
Supplementary Material for “HONOR: Hybrid Optimization for

NOn-convex Regularized problems”

A Properties of Clarke Subdifferential

Proposition 4 According to [8], we have the following properties for Clarke Subdifferential:

(1) If f(x) is continuously differentiable then ∂of(x) = {∇f(x)}.

(2) Let f(x) and g(x) be locally Lipschitz continuous on R
n, Then for any x ∈ R

n, we have

∂o(f(x) + g(x)) ⊆ ∂of(x) + ∂og(x).

If one of them is continuously differentiable then equality holds.

(3) We have the following equivalent way to express ∂of(x̄):

∂of(x̄) = co

{

g ∈ R
n : g = lim

k→∞
∇f(xk),xk → x̄,xk ∈ D

}

,

where the set D is the set of points over which f is differentiable; co denotes the convex hull
of a set.

(4) For a locally Lipschitz continuous function f(x), ∂of(x) is nonempty, convex and compact
for each x ∈ R

n. As a set-valued map ∂of(x) is locally bounded and has a closed graph
and hence is upper-semicontinuous (upper-hemicontinuous), that is: for every sequence
{xk} → x and every sequence {yk} → y with yk ∈ ∂of(xk), we have y ∈ ∂of(x).

Remark 4 For the property (2) above, the equality holds for the subdifferential of convex functions
without requiring that one of them is continuously differentiable.

It is generally difficult to compute the Clarke subdifferential of a non-convex function based on its
definition. However, according to the above properties and the special structure of the non-convex
regularizer, we can obtain the the Clarke subdifferential of f(x) in problem (1) in the following
proposition:

Proposition 5 Let f(x) = l(x) + r(x) and g ∈ ∂of(x). Then, under assumptions (A1) and (A2),
the i-th entry of g is

gi = ∇il(x) + ρ′(|xi|), if xi > 0,
gi = ∇il(x)− ρ′(|xi|), if xi < 0,
gi ∈ [∇il(x)− ρ′(0),∇il(x) + ρ′(0)], if xi = 0.

Proof According to the properties (1) and (2) in Proposition 4, we obtain that, if xi 6= 0, then
gi = ∇il(x) + σ(xi)ρ

′(|xi|), which immediately implies the first two. Further considering the
property (3) in Proposition 4, the last one is easily obtained. �

B Proof of Proposition 1

Proof We firstly use contradiction to prove that if lim infk∈K,k→∞ |vki | = 0 for all i ∈ {1, · · · , n},
then v̄ = 0. Assume that lim infk∈K,k→∞ |vki | = 0 for all i ∈ {1, · · · , n} but v̄ 6= 0. Then there
exists at least one i ∈ {1, · · · , n} such that v̄i = − ⋄i f(x̄) 6= 0. We consider the following two
cases:

(1) If x̄i 6= 0, then we have lim infk∈K,k→∞ |vki | = |v̄i| 6= 0, leading to a contradiction with that

lim infk∈K,k→∞ |vki | = 0 for all i ∈ {1, · · · , n}.

(2) If x̄i = 0, then v̄i = − ⋄i f(x̄) 6= 0 implies that

∇il(x̄) + ρ′(0) > ∇il(x̄)− ρ′(0) > 0, or∇il(x̄)− ρ′(0) < ∇il(x̄) + ρ′(0) < 0. (21)
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By the definition of vki = − ⋄i f(xk), we know that

−(∇il(x
k) + ρ′(0)) ≤ vki ≤ −(∇il(x

k)− ρ′(0)).

Taking limits of the above inequalities, we have

− (∇il(x̄) + ρ′(0)) ≤ lim inf
k∈K,k→∞

vki ≤ −(∇il(x̄)− ρ′(0)), and

− (∇il(x̄) + ρ′(0)) ≤ lim sup
k∈K,k→∞

vki ≤ −(∇il(x̄)− ρ′(0)),

which together with Eq. (21) imply that

lim inf
k∈K,k→∞

|vki | 6= 0.

This leads to a contradiction with that lim infk∈K,k→∞ |vki | = 0 for all i ∈ {1, · · · , n}. Therefore,

if lim infk∈K,k→∞ |vki | = 0 for all i ∈ {1, · · · , n}, then v̄ = 0.

