Supplementary document:

A Universal Primal-Dual Convex Optimization Framework

In this supplementary document, we provide the technical proofs and additional implementation
details. It is organized as follows: Section A defines the key estimates that form the basis of the
universal gradient algorithms. Sections B and C present the proofs of Theorems 4.1 and 4.2 re-
spectively. Finally, Section D provides implementation details of the quantum tomography and the
matrix completion problems considered in Section 5.

A The key estimate of the proximal-gradient step

Lemma 2 in [1], which we present below as Lemma A.1, provides key properties for constructing
universal gradient algorithms. We refer to [1] for the proof of this lemma.

Lemma A.1. Let function g satisfy the Assumption A.2. Then for any 6 > 0 and
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the following statement holds for any AAeR™:
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Qm(AA)

This lemma provides an approximate quadratic upper bound for g. However, it depends on the
choice of the inexactness parameter § and the smoothness parameter v. If v = 1, then M can be set
to the Lipschitz constant M7, and it becomes independent of d.

The algorithms that we develop in this paper are based on the proximal-gradient step (9) on the dual
objective function G. This update rule guarantees the following estimate:

Lemma A.2. Let Qy be the quadratic model of g. If Xi11, which is defined by (9), satisfies
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for some &y, € R, then the following inequality holds for any A € R™ :
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Proof of Lemma A.2. We note that the optimality condition of (9) is
0€ Vg(Ar) + Mi(Ars1 — Ae) + 0h(Ags1),

which can be written as A — ki1 € Mk_l(ng (jxk) + 0h(Ag+1)). Let Vh(j\kﬂ) € Oh(Agk+1) be
a subgradient of h at A4 ;. Then, we have
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Now, using (23), we can derive
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where the last inequality dir_ectly follows the convexity of h. [

Clearly, (22) holds if M}, > ]\75, which is defined by (10), due to Lemma A.1, whenever 6 =¢ > 0.

If v and M, are known, we can set M), = M., then the condition (22) is automatically satisfied.
However, we do not know v and M, a priori in general. In this case, M}, can be determined via a
line-search procedure on the condition (22).

The following lemma guarantees that the line-search procedure in Algorithms 1 and 2 terminates
after a finite number of line-search iterations.

Lemma A.3. The line-search procedure in Algorithm 1 terminates after at most
i = |logy (Me/M_1)] + 1

number of iterations.

Similarly, the line-search procedure in Algorithm 2 terminates after at most

2
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number of iterations.

Proof. Under Assumption A.2, M,, defined in Lemma A.1 is finite. When é;, = € > 0 is fixed as in

_ v 5
Algorithm 1, the upper bound M, = [ (11;7;/)6 ] Y M defined by (10) is also finite. Moreover,

the condition (22) holds whenever Mj, ; > M,. Since Mk’ij 2My i1 = 2iMk_’o > 2'M_q, the
linesearch procedure is terminated after at most i, = |logy(M./M_1)| + 1 iterations.

Now, we show that the line-search procedure in Algorithm 2 is also finite. By the updating rule of
tk, we have tg 41 1= 0.5(1 4+ /1 4 4t7) < 0.5(1 + (1 + 2t4)) = tx + 1. By induction and to = 1,
we have t;, < k + 1. Using the definition (10) of M;, with §, = i and t;, < k + 1, we can show
that
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Next, we note that the condition (22) holds whenever My ; > M&k. However, since My, =
2! My, o = 2"M_4, by using (24), it is sufficient to show that the following condition holds for a
finite 4:
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This condition leads to i > log, ([ L BT M””) —log,(M_1). Hence, at the kth iteration, we

L
require at most i, = {log2 ( ) + log, ( L >J + 1 line-search iterations, which is finite. [

B Convergence analysis of the universal primal-dual gradient algorithm

In this section, we analyze the convergence of the Algorithm 1 (UniPDGrad). We first provide the
convergence guarantee of the dual function in Theorem B.1. Then, we prove the convergence rate
and the worst-case complexity given in Theorem 4.1.

