
A Appendix

Notation: We use D
f

to denote the Bregman divergence (defined below) for function f .
D

f

(x, y) = f(x)� f(y)� hrf(y), x� yi.
For ease of exposition, we use E[X] to denote the expectation the random variable X with respect
to indices {i1, . . . , it} when X depends on just these indices up to step t. This dependence will be
clear from the context. We use to denote the indicator function. We assume

P
j

d=i

a
d

= 0 if i > j.

We would like to clarify the definition of xkm here. As noted in the main text, we assume that
xkm+m is replaced with an element chosen randomly from {xkm, . . . , xkm+m�1} with probability
{p1, · · · , pm} at the end of the (k + 1)

th epoch. However, whenever xkm appears in the analysis
(proofs), it represents the iterate before this replacement.

Implementation Details

Since we are interested in sparse datasets, simply taking f
i

(x) = log(1 + exp(�y
i

z>
i

x)) + �kxk2
is not efficient as it requires updating the whole vector x at each iteration. This is due to the regular-
ization term in each of the f

i

’s. Instead, similar to [21], we rewrite problem in (4.1) as follows:

min

x

1

n

nX

i=1

0

@
log(1 + exp(�y

i

z>
i

x)) + �
X

j2nz(zi)

kx
j

k2

d
j

1

A ,

where nz(z) represents the non-zero components of vector z, and d
j

=

P
i

(j 2 nz(z
i

)). While
this leads to sparse gradients at each iteration, updates in SVRG are still dense due to the part of
the update that contains

P
i

rf
i

(↵
i

)/n. This problem can be circumvented by using the following
update scheme. First, recall that for SVRG,

P
i

rf
i

(↵
i

)/n does not change during an epoch (see
Figure 1). Therefore, during the (k + 1)

st epoch we have the following relationship:

xt

=

2

4x̃k � ⌘

t�1X

j=km

(rf
ij (x

j

)�rf
ij (x̃

k

))

3

5�
"
⌘⌫

t

n

nX

i=1

rf
i

(x̃k

)

#
,

where ⌫
t

= (t� km). Each step of the algorithm involves updating the bracketed terms separately.
The updates to the first term in the above equation are sparse while those to the second term are just
simple scalar additions, since we already maintain the average gradient

P
n

i=1 rf
i

(x̃k

)/n. When
the gradient of f

it at xt is needed, we only calculate components of xt required for f
it on the fly

by aggregating these two terms. Hence, each step of this update procedure can be implemented in a
way that respects sparsity of the data.

Proof of Theorem 1

Proof. We expand function f as f(x) = g(x) + h(x) where g(x) =

1
n

P
i2S

f
i

(x) and h(x) =

1
n

P
i/2S

f
i

(x). Let the present epoch be k + 1. We define the following:

vt =
1

⌘
(xt+1 � xt

) = �
"
rf

it(x
t

)�rf
it(↵

t

it
) +

1

n

X

i

rf
i

(↵t

i

)

#

G
t

=

1

n

X

i2S

�
f
i

(↵t

i

)� f
i

(x⇤
)� hrf

i

(x⇤
),↵t

i

� x⇤i
�

R
t

= E
⇥
ckxt � x⇤k2 +G

t

⇤
.

We first observe that E[vt] = �rf(xt

). This follows from the unbiasedness of the gradient at each
iteration. Using this observation, we have the following:

E[R
t+1] = E[ckxt+1 � x⇤k2 +G

t+1] = E[ckxt

+ ⌘vt � x⇤k2 +G
t+1]

= cE
⇥
kxt � x⇤k2

⇤
+ c⌘2E

⇥
kvtk2

⇤
+ 2c⌘E

⇥
hxt � x⇤, vti

⇤
+ E[G

t+1]

 cE
⇥
kxt � x⇤k2

⇤
+ c⌘2E

⇥
kvtk2

⇤
� 2c⌘E

⇥
f(xt

)� f(x⇤
)

⇤
+ E[G

t+1]. (A.1)

10

The last step follows from convexity of f and the unbiasedness of vt. We have the following rela-
tionship between G

t+1 and G
t

.