To complete the proof, we next prove that x̄ is a Clarke critical point of problem (1) if v̄ = 0.
According to the definition of the pseudo gradient and Proposition 5, it is easy to verify that

⋄f(x̄) = argmin
ḡ∈∂of(x̄)

‖ḡ‖. (22)

Thus, 0 ∈ ∂of(x̄) ⇔ ⋄f(x̄) = 0 ⇔ v̄ = 0 and hence x̄ is a Clarke critical point of problem (1) if
v̄ = 0. �

C Proof of Proposition 2

Proof (i) Based on the definition of xk(α), we know that xk
i (α)x

k
i ≥ 0. We next prove for all

i ∈ {1, · · · , n}, the following inequality holds by considering two cases:

∇il(x
k)(xk

i (α)− xk
i ) + ρ(|xk

i (α)|) − ρ(|xk
i |) ≤ −v

k
i (x

k
i (α)− xk

i ). (23)

(a) If xk
i 6= 0, then xk

i (α)x
k
i ≥ 0 implies |xk

i (α)| − |x
k
i | = σ(xk

i )(x
k
i (α) − xk

i ). By

the concavity of ρ(·), we have ρ(|xk
i (α)|) − ρ(|xk

i |) ≤ ρ′(|xk
i |)(|x

k
i (α)| − |x

k
i |) =

ρ′(|xk
i |)σ(x

k
i )(x

k
i (α) − xk

i ), which together with ∇il(x
k) + ρ′(|xk

i |)σ(x
k
i ) = −vki (by

noticing that xk
i 6= 0) implies that Eq. (23) holds.

(b) If xk
i = 0, then we have xk

i (α) = πi(αp
k
i ;σ(v

k
i )) = αpki . We next focus on the case (b) in

the following two subcases:

(1) If pki 6= 0, then |xk
i (α)| = ασ(pki )p

k
i = σ(vki )(αp

k
i ) = σ(vki )x

k
i (α), which together

with the concavity of ρ(·) and ρ(xk
i ) = ρ(0) = 0 implies that ∇il(x

k)(xk
i (α) −

xk
i ) + ρ(|xk

i (α)|) − ρ(|xk
i |) ≤ ∇il(x

k)xk
i (α) + ρ′(0)σ(vki )x

k
i (α), which together

with xk
i = 0, vki 6= 0 and∇il(x

k)+ ρ′(0)σ(vki ) = −v
k
i whenever xk

i = 0 and vki 6= 0
implies that Eq. (23) holds.

(2) If pki = 0, then xk
i (α) = xk

i = 0, which together with the fact that ρ(0) = 0 implies
Eq. (23) holds.

Combining (a) and (b), we obtain that Eq. (23) holds for all i ∈ {1, · · · , n}, which together with the
definition of r(·) in the assumption (A2) implies that Eq. (6) holds.

(ii) Since∇l(x) is Lipschitz continuous with constant L, we have

l(xk(α)) ≤ l(xk) +∇l(xk)T (xk(α)− xk) +
L

2
‖xk(α) − xk‖2.

It follows that

f(xk(α)) ≤ f(xk) +∇l(xk)T (xk(α)− xk) + r(xk(α))− r(xk) +
L

2
‖xk(α)− xk‖2,

which together with Eq. (6) and qk
α = 1

α
(xk(α)− xk) implies that Eq. (7) holds. �
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D Proof of Proposition 3 and Auxiliary Propositions

We present the following proposition which is useful to prove Proposition 3.

Proposition 6 Let f(x) = l(x) + r(x) and assumptions (A1) and (A2) hold. If pk = π(dk;vk) is
a non-zero vector, where vk = − ⋄ f(xk), then the directional derivative of f(x) at x = xk along
the direction pk defined as

f ′(xk;pk) = lim
α↓0

f(xk + αpk)− f(xk)

α
(24)

exists and f ′(xk;pk) = −(vk)Tpk < 0.