B.1 Convergence rate of the dual objective function

Theorem B.1. Ler {\;} be the sequence generated by UniPDGrad. Then,

M,

GA) =GN <G =GN < ¢ 1

Al? + = (25)

for any X € R", where M, is defined by (10) and the two averaging sequences {5\;@} and {G},} are
defined as follows:
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Proof. For M, defined by (10), since the line-search is successful as shown in Lemma A.1, the
condition (22) is satisfied at iteration ¢ with M; < 2M.. The following inequality directly follows
Lemma A.2 considering the convexity of g:

M;
Ghir1) < GO + 5+ SEIA-NIE = [A-Xa?], ¥AeR™

Taking the weighted sum of this inequality over 7, we get

Gr < G(N) + + ﬁ [IA=20[? = [IA=Apsa[?] (26)
for any A € R", and G(A) < G, since G is a convex function. Finally, since M; < 2M., we have
Sk = (kﬂ) . Substituting this estimate into (26), we obtain (25). O]

B.2 The proof of Theorem 4.1: Convergence rate of the primal sequence

Proof. We use the following three expressions to relate the convergence in the dual sequence to the
convergence in the primal sequence:

g(As) = —f(x*(A)) + i, b — Ax*(Ag)),
Vg()\l) =b-— JAX*()\l)7 (27)
GAiy1) =G =—d" =—f*
Substituting these expressions into Lemma A.2, we get the following key estimate in the primal
space that holds for any A € R™:
M;
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Taking the weighted sum of this inequality over ¢ and considering the convexity of f, we get

f(X) — £ <{b =A%, A+ h(A) + = +—[||>\ Xol> = [A=Xes1]?] - (28)

Setting A = 0", we get the bound on the right hand side of (15),
Xol? e M. |Xol?
f( ) f < - H OH < H OH )
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The inequality on the left hand side of (11) follows the following saddle point formulation:
fr<LxrA) = f(x)+ A Ax—b—1) < f(x) + [ |JAx —b—r], (29

Vr € K and Vx € X, where the last inequality holds due to Cauchy-Schwarz inequality. The proof

of the convergence rate in the objective residual (11) follows by setting x = X in (29).

Next, we prove the convergence rate of the feasibility gap (12). We start from the following saddle
point formulation:

fF<Lxr, ) =f(x)+{\,Ax—b—r), Vrel, vxe X.
Substituting this estimate with x = Xy, into (28) we get the following inequality:
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for any A € R™, where r*(\) := arg maxyex <r,A), and the third implication holds due to the
Sion’s minimax theorem. Hence, there exists a vector T € /C, that satisfies the following inequality:
Sk
(A%, —b—F,Ag — A + 7"|\Aik “b-F2< %

Using Cauchy-Schwarz inequality, this implies
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Solving this inequality for |Ax; — b
dist (Ax; —b,K) < |Ax, —b —T|
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and this completes the proof. O

We note that S}, >

2M ’
B.2.1 The worst-case complexity analysis

For simplicity, we choose Ag = 0" without loss of generality. Then, in order to guarantee both
dist (Ax,—b,K) < eand | f(Xx) — f*| < €, we require AM, A+ 2M E] [A"[1) < € due to

Theorem 4.1, where | A* |1} := max {| A", 1}. This leads to (13) as
2 2

4f|\>\*H M. V2N

: (M
= = i
—14, /1480 | € e it Jias L | ofvsi \ e

BN BN

k+1 >




Hence, the worst-case complexity to obtain an e-solution of (1) in the sense of Definition 1.1 is
2
. M\ T+
@) < inf <V) ) ,
o<r<l €

Next, we estimate the total number of oracle quires in UniPDGrad, as in [1]. The total number of
oracle quires up to the iteration k is given by Ny (k) = Z§=O(ij + 1). However, since i; — 1 =
logy(M;/M;_1), we have

which is optimal if v = 0.

k
Z = 2(k 4 1) + logy(My) — logy(M_1).

It remains to use My, < 2ME to obtain (14).

C Convergence analysis of the accelerated universal primal-dual algorithm

We now analyze the convergence of AccUniPDGrad (Algorithm 2) in terms of the objective residual
and the feasibility gap.

The dual main step of our algorithm is to update Ay and 5\k+1 from j\k and Xk as follows:
i = (1—7) A\ + Te Nk
Aki1 = proxM—lh (5% - ‘1V9(5\k)) (30)
Aep1 = Ap— & ()\k - )\k+1>

where 5\0 = X, 7o = 1l and

2 =12 (1 =) 31)
The parameter M, is determined based on the following line-search condition:
M,
9(N1) < 9O) + (VoA Ak = A+ 55 s = Ml + 5 (32)

with My, > M.

Next, we simplify the scheme (30) in the following lemma:

Lemma C.1. The scheme (30) can be restated as follows:
)‘k+1 = prOXMEIh(Xk ka_lv‘q(j\k))
teer = 5[+ /1 +487 (33)
Ak1 o= B e = M),

where 5\0 = Mg and tog = 1, and My, is determined based on the line-search condition (32).

This dual scheme is of the FISTA form [2], except for the line-search step.