E[G
t+1] =

✓
1� 1

n

◆
E [G

t

] +

1

n
E
"
1

n

X

i2S

�
f
i

(xt

)� f
i

(x⇤
)� hrf

i

(x⇤
), xt � x⇤i

�
#

=

✓
1� 1

n

◆
E [G

t

] +

1

n
E[D

g

(xt, x⇤
)]. (A.2)

This follows from the definition of the schedule of HSAG for indices in S. Substituting the above
relationship in Equation (A.1) we get the following.

R
t+1 R

t

+ c⌘2E
⇥
kvtk2

⇤
� 2c⌘E

⇥
f(xt

)� f(x⇤
)

⇤
� 1

n
E[G

t

] +

1

n
E[D

g

(xt, x⇤
)]

✓
1� 1

◆
R

t

+

c

E[kxt � x⇤k2] + c⌘2E

⇥
kvtk2

⇤
� 2c⌘E

⇥
f(xt

)� f(x⇤
)

⇤

+

✓
1

� 1

n

◆
E[G

t

] +

1

n
E[D

g

(xt, x⇤
)]

:=

✓
1� 1

◆
R

t

+ b
t

.

We describe the bounds for b
t

(defined below).

b
t

=

c

E[kxt � x⇤k2]| {z }

T1

+c⌘2 E
⇥
kvtk2

⇤
| {z }

T2

�2c⌘E
⇥
f(xt

)� f(x⇤
)

⇤

+

✓
1

� 1

n

◆
E[G

t

] +

1

n
E[D

g

(xt, x⇤
)].

The terms T1 and T2 can be bounded in the following fashion:

T1 = E[kxt � x⇤k2] 2

�
E[f(xt

)� f(x⇤
)]

T2 = E
⇥
kvtk2

⇤

✓
1 +

1

�

◆
E
⇥
krf

it(↵
t

it
)�rf

it(x
⇤
)k2
⇤
+ (1 + �)E

⇥
krf

it(x
t

)�rf
it(x

⇤
)k2
⇤

 2L

n

✓
1 +

1

�

◆
E
X

i

⇥
f
i

(↵t

i

)� f(x⇤
)�

⌦
rf

i

(x⇤
),↵t

i

� x⇤↵⇤

+

2L

n
(1 + �)E

X

i

⇥
f
i

(xt

)� f(x⇤
)

⇤

 2L

✓
1 +

1

�

◆
E
⇥
G

t

+D
h

(x̃k, x⇤
)

⇤
+ 2L(1 + �)E[f(xt

)� f(x⇤
)].

The bound on T1 is due to strong convexity nature of function f . The first inequality and second
inequalities on T2 directly follows from Lemma 3 of [6] and simple application of Lemma 1 respec-
tively. The third inequality follows from the definition of G

t

and the fact that ↵t

i

= x̃k for all i /2 S
and t 2 {km, . . . , km+m� 1}.

11

Substituting these bounds T1 and T2 in b
t

, we get

b
t

 �

2c⌘ � 2cL⌘2(1 + �)� 2c

�

�
E
⇥
f(xt

)� f(x⇤
)

⇤

+

✓
1

+ 2cL⌘2

✓
1 +

1

�

◆
� 1

n

◆
E[G

t

] +

1

n
E[D

g

(xt, x⇤
)]

+ 2cL⌘2
✓
1 +

1

�

◆
E
⇥
D

h

(x̃k, x⇤
)

⇤

 �

2c⌘ � 2cL⌘2(1 + �)� 1

n
� 2c

�

�
E
⇥
f(xt

)� f(x⇤
)

⇤

+

✓
1

+ 2cL⌘2

✓
1 +

1

�

◆
� 1

n

◆
E[G

t

] + 2cL⌘2
✓
1 +

1

�

◆
E
⇥
D

h

(x̃k, x⇤
)

⇤

 �

2c⌘ � 2cL⌘2(1 + �)� 1

n
� 2c

�

�
E
⇥
f(xt

)� f(x⇤
)

⇤
+ 2cL⌘2

✓
1 +

1

�

◆
E
⇥
D

h

(x̃k, x⇤
)

⇤
.

