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1 Pseudo Geodesic Metric

Let us first recall from [Ambrosio et al., 2006, Section 12.4] that the set of geodesics in the Wasser-
stein space can be identified to some plans having first marginal equal to µ̄,

G(µ̄) =
{
π ∈ P2(X 2), p1#π = µ̄, (p1, p1 + εp2)#π optimal for some ε > 0

}
. (1)

Ambrosio et al. [2006, Definition 12.4.1] defined a metric on G(µ̄),

Wµ̄(π1, π2)2 = min

{∫
X 3

|x3 − x2|2dγ, γ ∈ Γ(π1, π2)

}
, (2)

where Γ(π1, π2) ⊂ P (X3) is the set of a plans verifying p12#γ = π1 and p23#γ = π2, with
p12(x1, x2, x3) = (x1, x2) and p13(x1, x2, x3) = (x1, x3). If for example π2 is induced by a
mapping T , namely π2 = (id× T )#µ̄, then this metric has the more simple expression [Ambrosio
et al., 2006, page 316],

Wµ̄(π1, π2) =

(∫
X 2

‖x2 − T (x1)‖2Xdπ1(x1, x2)

)1/2

. (3)

Interestingly, if we look for the T which minimizes Wµ̄(π1, π2) in Equation (4), we get that the
solution is unique µ̄-almost surely and is equal to the barycentric projection of π1. This can be seen
by disintegrating π1,

Wµ̄(π1, π2)2 =

∫
X

(∫
X
‖x2 − T (x1)‖2Xdπ1,x1(x2)

)
dµ̄(x1). (4)

For each x1 the minimum in the inner integral is achieved indeed for T (x1) =
∫
X x2dπ1,x1 , which

is the barycentric projection of π1. As seen above, if moreover π1 is an optimal transport plan, then
its barycentric projection is an optimal mapping. This observation motivates definition 1, which
introduces a quantification of the difference between two vector fields which can be minimized with
the barycentric projection.

Definition 1 (Geodesic pseudo metric on L2(µ̄,X )). Let u and v in L2(µ̄,X ). Let Πu
o be the set of

optimal transport plans between µ̄ and (id + u)#µ̄, and Πv
o be the set of optimal transport plans

between µ̄ and (id + v)#µ̄. We define,

GWµ̄(u, v) = inf
π1∈Πuo , π2∈Πvo

Wµ̄ ((p1, p2 − p1)#π1, (p1, p2 − p1)#π2)

which is the minimal distance between all geodesics starting from µ̄ and going through (id + u)#µ̄
at time t = 1, and all geodesics starting from µ̄ and going through (id + v)#µ̄ at time t = 1.
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GWµ̄ does not always satisfy the triangular inequality and is thus not a metric on L2(µ̄,X ). GWµ̄

becomes a metric when Πw
o contains a unique element for any w ∈ L2(µ̄,X ), which is the case

for example if µ̄ admits a density. If moreover id + u and id + v are optimal mappings, then
π1 = (id × (id + u))#µ̄ and π2 = (id × (id + v))#µ̄ are the unique optimal plans, and then
GWµ̄(u, v) = ‖v − u‖L2(µ̄,X ). To summarize, these results yield the following Proposition, which
motivates the use of the barycentric projection.
Proposition 1. Let v in L2(µ̄,X ) and πvo an optimal transport plan between µ̄ and (id + v)#µ̄.
Assume πvo is unique and that there exists a solution w to,

w ∈ min
id+u∈Cµ̄(X )

GW 2
µ̄(u, v),

such that the optimal transport plan πwo between µ̄ and (id + w)#µ̄ is unique. Then,

w = B((p1, p2 − p1)#πvo). (5)

Proof. Since we assume that the solution w to the minimization problem has the property that there
is a unique optimal transport plan between πwo between µ̄ and (id +w)#µ̄, it is equivalent to restrict
to the uwhich also verify this property. The constraint u ∈ Cµ̄(X )− id means that (id×(id+u))#µ̄
is an optimal transport plan between µ̄ and (id + u)#µ̄, and then (p1, p2 − p1)#πuo = (id× u)#µ̄.
This leads to,

GW 2
µ̄(u, v) = min

u

∫
X 2

‖x2 − u(x1)‖2Xd(p1, p2 − p1)#πvo(x1, x2),

which is minimum if and only if w is the barycentric projection of (p1, p2 − p1)#πvu as discussed
earlier.

Although we are not able to compute a solution of Equation (7), the last proposition shows that
substituting the L2 norm in Eq. (7) by the pseudo metric defined in definition 1, we have an ana-
lytic solution which is simple to obtain through the computation of an optimal transport plan and a
barycentric projection. As stated above, this pseudo metric and the L2

µ̄ norm are equal on the subset
Cµ̄(X )− id of L2(µ̄,X ) when µ̄ admits a density.

2 MNIST Principal Components per Digits with our approach

1000 images for each of the digits of the MNIST dataset have been sampled. We display below the
first three PCs computed with our approach.

Figure 1: Digits 0,1,2,3,4. The three PCs are sampled at times tk = k/4, k = 0, . . . , 4 for each of
these digits.
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Figure 2: Digits 5,6,7,8,9. The three PCs are sampled at times tk = k/4, k = 0, . . . , 4 for each of
these digits.

3 MNIST Principal Components per Digits with Wang et al.’s approach
(2013)

As above, 1000 images for each of the digits of the MNIST dataset have been sampled. We display
below the first three PCs computed using Wang et al.’s approach (2013).

Figure 3: Digits 0,1,2,3,4. The three PCs are sampled at times tk = k/4, k = 0, . . . , 4 for each of
these digits.

Figure 4: Digits 5,6,7,8,9. The three PCs are sampled at times tk = k/4, k = 0, . . . , 4 for each of
these digits.
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4 Algorithm Pseudo Code

Algorithm 1 Compute the (n+ 1)th generalized geodesic principal component

1: Input: For i 6 N : Xi ∈ Rd×ni , ai ∈ Rni+ in the simplex. Y ∈ Rd×p, b ∈ Rp+ in the simplex.
K ∈ N, gradient step size β > 0, parameter λ > 0. V1 and V2 initial random matrices in Rd×p
with small norms.

2: while not converged do
3: For all i and tk = k/K, form MZtkXi

and solve Eq. (9).
4: For all i, compute the optimal projection time t]i and the corresponding optimal plan P ]i .
5: For all i, compute the gradients of mi as in Eq. (13).
6: Update

V1 ← V1 − β

(
N∑
i=1

∇1m
V1V2
i + λ∇1Ω

)
, V2 ← V2 − β

(
N∑
i=1

∇2m
V1V2
i + λ∇2Ω

)
.

7: Project V1 and V2 on span(V
(1)
1 + V

(1)
2 , · · · , V (n)

1 + V
(n)
2 )⊥ in the L2

µ̄ sense.
8: Compute the optimal plans P ∗1 and P ∗2 as in Eq. (14).
9: Update V1 and V2 through Eq. (15):

V1 ← −
(
(Y − V1)P ?T1 diag(b−1)− Y

)
, V2 ← (Y + V2)P ?T2 diag(b−1)− Y.

10: end while
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