
Logarithmic Time Online Multiclass prediction
(Supplementary Material)

6 Bottom-up partitions do not work

The most natural bottom-up construction for creating partitions is not viable as will be now shown
by an example. Bottom-up construction techniques start by pairing labels, either randomly or arbi-
trarily, and then building a predictor of whether the class label is left or right conditioned on the class
label being one of the paired labels. In order to construct a full tree, this operation must compose,
pairing trees with size 2 to create trees of size 4. Here, we show that the straightforward approach
to composition fails.

Suppose we have a one dimensional feature space with examples of class label i having feature
value i and we work with threshold predictors. Suppose we have 4 classes 1, 2, 3, 4, and we happen
to pair (1, 3) and (2, 4). It is easy to build a linear predictor for each of these splits. The next step
is building a predictor for (1, 3) vs (2, 4) which is impossible because all thresholds in (�1, 1),
(2, 3), and (4,1) err on two labels while thresholds on (1, 2) and (3, 4) err on one label.

7 Proof of Lemma 1

We start from deriving an upper-bound on J(h). For the ease of notation let P
i

= P (h(x) > 0|i).
Thus

J(h) = 2

kX

i=1

⇡
i

|P (h(x) > 0|i)� P (h(x) > 0)| = 2

kX

i=1

⇡
i

������
P
i

�
kX

j=1

⇡
j

P
j

������
,

where 8
i={1,2,...,k}0 P

i

 1. Let ↵
i

= min(P
i

, 1 � P
i

) and recall the purity factor ↵ =

P
k

i=1 ⇡i

↵
i

and the balancing factor � = P (h(x) > 0). Without loss of generality let � 1
2 .

Furthermore, let

L1 = {i : i 2 {1, 2, . . . , k}, P
i

� 1

2

}, L2 = {i : i 2 {1, 2, . . . , k}, P
i

2 [�,
1

2

)}

and L3 = {i : i 2 {1, 2, . . . , k}, P
i

< �}.
First notice that

� =

kX

i=1

⇡
i

P
i

=

X

i2L1

⇡
i

(1� ↵
i

) +

X

i2L2[L3

⇡
i

↵
i

=

X

i2L1

⇡
i

� 2

X

i2L1

⇡
i

↵
i

+ ↵ (3)

Therefore

J(h)

2

=

kX

i=1

⇡
i

|P
i

� �| =
X

i2L1

⇡
i

(1� ↵
i

� �) +
X

i2L2

⇡
i

(↵
i

� �) +
X

i2L3

⇡
i

(� � ↵
i

)

=

X

i2L1

⇡
i

(1� �)�
X

i2L1

⇡
i

↵
i

+

X

i2L2

⇡
i

↵
i

�
X

i2L2

⇡
i

� +

X

i2L3

⇡
i

� �
X

i2L3

⇡
i

↵
i

Note that
P

i2L3
⇡
i

= 1�
P

i2L1
⇡
i

�
P

i2L2
⇡
i

and therefore

J(h)

2

=

X

i2L1

⇡
i

(1��)�
X

i2L1

⇡
i

↵
i

+

X

i2L2

⇡
i

↵
i

�
X

i2L2

⇡
i

� + �(1�
X

i2L1

⇡
i

�
X

i2L2

⇡
i

)�
X

i2L3

⇡
i

↵
i

=

X

i2L1

⇡
i

(1� 2�)�
X

i2L1

⇡
i

↵
i

+

X

i2L2

⇡
i

↵
i

+ �(1� 2

X

i2L2

⇡
i

)�
X

i2L3

⇡
i

↵
i

10

Furthermore, since �
P

i2L1
⇡
i

↵
i

+

P
i2L2

⇡
i

↵
i

�
P

i2L3
⇡
i

↵
i

= �↵+ 2

P
i2L2

⇡
i

↵
i

we further
write that

J(h)

2

=

X

i2L1

⇡
i

(1� 2�) + �(1� 2

X

i2L2

⇡
i

)� ↵+ 2

X

i2L2

⇡
i

↵
i

By Equation 3, it can be further rewritten as
J(h)