(A.3)

The second inequality follows from Lemma 2. In particular, we use the fact that f(x) � f(x⇤
) =

D
f

(x, x⇤
) and D

f

(x, x⇤
) = D

g

(x, x⇤
) + D

h

(x, x⇤
) � D

g

(x, x⇤
). The third inequality follows

from the following for the choice of our parameters:

1

+ 2Lc⌘2

✓
1 +

1

�

◆
 1

n
.

Applying the recursive relationship on R
t+1 for m iterations, we get

R
km+m

✓
1� 1

◆
m

˜R
k

+

m�1X

j=0

✓
1� 1

◆
m�1�j

b
km+j

where
˜R
k

= E
h
ckx̃k � x⇤k2 + ˜G

k

i
.

Substituting the bound on b
t

from Equation (A.3) in the above equation we get the following in-
equality:

R
km+m

✓
1� 1

◆
m

˜R
k

�
m�1X

j=0

✓
2c⌘(1� L⌘(1 + �))� 1

n
� 2c

�

◆✓
1� 1

◆
m�1�j

E
⇥
f(xkm+j

)� f(x⇤
)

⇤

+

m�1X

j=0

✓
1� 1

◆
m�1�j

2Lc⌘2
✓
1 +

1

�

◆
E
⇥
h(x̃k

)� h(x⇤
)� hrh(x⇤

), x̃k � x⇤i
⇤
.

We now use the fact that x̃k+1 is chosen randomly from {xkm, . . . , xkm+m�1} with probabilities
proportional to {(1� 1/)m�1, . . . , 1} we have the following consequence of the above inequality.

R
km+m

+

1�

✓
1� 1

◆
m

�✓
2c⌘(1� L⌘(1 + �))� 1

n
� 2c

�

◆
E
⇥
f(x̃k+1

)� f(x⇤
)

⇤

 2c

�

✓
1� 1

◆
m

E
⇥
f(x̃k

)� f(x⇤
)

⇤
+

✓
1� 1

◆
m

E
h
˜G
k

i

+ 2Lc⌘2

1�

✓
1� 1

◆
m

�✓
1 +

1

�

◆
E
⇥
D

h

(x̃k, x⇤
)

⇤
.

For obtaining the above inequality, we used the strongly convex nature of function f . Again, using
the Bregman divergence based inequality (see Lemma 2)

f(x)� f(x⇤
) = D

f

(x, x⇤
) = D

g

(x, x⇤
) +D

h

(x, x⇤
) � D

h

(x, x⇤
),

12

we have the following inequality

R
km+m

+

1�

✓
1� 1

◆
m

�✓
2c⌘(1� L⌘(1 + �))� 1

n
� 2c

�

◆
E
⇥
f(x̃k+1

)� f(x⇤
)

⇤

2c

�

✓
1� 1

◆
m

+ 2Lc⌘2

✓
1 +

1

�

◆
1�

✓
1� 1

◆
m

��
E
⇥
f(x̃k

)� f(x⇤
)

⇤
+

✓
1� 1

◆
m

E
h
˜G
k

i
.

(A.4)
We use the following notation:

� =

1�

✓
1� 1

◆
m

�✓
2c⌘(1� L⌘(1 + �))� 1

n
� 2c

�

◆

✓ = max

⇢
2c

��

✓
1� 1

◆
m

+

2Lc⌘2

�

✓
1 +

1

�

◆

1�

✓
1� 1

◆
m

��
,

✓
1� 1

◆
m

�
.

Using the above notation, we have the following inequality from Equation (A.4).

E

f(x̃k+1

)� f(x⇤
) +

1

�
˜G
k+1

�
 ✓ E

f(x̃k

)� f(x⇤
) +

1

�
˜G
k

�
,

where ✓ < 1 is a constant that depends on the parameters used in the algorithm.

Proof of Theorem 2

Proof. Let the present epoch be k + 1. Recall that D(t) denotes the iterate used in the tth iteration
of the algorithm. We define the following:

ut

= �
h
rf

it(x
D(t)

)�rf
it(x̃

k

) +rf(x̃k

)

i

vt = �
⇥
rf

it(x
t

)�rf
it(x̃

k

) +rf(x̃k

)

⇤
.

