, in the standard basis in R™. Since p; > [ - I;(Ae)/desr with
detr = Y1y li(Xe) we have

1 dest ) 1 (deff ) defp
Xillop < max -1 Y S |
[ illep < (ﬂl( Ae) p \ Bl Bl

with [ = min; [;(Ae). On the other hand,
1 & Zik >2 1 & < ) o7 1 deg

E(X2) = — ) Jeel =53 (= 1) ae] = 550
W= Z (( > P> ; p? Bl

1 dest
p Bl

Hence
IE(Y?)[lop <



By choosing 0> = R = %%, we have [|SST — I|l,, < t with probability at least 1 —
t

t2/2 8.t
2n exp (7R(T/t/3))‘ Taking , 3@“}9

than 1 — p, and by the triangle inequality: ||S H2 < 1 + t with the same probability. By taking

= max {1 log (27?) } the latter probability is greater

p > 8(desr/B+1/6) log ( ) (thereby verifying the condition from the previous paragraph) we have

2n
8t ( 2n > 1 dett log (7) 1 log 2
log <

3L p =31 [er + 5/6) log(%) =3 1+]og<2)

if n. > 2, and therefore ||S]|2, < 141/ (since I < 1) with probability at least 1 — p.

1
]

D Proof of theorem 4

First, it is clear that
li=e] BBB"B+n\)"'BTe;
=e¢ BB"(BB" +n\)™!
= diag(L(L +nA\I)™Y);
with e; the i-th element of the standard basis in R™. Now we bound the approximations l; by com-

paring the matrices L(L+nAI)~! and K (K +nAI)~! with respect to the semidefinite order. Since
L < K (Appendix A) and the map K — K (K + n\I)~! is matrix-increasing, we immediately get

the upper bound I; < [;(A) forall ¢ € {1,--- ,n}. Next we derive the lower bound. For v > 0, we
consider again the regularized approximation L, = KS(STKS + nyI)"1STK with § € R"*P
the sketching matrix. Due the matrix inversion lemma, L. < L (Appendix A). Hence to get a lower

bound on [;, it suffices to obtain a lower bound for the same quantity when L is replaced by L.,. We
proved in Appendix A that if

Amax (WT - \IJSST\IJT) <t
fort > 0 with @ = ®1/2UT, & = (X + nyI)~ " then

K—-L,= TK(K—&—n'yI)

Y

Therefore
Lo(Loy + )™ = (K — %I)(K +nA)"!

A
= K(K +n\)™" — %I,

where the last line follows by distributing the product and using the inequality K + nAl = nAl
for the second term. Hence I; > I;(\) — i’: Now we choose again ¢ = 1/2 and v = e for
e € (0,1/2), we get the additive error bound on I; and similarly to the proof of Theorem it suffices
to have p > 8(der/B + 1/6) log (%) To finish the proof, we choose the sampling distribution (p;);

and (3 appropriately. Since

Z U = —Kii,
gajJrn'y ”_lenfy 9y
by choosing p; = K;;/Tr(K), we have p; > B ;(Xe)/ Y i l;(Xe) with 8 = n)ede/Tr(K),
which yields dege/8 = Tr(K)/(nAe).

As for the multiplicative error bound, using K — L., < 7% K (K + ny)~! we get

Lo(Ly + 1)~ = (K — %K(K +ny) ") (K + i)
= K(K +n\)~1(I - %(K + D).

Fort=1/2,1 — {4 (K +nyl)™' = (K —nyI)(K +nyI)~! = i 1. The result follows.
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