Proof Recall that l(x) is continuously differentiable based on the assumption (A1), so by the mean
value theorem, for any α > 0, there exists an α̃ ∈ [0, α] such that l(xk + αpk) − l(xk) =
α(pk)T∇l(xk + α̃pk). Thus, we have

lim
α↓0

l(xk + αpk)− l(xk)

α
= lim

α↓0

α(pk)T∇l(xk + α̃pk)

α
= ∇l(xk)Tpk.

When xk
i 6= 0, there exists an α0 > 0 such that for any α ∈ (0, α0], σ(x

k
i + αpki ) = σ(xk

i ) 6=
0. Based on Remark 1, we know that ρ(|xi|) is continuously differentiable with respect to xi in
(−∞, 0) ∪ (0,∞). Thus, by the mean value theorem, there exists an α̃ ∈ [0, α] such that ρ(|xk

i +
αpki |)−ρ(|x

k
i |) = ∂ρ(|xk

i +α̃pki |)/∂(x
k
i +α̃pki )|x

k
i +αpki −x

k
i | = ρ′(|xk

i +α̃pki |)σ(x
k
i +α̃pki )|αp

k
i |.

Therefore, we have

lim
α↓0

ρ(|xk
i + αpki |)− ρ(|xk

i |)

α
= lim

α↓0
ρ′(|xk

i + α̃pki |)σ(x
k
i + α̃pki )|p

k
i | = ρ′(|xk

i |)σ(x
k
i )p

k
i .

When xk
i = 0, by the continuous differentiability of ρ(·) in [0,∞) and the mean value theorem, we

have for any α > 0, there exists an α̃ ∈ [0, α] such that ρ(|xk
i +αpki |)−ρ(|x

k
i |) = ρ(|αpki |)−ρ(0) =

∂ρ(|α̃pki |)/∂(|α̃p
k
i |)(|αp

k
i | − 0) = ρ′(|α̃pki |)|αp

k
i |. Thus, we have

lim
α↓0

ρ(|xk
i + αpki |)− ρ(|xk

i |)

α
= lim

α↓0
ρ′(|α̃pki |)|p

k
i | = ρ′(0)|pki | = ρ′(0)σ(vki )p

k
i .

Therefore, according to Eq. (24) and f(x) = l(x) + r(x) = l(x) +
∑n

i=1 ρ(|xi|), we have

f ′(xk;pk) = lim
α↓0

l(xk + αpk)− l(xk)

α
+

n
∑

i=1

lim
α↓0

ρ(|xk
i + αpki |)− ρ(|xk

i |)

α

= ∇l(xk)Tpk +
∑

i∈Ak

ρ′(|xk
i |)σ(x

k
i )p

k
i +

∑

i∈Ac

k

ρ′(0)σ(vki )p
k
i ,

where Ak = {i : xk
i 6= 0},Ac

k = {i : xk
i = 0}. Rearranging the above equality, we have

f ′(xk;pk) =
∑

i∈Ak

(

∇il(x
k) + ρ′(|xk

i |)σ(x
k
i )
)

pki +
∑

i∈Ac

k

(

∇il(x
k) + ρ′(0)σ(vki )

)

pki

=

n
∑

i=1

−vki p
k
i = −(vk)Tpk < 0,

where the second equality follows from the definition of ⋄if(x
k) and vki = − ⋄i f(x

k); the last

inequality follows from pk = π(dk;vk) and the condition pk 6= 0. �

Remark 5 For a convex function, the directional derivative always exists. However, for a non-
convex function, we are required to address the issue whether the directional derivative exists based
on its definition.

Based on Proposition 6, we prove Proposition 3 as follows:
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Proof of Proposition 3 (a) For QN-step, let’s define

Bk = {i : xk
i p

k
i < 0} and ᾱk

1 =

{

mini∈Bk

|xk

i
|

|pk

i
|
, if Bk 6= ∅,

+∞, otherwise.

Then for all α ∈ (0, ᾱk
1), we have

xk(α) = π(xk + αpk; ξk) = xk + αpk. (25)

Define

s(α) = f(xk + αpk), h(α) =
s(α)− s(0)

α
.