2

= (1� 2�)(� + 2

X

i2L1

⇡
i

↵
i

� ↵) + �(1� 2

X

i2L2

⇡
i

)� ↵+ 2

X

i2L2

⇡
i

↵
i

= 2(1� �)(� � ↵) + 2(1� 2�)
X

i2L1

⇡
i

↵
i

+ 2

X

i2L2

⇡
i

(↵
i

� �)

Since ↵
i

’s are bounded by 0.5 we obtain
J(h)

2

 2(1� �)(� � ↵) + 2(1� 2�)
X

i2L1

⇡
i

↵
i

+ 2

X

i2L2

⇡
i

(

1

2

� �)

 2(1� �)(� � ↵) + 2(1� 2�)↵+ 1� 2�
= 2�(1� �)� 2↵(1� �) + 2↵(1� 2�) + 1� 2�

= 1� 2�2 � 2�↵
Thus:

↵ 2� J(h)

4�
� �.

8 Proof of Lemma 2

Proof. We first show that J(h) 2 [0, 1]. We start from deriving an upper-bound on J(h), where
h 2 H is some hypothesis in the hypothesis class. For the ease of notation let P

i

= P (h(x) > 0|i).
Thus

J(h) = 2

kX

i=1

⇡
i

|P (h(x) > 0|i)� P (h(x) > 0)| (4)

= 2

kX

i=1

⇡
i

������
P
i

�
kX

j=1

⇡
j

P
j

������
,

where 8
i={1,2,...,k}0 P

i

 1. The objective J(h) is certainly maximized on the extremes of the
[0, 1] interval. The upper-bound on J(h) can be thus obtained by setting some of the P

i

’s to 1’s and
remaining ones to 0’s. To be more precise, let

L1 = {i : i 2 {1, 2, . . . , k}, P
i

= 1} and L2 = {i : i 2 {1, 2, . . . , k}, P
i

= 0}.
Therefore it follows that

J(h) 2

2

4
X

i2L1

⇡
i

(1�
X

j2L1

⇡
j

) +

X

i2L2

⇡
i

X

j2L1

⇡
j

3

5

= 2

"
X

i2L1

⇡
i

� (

X

i2L1

⇡
i

)

2
+ (1�

X

i2L1

⇡
i

)

X

i2L1

⇡
i

#

= 4

"
X

i2L1

⇡
i

� (

X

i2L1

⇡
i

)

2

#

Let b =
P

i2L1
⇡
i

thus
J(h) 4b(1� b) = �4b2 + 4b (5)

Since b 2 [0, 1], it is straightforward that �4b2 + 4b 2 [0, 1] and thus J(h) 2 [0, 1].

We now proceed to prove the main statement of Lemma 2, if h induces a maximally pure and
balanced partition then J(h) = 1. Since h is maximally balanced, P (h(x) > 0) = 0.5. Simul-
taneously, since h is maximally pure 8

i={1,2,...,k}(P (h(x) > 0|i) = 0 or P (h(x) > 0|i) = 1).
Substituting that into Equation 5 yields that J(h) = 1.

11

9 Proof of Theorem 1

Proof. The analysis studies a tree construction algorithm where we recursively find the leaf node
with the highest weight, and choose to split it into two children. Consider the tree constructed
over t steps where in each step we take one leaf node and split it into two. Let n be the heaviest
node at time t and its weight w

n

be denoted by w for brevity. Consider splitting this leaf to two
children n0 and n1. For the ease of notation let w0 = w

n0 and w1 = w
n1 . Also for the ease

of notation let � = P (h
n

(x) > 0) and P
i

= P (h
n

(x) > 0|i). Let ⇡
i

be the shorthand for
⇡
n,i

and h be the shorthand for h
n

. Recall that � =

P
k

i=1 ⇡i

P
i

and
P

k

i=1 ⇡i

= 1. Also notice that
w0 = w(1��) and w1 = w�. Let ⇡ be the k-element vector with ith entry equal to ⇡

i

. Furthermore
let ˜G(⇡) =

P
k

i=1 ⇡i

ln

⇣
1
⇡i

⌘
.