Proof. Letty = Tk_l, then tg = 70_1 = 1. From (30), we have A, — 5\k+1 = %(S\k — Apr1) =
te(Ak—Akt1). Wealso have A, = (1—7%)Ag + 7 Ag, which leads to A, = Tik[j\k—(l—m))\k] =
te[Ar — (1 — ¢ 1) Ax]. Combining these expressions, we get
ek — A1) = Ak — App1 = te[ A — (1=t D] — trgr [Megr — (1 — tor ) A1),
and this can be simplified as follows:
b1 A1 = ka1 + b (1=t ) Xksn — te(1 — £ ) Ay
= (tg + thr1 — DAgy1 — (b — DA

Hence /\k:+1 = Agpt1 + ¢ Ak+1 — Ak ), which is the third step of (33).

tk+1 (

Next, from the condition (31), we have t%+1 —tpa1 — tz = 0. Hence, tx41 = % [1 +4/1+ 4ti],
which is exactly the second step of (33).



C.1 The proof of Theorem 4.2: Convergence rate of the primal sequence

Proof. From Lemma A.2, we have
TkE

G(Awi) <[9(A) +(Tg(An), A=A +h(N)] + 75

+ Mk<5\k—>\k+175\1@—)\>—7k”)\k+1—5\k\|2 (34)
< G(A>+¥ + M — A, kaA>f%HAk+1—XkH2- (35)
Note that these inequalities hold YA € R™. Next, we subtract G* from (34) to get
Gn) — G <[a(A) +(Va(3). A=A+ h() - 07+ 26
+Mk<5‘k_/\k+17/A\k_)\>_%”)\k+l_;\k“27 (36)

and we set A = Ay in (35), and then subtract G* from the both sides, that results in the following
inequality:

e My < 2 N o
o g AR = AT+ Mk = Ao, Ak = Ay G7)
We obtain the following estimate by summing the two inequalities that we get by multiplying (36)
by 7 and (37) by (1 — 7% ), and then dividing the resulting estimate by M 77:

G(Ap)—G* < G(Ap)—G* +

1 * (1—7%) * Lrik 2 X 2 €
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1 . . N
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Next, we sum this inequality over k as follows:
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where the second inequality follows 7y = 1 and (le_”g) < 37 L fork = 1,2,..., which holds
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since M}, = Mj,_. This implies the followings:
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Now, we use the following expressions to map this estimate into the primal sequence:

gx) = —fx*(A)) + i, b — Ax*(N)),
Vg(A) =b—Ax*(\;),
G* — _d* — _f*~



Then, considering the convexity of f, we get

= . _ € 1 ~ -
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k
by 2
< &4 ol (39)
2 25
where we obtain the second inequality by setting A = 0™.
We can reformulate (31) as % = 2 — = Using this relation, My < M; < My < 2M,,, =
g k k—1
v I
217 M, < 2(k +2)T7% M, and 552 <t < k+ 2 fori = 0,1,..., k, we can show that
k k
A 1 1 1 1 1
Sy 1= > — = — [1 - = — ]
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1430
t2 k+2) T
k < (k+2) . (40)
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2(k 4 2) 15 M, 8 M.

We get the bound on the right hand side of (15) by substituting (40) into (39). The inequality on the
left hand side of (15) follows the saddle point formulation (29) by setting X = Xp.

Finally, we prove the convergence rate in the feasibility gap (16). By the same arguments as in the
proof of Theorem 4.1, we have

dist (A%y — b, k) < A2 =N [€
S S

We complete the proof by substituting (40) into this estimate. O

C.2 The worst-case complexity analysis

We analyze the worst-case complexity of AccUniPDGrad algorithm to achieve an e-solution Xj. For
simplicity, we consider the case Ay = 0™ without loss of generality. Then, we require

16M. . 8M.e N
l(k 2) 11+31/ HA H + (k+ 2) 1141311 ] H)‘ H[l] <€
+v v

due to the Theorem 4.2, where |A*||[1] := max {||X\*||, 1}. By solving this inequality, we get

) ==
ros | SENL_ | ]
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Using the definition (10) of M, and considering the fact that %;Z Hu < 1for v € [0, 1], we find

the maximum number of iterations that satisfies the above inequality as follows:

o qm N
B 8\/§”A ” " M, ™5
0<H:}<1 ’

kmax -
B B ¢
L1+ 8055

which is indeed (17).

Hence, the worst-case complexity to obtain an e-solution of (1) in the sense of Definition 1.1 is

2
T+30
(’)(inf (M) )
o<r<l €

which is optimal in the sense of first-order black box models [3].