We have the following:
Ekxt+1 � x⇤k2 = Ekxt

+ ⌘ut � x⇤k2 = E
⇥
kxt � x⇤k2 + ⌘2kutk2 + 2⌘hxt � x⇤, uti

⇤
. (A.5)

We first bound the last term of the above inequality. We expand the term in the following manner:

Ehxt � x⇤, uti = E
h
hx⇤ � xt,rf

it(x
D(t)

)i
i

= E
h
hx⇤ � xD(t),rf

it(x
D(t)

)i
i

| {z }
T3

+

t�1X

d=D(t)

E
⇥
hxd � xd+1,rf

it(x
d

)i
⇤

| {z }
T4

+

t�1X

d=D(t)

E
h
hxd � xd+1,rf

it(x
D(t)

)�rf
it(x

d

)i
i

| {z }
T5

.

(A.6)
The first equality directly follows from the definition of ut and its property of unbiasedness. The
second step follows from simple algebraic calculations. Terms T3 and T4 can be bounded in the
following way:

T3 E[f
it(x

⇤
)� f

it(x
D(t)

)]. (A.7)
This bound directly follows from convexity of function f

it .

T4 =

t�1X

d=D(t)

E
⇥
hxd � xd+1,rf

it(x
d

)i
⇤

t�1X

d=D(t)

E

f
it(x

d

)� f
it(x

d+1
) +

L

2

kxd+1 � xdk2
it

�

 E
h
f
it(x

D(t)
)� f

it(x
t

)

i
+

L�

2

t�1X

d=D(t)

E
⇥
kxd+1 � xdk2

⇤
. (A.8)

13

The first inequality follows from lipschitz continuous nature of the gradient of function f
it . The

second inequality follows from the definition of �. The last term T5 can be bounded in the following
manner.

T5 = E

2

4
t�1X

d=D(t)

hxd � xd+1,rf
it(x

D(t)
)�rf

it(x
d

)i

3

5

 E

2

4
t�1X

d=D(t)

kxd+1 � xdk
itkrf

it(x
D(t)

)�rf
it(x

d

)k

3

5

 E

2

4
t�1X

d=D(t)

kxd+1 � xdk
it

d�1X

j=D(t)

krf
it(x

j+1
)�rf

it(x
j

)k

3

5

 E

2

4
t�1X

d=D(t)

d�1X

j=D(t)

L

2

�
kxd+1 � xdk2

it
+ kxj+1 � xjk2

it

�
3

5

 L�(⌧ � 1)

2

E
t�1X

d=D(t)

kxd+1 � xdk2. (A.9)

The first inequality follows from Cauchy-Schwartz inequality. The second inequality follows from
repeated application of triangle inequality. The third step is a simple application of AM-GM in-
equality and the fact that gradient of the function f

it is lipschitz continuous. Finally, the last step
can be obtained by using a simple counting argument, the fact that the staleness in gradient is at
most ⌧ and the definition of �.

By combining the bounds on T3, T4 and T5 in Equations (A.7), (A.8) and (A.9) respectively and
substituting the sum in Equation (A.6), we get

Ehxt � x⇤, uti E

2

4f(x⇤
)� f(xt

) +

L�⌧

2

t�1X

d=D(t)

kxd+1 � xdk2
3

5 . (A.10)

By substituting the above inequality in Equation (A.5), we get

E
⇥
kxt+1 � x⇤k2

⇤
 E

"
kxt � x⇤k2 + ⌘2kutk2 � 2⌘(f(xt

)� f(x⇤
)) + L�⌧⌘3

t�1X

d=D(t)

kudk2
#
.

(A.11)
We next bound the term E[kutk2] in terms of E

⇥
kvtk2

⇤
in the following way:

E
⇥
kutk2

⇤
 2E

⇥
kut � vtk2 + kvtk2

⇤

 2E
h
krf

it(x
t

)�rf
it(x

D(t)
)k2
i
+ 2E

��vtk2
⇤

 2L2⌧

t�1X

d=D(t)

E
⇥
kxd+1 � xdk2

it

⇤
+ 2E

⇥
kvtk2

⇤

 2L2
�⌘2⌧

t�1X

d=D(t)

E
⇥
kudk2

⇤
+ 2E

⇥
kvtk2

⇤
.