Recalling the definition of the directional derivative in Eq. (24), γ ∈ (0, 1) and Proposition 6, we
have

lim
α↓0

s(α)− s(0)

α
= −(vk)Tpk ≤ −(vk)Tdk < −γ(vk)Tdk,

where the first inequality follows from vki p
k
i ≥ vki d

k
i and the last inequality follows from γ ∈ (0, 1)

and (vk)Tdk = (vk)THkvk > 0 whenever xk is not a Clarke critical point of problem (1). Thus,
by recalling that h(α) is continuous in (0,∞), there exists an ᾱk

2 ∈ (0,min(α0, ᾱ
k
1)) such that

s(α)− s(0)

α
≤ −γ(vk)Tdk, ∀0 < α ≤ ᾱk

2 . (26)

Thus, considering Eq. (26) and the backtracking form of the line search in QN-step (Eq. (4)), there
exists an α with α ≥ ᾱk = βᾱk

2 > 0 such that

s(α)− s(0)

α
≤ −γ(vk)Tdk. (27)

Substituting the definition of s(α) into Eq. (27) and considering that Eq. (25) holds for all α ∈
(0, ᾱk

1), we obtain that there exists an α ∈ [ᾱk, α0] such that the line search criterion in Eq. (4) is
satisfied.

(b) For GD-step, we have

∇l(xk)T (xk(α)− xk) +
1

2α
‖xk(α)− xk‖2 + r(xk(α)) ≤ r(xk). (28)

Noticing that ∇l(x) is Lipschitz continuous with constant L, we have

l(xk(α)) ≤ l(xk) +∇l(xk)T (xk(α)− xk) +
L

2
‖xk(α) − xk‖2,

which together with Eq. (28) and f(x) = l(x) + r(x) implies that

f(xk(α)) ≤ f(xk)−
1− αL

2α
‖xk(α)− xk‖2.

Thus, the line search in Eq. (5) is satisfied if

γ ≤ 1− αL and 0 < α ≤ α0.

Considering the backtracking form of the line search in GD-step (Eq. (5)), we obtain that the line
search criterion in Eq. (5) is satisfied whenever α ≥ βmin(α0, (1− γ)/L). �

E BFGS and L-BFGS

Assume that we are given an approximate inverse Hessian matrix Hk at x = xk . BFGS updates the
inverse Hessian matrix Hk+1 at x = xk+1 as:

Hk+1 = (V k)THkV k + ρksk(sk)T , (29)
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where V k = I − ρkyk(sk)T , sk = xk+1 − xk, yk = ∇l(xk+1)−∇l(xk), ρk = ((yk)T sk)−1. It
is easy to verify that Hk+1 ≻ 0, if Hk ≻ 0 and ρk > 0 [15].

L-BFGS [15] updates the inverse Hessian matrix by unrolling the update from BFGS back to m
steps:

Hk = (V k−1)THk−1V k−1 + ρk−1sk−1(sk−1)T

= (V k−1)T (V k−2)THk−2V k−2V k−1

+ (V k−1)T sk−2ρk−2(sk−2)TV k−1

+ ρk−1sk−1(sk−1)T

=
(

Uk,m
)T

Hk−mUk,m

+ ρk−m
(

Uk,m−1
)T

sk−m(sk−m)TUk,m−1

+ ρk−m+1
(

Uk,m−2
)T

sk−m+1(sk−m+1)TUk,m−2

+ · · ·

+ ρk−2(V k−1)T sk−2(sk−2)TV k−1

+ ρk−1sk−1(sk−1)T , (30)

where Uk,m = V k−mV k−m+1 · · ·V k−1. For the L-BFGS, we need not explicitly store the approx-
imated inverse Hessian matrix. Instead, we only require matrix-vector multiplications at each iter-
ation, which can be implemented by a two-loop recursion with a time complexity of O(mn) [15].
Thus, we only store 2m vectors of length n: sk−1, sk−2, · · · , sk−m and yk−1,yk−2, · · · ,yk−m

with a storage complexity of O(mn), which is very useful when n is large. In practice, L-BFGS
updates Hk−m as µkI , where µk = min(1010,max(10−10, (sk)Tyk/‖yk‖2)).

F Properties of L-BFGS

We first show that some key sequences are bounded, which are critical for establishing some impor-
tant properties of L-BFGS.