Before the split the contribution of node n to G
t

was w ˜G(⇡). Let ⇡
n0,i =

⇡i(1�Pi)
1��

and ⇡
n1,i =

⇡iPi
�

be the probabilities that a randomly chosen x drawn from P has label i given that x reaches nodes
n0 and n1 respectively. For brevity, let ⇡

n0,i be denoted by ⇡0,i and ⇡
n1,i be denoted by ⇡1,i.

Furthermore let ⇡0 be the k-element vector with ith entry equal to ⇡0,i and let ⇡1 be the k-element
vector with ith entry equal to ⇡1,i. Notice that ⇡ = (1��)⇡0+�⇡1. After the split the contribution
of the same, now internal, node n changes to w((1��) ˜G(⇡0)+� ˜G(⇡1)). We denote the difference
between them as �

t

and thus

�

t

:= G
t

�G
t+1 = w

h
˜G(⇡)� (1� �) ˜G(⇡0)� � ˜G(⇡1)

i
. (6)

We aim to lower-bound �

t

. The entropy reduction of Equation 6 [4] corresponds to a gap in the
Jensen’s inequality applied to the concave function ˜G(⇡). This leads to the lower-bound on �

t

given in Lemma 4 (the lemma is proven in Section 10 in the Supplementary material).

Lemma 4. The entropy reduction �

t

of Equation 6 can be lower-bounded as follows

�

t

� J(h)2G
t

8�(1� �)t ln k

Lemma 4 implies that the larger the objective J(h) is at time t, the larger the entropy reduction ends
up being, which further reinforces intuitions to maximize J . In general, it might not be possible to
find any hypothesis with a large enough objective J(h) to guarantee sufficient progress at this point
so we appeal to a weak learning assumption. This assumption can be used to further lower-bound
�

t

. The lower-bound can then be used (details are in Section 9 in the Supplementary material) to
obtain the main theoretical statement of the paper captured in Theorem 1.

From the definition of � it follows that 1 � � � � � �. Also note that the weak hypothesis
assumption guarantees J(h) � 2�, which applied to the lower-bound on �

t

captured in Lemma 4
yields

�

t

� �2G
t

2(1� �)2t ln k
.

Let ⌘ =

q
8

(1��)2 ln k

�. Then �

t

> ⌘

2
Gt

16t . Thus we obtain the recurrence inequality

G
t+1 G

t

��

t

< G
t

� ⌘2G
t

16t
= G

t

1� ⌘2

16t

�

One can now compute the minimum number of splits required to reduce G
t

below ↵, where ↵ 2
[0, 1]. Applying the proof technique from [4] (the proof of Theorem 10) gives the final statement of
Theorem 1.

10 Proof of Lemma 4

Proof. Without loss of generality assume that P1 P2 · · · P
k

. As mentioned before, the
entropy reduction �

t

corresponds to a gap in the Jensen’s inequality applied to the concave function
˜G(⇡). Also recall that Shannon entropy is strongly concave with respect to `1-norm (see e.g., Exam-
ple 2.5 in Shalev-Shwartz [24]). As a specific consequence (see e.g. Theorem 2.1.9 in Nesterov [26])
we obtain

�

t

� w�(1� �)k⇡0 � ⇡1k21 =

w

�(1� �)

kX

i=1

|⇡
i

(P
i

� �)|
!2

=

wJ(h)2

4�(1� �)
, (7)

12

where the last equality results from the definition of J(h) = 2

P
k

i=1 ⇡i

|P
i

� �|.

Note that the following holds w � Gt
2t ln k

, where recall that w is the weight of the heaviest leaf in the
tree, i.e. the leaf with the highest weight, at round t. This leaf is selected to the currently considered
split [4]. In particular, the lower-bound on w is the consequence of the following

G
t

=

X

l2L
w

l

kX

i=1

⇡
l,i

ln

✓
1

⇡
l,i

◆

X

l2L
w

l

ln k 2tw ln k,

where w = max

l2L w
l

. Thus w � Gt
2t ln k

which when substituted to Equation 7 gives the final
statement of the lemma.