The first step follows from Lemma 3 for r = 2. The third inequality follows from the lipschitz
continuous nature of the gradient and simple application of Lemma 3. Adding the above inequalities
from t = km to t = km+m� 1, we get

km+m�1X

t=km

E
⇥
kutk2

⇤

km+m�1X

t=km

2

4
2L2

�⌘2⌧

t�1X

d=D(t)

E
⇥
kudk2

⇤
+ 2E

⇥
kvtk2

⇤
3

5

 2L2
�⌘2⌧2

km+m�1X

t=km

E
⇥
kutk2

⇤
+ 2

km+m�1X

t=km

E
⇥
kvtk2

⇤
.

14

Here we again used a simple counting argument and the fact that the delay in the gradients is at most
⌧ . From the above inequality, we get

km+m�1X

t=km

E
⇥
kutk2

⇤
 2

(1� 2L2
�⌘2⌧2)

km+m�1X

t=km

E
⇥
kvtk2

⇤
. (A.12)

Adding Equation (A.11) from t = km to t = km +m � 1 and substituting Equation (A.12) in the
resultant, we get

E
⇥
kxkm+m � x⇤k2

⇤
 E

"
kx̃k � x⇤k2 + (⌘2 + L�⌧2⌘3)

km+m�1X

t=km

kutk2 �
km+m�1X

t=km

2⌘(f(xt

)� f(x⇤
))

#

 E
"
kx̃k � x⇤k2 + 2

✓
⌘2 + L�⌧2⌘3

1� 2L2
�⌘2⌧2

◆
km+m�1X

t=km

kvtk2 �
km+m�1X

t=km

2⌘(f(xt

)� f(x⇤
))

#
.

Here, we used the fact that the system is synchronized after every epoch. The first step follows from
telescopy sum and the definition of x̃k. From Lemma 3 of [6] (also see [10]), we have

E[kvtk2] 4LE
⇥
f(xt

)� f(x⇤
) + f(x̃k

)� f(x⇤
)

⇤
.

Substituting this in the inequality above, we get the following bound:
✓
2⌘ � 8L

✓
⌘2 + L�⌧2⌘3

1� 2L2
�⌘2⌧2

◆◆
mE[f(x̃k+1

)� f(x⇤
)]

✓
2

�
+ 8L

✓
⌘2 + L�⌧2⌘3

1� 2L2
�⌘2⌧2

◆
m

◆
E[f(x̃k

)� f(x⇤
)].

Proof of Theorem 3

Proof. Let the present epoch be k+1. For simplicity, we assume that the iterates x and A used in the
each iteration are from the same time step (index) i.e., D(t) = D0

(t) for all t 2 T . Recall that D(t)
and D0

(t) denote the index used in the tth iteration of the algorithm. Our analysis can be extended to
the case of D(t) 6= D0

(t) in a straightforward manner. We expand function f as f(x) = g(x)+h(x)
where g(x) = 1

n

P
i2S

f
i

(x) and h(x) = 1
n

P
i/2S

f
i

(x). We define the following:

ut

=

1

⌘
(xt+1 � xt

) = �
"
rf

it(x
D(t)

)�rf
it(↵

D(t)
it

) +

1

n

X

i

rf
i

(↵
D(t)
i

)

#

vt = �
"
rf

it(x
t

)�rf
it(↵

t

it
) +

1

n

X

i

rf
i

(↵t

i

)

#
.

We use the same Lyapunov function used in Theorem 1. We recall the following definitions:

G
t

=

1

n

X

i2S

�
f
i

(↵t

i

)� f
i

(x⇤
)� hrf

i

(x⇤
),↵t

i

� x⇤i
�

R
t

= E
⇥
ckxt � x⇤k2 +G

t

⇤
.