Next, we consider the number of oracle quires in AccUniPDGrad. At iteration k, the algorithm
requires iy, + 2 function evaluations of g, as we need i; + 1 in the line-search and one for g(Ag).
Hence, the total number of oracle quires up to the iteration k is No(k) = Z?:O(ij + 2). Since
ij = logy(M;/M;_1), we have

NQ(]C) = 2(]€ + 1) + IOgZ(Mk) — 10g2(M_1).
Using the same argument as in the proof of Lemma A.3, we have M; < 2M,., <

1-v 2
2 [ﬂ] v M, * . Hence, we obtain (18) as

€

1—-v 2
No(k) <2(k+1)+1+ 170 [logy(k + 1) — logy(€)] + T logy (M,) — logy(M_1).

D The implementation details

In this section, we specify key steps of UniPDGrad and AccUniPDGrad for two important applica-
tions that we used in Section 5. We also provide an analytic step-size that guarantees the line-search
condition without function evaluation.

We performed the experiments in MATLAB, using a computational resource with 4 CPUs of 2.40
GHz and 16 GB memory space for the matrix completion, and 16 CPUs of 2.40 GHz and 512 GB
memory space for the quantum tomography problem.

D.1 Constrained convex optimization involving a quadratic cost
In both quantum tomography and the matrix completion problems, we consider some problem for-

mulations from the following convex optimization template that involves a quadratic cost:

xeRP

mm{;puxy-b2;xex}.

For notational simplicity, we consider the problem in R? /R™ spaces in this section, but the ideas
apply in general.

Evaluation of the sharp-operator corresponding to the objective function 1/2||.A(x) — b|? requires a
significant computational effort. Yet, by introducing the slack variable r = A(x) — b, we can write
an equivalent problem as

min {;IrQ CA(X)—r=b, xe X}.

(r,x)eR™ xRP
We can write the Lagrange function associated with the linear constraint as
1
L(r,;x, ) = S[r[* + A r = A(x) + b),

from which we can derive the (negation of the) dual function

: 1
9(X) == min L(r;x,A) = - min {5Iel* + )} + max(A, A(x)) + (A, b)
1
= SIAIE + b = AT (A)), (41)

and its subgradient
Vg(A) =X —b+ A(x*(N)),

where x*(A) € [AT(A)]% = arg maxyer (AT (A),%).

For the special case, X is a norm ball, i.e., X = {x : ||x|| < x}, we can simplify (41) as follows:

1
9A) = SIAI* + A b) + [ AT(N)]. (42)



Computing an analytical step-size: Now, we consider the line-search procedure in UniPDGrad
and AccUniPDGrad. Since h(\) term is absent in these problems, the line-search condition (22)
can be simplified as

I A1) = 9( Ak — arVg(Ar)) < g(Ag) — %”Vg(j\k)HQ + 0x/2, 43)

where we use the notational convention 5\k = A and 0 = ¢ for UniPDGrad, and 0, = €/t; for
AccUniPDGrad. Using the definition (42), we can upper bound g(Ax — a;Vg(Ag)) by

Ulax) = g(Ax) + (a2/2)[VaA) I? — ar(Ai = b, Va(Ar)) + arr AT (Vg(Ap))]-

The condition (43) holds if U(ay) = g(Ag) — %HVQ(S\;C)\P + dx/2. Solving this second order
equation, we obtain o, explicitly as

P+ \/P2 + 405 Va(A)|2
. = A
2[Vg(Ae)|?

where P := |[Vg(Ar)|? + 26| AT (Vg(A))| — 2{Ax — b, Vg(Ax)). Note that, we can use this
method to find a good estimate for the initial smoothness constant M/ _; in the initialization step.

)

D.2 Constrained convex optimization involving a norm cost

Now, we consider the second application, which is reformulated as

min {¢(X) = %HXHi cAX)—-be /c} )

XeRpx!

Once again, by introducing the slack variable r = A(X) — b, we get

1
min {X|i AX) —r = Db, relC}.
XeRpxl reR (1

Clearly, the dual components g and & defined in (6) can be expressed as:

oN) = e (AT = TIXIZL b = AT + b

XeRpx!
h(A) = max (—A,r) = max (=, r) = k||,
rek IrI<k
where || - | represents the Euclidean norm for vectors and the spectral norm for matrices. In (21), we

consider a special case where K = {0}, hence h(A) = 0.

Clearly, X*(X) = Zo1eje] € [.AT()\)]fp, where o1 = | AT (M| is the top singular value of AT ()

and e; is the associated left singular vector. Hence, we can write the (sub)gradient of g as

Vg(A) = b — A(X*(N)).

We can compute both o; and e; efficiently by using the power method or the Lanczos algorithm.
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