Proposition 7 The sequence {xk} generated by the HONOR algorithm is bounded. Let sk =
xk+1 − xk, yk = ∇l(xk+1)−∇l(xk). Then {sk}, {yk} and {vk} are also bounded.

Proof Proposition 3 guarantees that both line search criteria in QN-step (Eq. (4)) and GD-step
(Eq. (5)) can be satisfied in a finite number of trials with some αk > 0. Thus, we have

f(xk)− f(xk+1) ≥ γαk(vk)Tdk = γαk(vk)THkvk ≥ 0 (QN-step),

or f(xk)− f(xk+1) ≥
γ

2αk
‖xk+1 − xk‖2 ≥ 0 (GD-step), (31)

which imply that {f(xk)} is decreasing. Hence for all k ≥ 1, f(xk) ≤ f(x0). Assume that {xk}
is unbounded. Then there exists a subsequence {xk}K̃ such that {l(xk)}K̃ → ∞, because l(x) is
coercive based on the assumption (A1). Recall that r(x) ≥ 0 according to the assumption (A2).
Thus, we have {f(xk)}K̃ → ∞, which leads to a contradiction with that f(xk) ≤ f(x0), ∀k ≥ 1.

Therefore, {xk} is bounded, which immediately imply that {sk} is also bounded. Recalling that
∇l(x) is Lipschitz continuous with constant, we obtain that ‖yk‖ ≤ L‖xk−xk+1‖ and hence {yk}
is bounded. Since −vk ∈ ∂of(xk) and {xk} is bounded, then based on Proposition 4, we obtain
that {vk} is bounded. �

Based on Proposition 7, we present the following important properties of L-BFGS.

Proposition 8 In the course of the inversion Hessian matrix update using L-BFGS, let {H0} and
{Hk−m} be bounded and positive definite, and {xk}, {sk}, {vk}, {yk} and {ρk} be bounded,
where sk = xk+1 − xk, yk = ∇l(xk+1) − ∇l(xk) and ρk = ((yk)T sk)−1. Then there exists
a positive constant M such that for all x ∈ R

n and all k ≥ 1: xTHkx ≤ M‖x‖2. That is,
the eigenvalues of Hk are uniformly bounded from above by M . Moreover, {dk} and {pk} are
bounded.
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Proof When k ≤ m (m is the unrolling steps of L-BFGS), L-BFGS is equivalent to BFGS and Hk

is updated by the recursive relationship in Eq. (29). When k > m, Hk is updated by the recursive
relationship in Eq. (30). Thus, Eqs. (29), (30) and the boundedness of {H0}, {Hk−m}, {sk}, {yk},
{vk} and {ρk} immediately imply that {‖Hk‖F} is bounded. That is, there exist an M > 0 such
that ‖Hk‖F ≤M for all k ≥ 1. Thus, for all k ≥ 1, λmax(H

k) ≤ ‖Hk‖F ≤M , where λmax(H
k)

is the largest eigenvalue of Hk. That is, there exists a positive constant M such that for all x ∈ R
n

and all k ≥ 1: xTHkx ≤M‖x‖2. Thus, the eigenvalues of Hk are uniformly bounded from above
by M . It easily follows that {dk} and {pk} are bounded by noticing that {vk} is bounded. �

Remark 6 We discuss how to guarantee that the conditions in Proposition 8 are satisfied in prac-
tical L-BFGS updates. We usually choose H0 and Hk−m as multiple identity matrices such that
{H0} and {Hk−m} are bounded and positive definite. Proposition 7 guarantees that {xk}, {sk},
{vk} and {yk} are bounded. To guarantee that {ρk} is also bounded, we adopt a similar strategy
presented in [5, 1]: choose a small positive constant δ and perform L-BFGS updates only when
(sk)Tyk ≥ δ.

Remark 7 To guarantee the eigenvalues of Hk are uniformly bounded from below by a positive
constant, we can add a small positive diagonal matrix νI to Hk (e.g., ν = 10−12). Thus, the
eigenvalues of Hk are both uniformly bounded from below by ν and uniformly bounded from above
by M , respectively.
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