Using unbiasedness of the gradient we have E[ut

] = �rf(xD(t)
) and E[vt] = �rf(xt

). Using
this observation, we have the following:

cE[kxt+1 � x⇤k2] = cE[kxt

+ ⌘ut � x⇤k2]
= cE

⇥
kxt � x⇤k2

⇤
+ c⌘2 E

⇥
kutk2

⇤
| {z }

T6

+2c⌘ E
⇥
hxt � x⇤, uti

⇤
| {z }

T7

. (A.13)

We bound term T6 in the following manner:

T6 = E
⇥
kutk2

⇤
 2E

⇥
kut � vtk2

⇤
+ 2E[kvtk2]. (A.14)

15

The first term can be bounded in the following manner:

E
⇥
kut � vtk2

⇤
 E

h���(rf
it(x

t

)�rf
it(x

D(t)
))� (rf

it(↵
D(t)
it

)�rf
it(↵

t

it
))

+

1

n

X

i

(rf
i

(↵t

i

)�rf
i

(↵
D(t)
i

))

���
2i

 3E
���rf

it(x
t

)�rf
it(x

D(t)
)

���
2
�
+ 3E

���rf
it(↵

D(t)
it

)�rf
it(↵

t

it
)

���
2
�

+ 3E

2

4
�����
1

n

X

i

(rf
i

(↵t

i

)�rf
i

(↵
D(t)
i

))

�����

2
3

5

 3E
���rf

it(x
t

)�rf
it(x

D(t)
)

���
2
�
+ 3E

���rf
it(↵

D(t)
it

)�rf
it(↵

t

it
)

���
2
�

+

3

n

X

i

E
���rf

i

(↵t

i

)�rf
i

(↵
D(t)
i

)

���
2
�
. (A.15)

The second step follows from Lemma 3 for r = 3. The last step follows from simple application of
Jensen’s inequality. The first term can be bounded easily in the following manner:

E
h
krf

it(x
t

)�rf
it(x

D(t)
)k2
i
 L2⌧

t�1X

d=D(t)

E
⇥
kxd+1 � xdk2

it

⇤

 L2
�⌘2⌧

t�1X

d=D(t)

E
⇥
kudk2

⇤
.

The second and third terms need more delicate analysis. The key insight for our analysis is that at
most ⌧ ↵

i

’s differ from time step D(t) to t. This is due to the fact that the delay is bounded by ⌧ and
at most one ↵

i

changes at each iteration. Furthermore, whenever there is a change in ↵
i

, it changes
to one of the iterates xj for some j = {max{t � ⌧, km}, . . . , t}. With this intuition we bound the
second term in the following fashion.

E
���rf

it(↵
D(t)
it

)�rf
it(↵

t

it
)

���
2
�
 1

n

t�1X

j=D(t)

X

i2S

E

(i = i
j

)

���rf
i

(xj

)�rf
i

(↵
D(t)
i

)

���
2
�

 2

n

t�1X

j=D(t)

X

i2S

E

(i = i
j

)

✓��rf
i

(xj

)�rf
i

(x⇤
)

��2
+

���rf
i

(↵
D(t)
i

)�rf
i

(x⇤
)

���
2
◆�

 2

n2

t�1X

j=D(t)

X

i2S

E
h��rf

i

(xj

)�rf
i

(x⇤
)

��2
i
+

2

n2

t�1X

j=D(t)

X

i2S

E
���rf

i

(↵
D(t)
i

)�rf
i

(x⇤
)

���
2
�

 4L

n

t�1X

j=D(t)

E
"
1

n

X

i2S

f
i

(xj

)� f
i

(x⇤
)� hrf

i

(x⇤
), xj � x⇤i)

#

+

4L⌧

n
E
"
1

n

X

i2S

f
i

(↵
D(t)
i

)� f
i

(x⇤
)� hrf

i

(x⇤
),↵

D(t)
i

� x⇤i
#
.

The first inequality follows from the fact that if ↵D(t)
it

and ↵t

it
differ, then (a) i

t

should have been
chosen in one of the iteration j 2 {D(t), . . . , t � 1} and (b) ↵

it is changed to xj in that iteration.
The second inequality follows from Lemma 3 for r = 2. The third inequality follows from the fact
that the probability P (i

j

= i) = 1/n. The last step directly follows from Lemma 1. Note that sum
is over indices in S since ↵

i

’s for i /2 S do not change during the epoch.