11 Proof of Lemma 3

Proof. We bound the number of swaps that any node makes. Consider R
S

= 4 and let j be the node
that is about to split and s be the orphan node that will be recycled (thus C

r

= C
s

). The condition
in Equation 2 implies that the swap is done if C

j

> 4(C
r

+1) = 4(C
s

+1). Algorithm 1 makes s a
child of j during the swap and sets its counter to Cnew

s

= bC
j

/2c � 2(C
r

+ 1) = 2(C
s

+ 1). Then
C

r

gets updated. Since the value of Cnew

s

at least doubles after a swap and all counters are bounded
by the number of examples n, the node can be involved in at most log2 n swaps.

12 Equivalent forms of the objective function

Consider the objective function as given in Equation 1

J(h) = 2

kX

i=1

⇡
i

|P (h(x) > 0)� P (h(x) > 0|i)| .

Recall that X denotes the set of all examples and let X
i

denote the set of examples in class i. Also
let |X | denote the cardinality of set X and let |X

i

| denote the cardinality of set X
i

. Then we can
re-write the objective as

J(h) = 2

kX

i=1

⇡
i

����

P
x2X 1(h(x) > 0)

|X | �
P

x2Xi
1(h(x) > 0)

|X
i

|

����

= 2

kX

i=1

⇡
i

|E
x

[1(h(x) > 0)]� E
x

[1(h(x) > 0|i)]|

= 2E
i

[|E
x

[1(h(x) > 0)]� E
x

[1(h(x) > 0|i)]|].

13

13 Toy example of the behavior of LOMtree algorithm

Figure 4 shows the toy example of the behavior of LOMtree algorithm for the first few data points.
Without loss of generality we consider the root node (exactly the same actions would be performed
in any other tree node). Notice that the algorithm achieves simultaneously balanced and pure split
of classes reaching the considered node.

e denotes the expectation E
x

[h(x)], and e1, e2, e3, e4 denote the expectations E
x

[h(x)|i = 1],
E
x

[h(x)|i = 2], E
x

[h(x)|i = 3], and E
x

[h(x)|i = 4]. For simplicity we assume score h(x) can only
be either 1 (if the example is sent to the right) or �1 (if the example is sent to the left). The figure
should be read as follows (we explain how to read first few illustrations):

a) Root is initialized. Expectation e is initialized to 0.
b) The first example x1 comes with label 1 (we denote it as (x1, 1)). e1 is initialized to 0.

The difference between e and e1 is computed: e � e1 = 0. The difference is non-positive
thus the example is sent to the right child of the root, which is now being created (the left
child is created along with the right child as we always create both children of any node
simultaneously).

c) Expectations e and e1 get updated. It is shown that root and its right child saw an example
of class 1.

d) The second example x2 comes with label 2 (we denote it as (x2, 2)). e2 is initialized to 0.
The difference between e and e2 is computed: e � e2 = 1. The difference is positive thus
the example is sent to the left child of the root.

e) Expectations e and e2 get updated. It is shown that root saw examples of class 1 and 2,
whereas its resp. left and right child saw example of class resp. 2 and 1.

f) . . .

a) b) c)

d) e) f)

g) h) i)

j) k)

Figure 4: Toy example of the behavior of LOMtree algorithm in the tree root.

14

14 Experiments - dataset details

Below we provide the details of the datasets that we were using for the experiments in Section 4:

• Isolet: downloaded from http://www.cs.huji.ac.il/

˜

shais/datasets/

ClassificationDatasets.html

• Sector and Aloi: downloaded from http://www.csie.ntu.edu.tw/

˜

cjlin/

libsvmtools/datasets/multiclass.html

• ImageNet [27]: features extracted according to http://www.di.ens.fr/willow/
research/cnn/, dataset obtained from the authors.

• ODP [20]: obtained from Paul Bennett. Our version has significantly more classes than
reported in the cited paper because we use the entire dataset.

15

	Introduction
	Prior Work

	Framework and theoretical analysis
	Setting
	An objective and analysis of resulting partitions
	Quality of the entire tree

	The LOMtree Algorithm
	Swapping

	Experiments
	Conclusion
	Bottom-up partitions do not work
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 1
	Proof of Lemma 4
	Proof of Lemma 3
	Equivalent forms of the objective function
	Toy example of the behavior of LOMtree algorithm
	Experiments - dataset details