The third term in Equation (A.15) can be bounded by exactly the same technique we used for the
second term. The bound, in fact, turns out to identical to second term since i

t

is chosen uniformly

16

random. Combining all the terms we have

T6 2E[kvtk2] + 6L2
�⌘2⌧

t�1X

d=D(t)

E
⇥
kudk2

⇤
+

48L

n

t�1X

j=D(t)

E
⇥
D

g

(xj , x⇤
)

⇤
+

48L⌧

n
E
⇥
G

D(t)

⇤
.

The term T7 can be bounded in a manner similar to one in Theorem 2 to obtain the following (see
proof of Theorem 2 for details):

Ehxt � x⇤, uti E

2

4f(x⇤
)� f(xt

) +

L�⌧⌘2

2

t�1X

d=D(t)

kudk2
3

5 . (A.16)

We need the following bound for our analysis:
m�1X

j=0

✓
1� 1

◆
m�1�j

E[kukm+jk2] 2

m�1X

j=0

✓
1� 1

◆
m�1�j

E[kvkm+jk2]

+

km+m�1X

t=km

6L2
�⌘2⌧

t�1X

d=D(t)

E
⇥
kudk2

⇤

+

km+m�1X

t=km

48L

n

t�1X

j=D(t)

E
⇥
D

g

(xj , x⇤
)

⇤

+

km+m�1X

t=km

48L⌧

n
E
⇥
G

D(t)

⇤
.

The above inequality follows directly from the bound on T6 by adding over all t in the epoch. Under
the condition

⌘2
✓
1� 1

◆
m�1

1

12L2
�⌧2

.

we have the following inequality
m�1X

j=0

✓
1� 1

◆
m�1�j

E[kukm+jk2] 4

m�1X

j=0

✓
1� 1

◆
m�1�j

E[kvkm+jk2]

+

km+m�1X

t=km

96L

n

t�1X

j=D(t)

E
⇥
D

g

(xj , x⇤
)

⇤

+

km+m�1X

t=km

96L⌧

n
E
⇥
G

D(t)

⇤
. (A.17)

The above inequality follows from the fact that
km+m�1X

t=km

6L2
�⌘2⌧

t�1X

d=D(t)

E
⇥
kudk2

⇤

km+m�1X

t=km

6L2
�⌘2⌧2E

⇥
kutk2

⇤

 1

2

m�1X

j=0

✓
1� 1

◆
m�1�j

E[kukm+jk2].

The above relationship is due to the condition on ⌘ and the fact that any d 2 {D(t), . . . , t � 1} for
at most ⌧ values of t. We have the following:

R
t+1 = cE

⇥
kxt � x⇤k2

⇤
+ c⌘2E

⇥
kutk2

⇤
+ 2c⌘E

⇥
hxt � x⇤, uti

⇤
+ E [G

t+1]

:=

✓
1� 1

◆
R

t

+ e
t

. (A.18)

17

We bound e
t

in the following manner:

e
t

=

c

kxt � x⇤k2 +

✓
1

� 1

n

◆
E[G

t

] + c⌘2E
⇥
kutk2

⇤
+ 2c⌘E

⇥
hxt � x⇤, uti

⇤
+ E [G

t+1]

=

c

kxt � x⇤k2 +

✓
1

� 1

n

◆
E[G

t

] + c⌘2E
⇥
kutk2

⇤
+ 2c⌘E

⇥
hxt � x⇤, uti

⇤
+

1

n
E[D

g

(xt, x⇤
)]

 �
✓
2c⌘ � 2c

�

◆
E
⇥
f(xt

)� f(x⇤
)

⇤
+

✓
1

� 1

n

◆
E[G

t

] + c⌘2E[kutk2]

+ cL�⌧⌘3
t�1X

d=D(t)

E
⇥
kudk2

⇤
+

1

n
E[D

g

(xt, x⇤
)].

The second equality follows from the definition of G
t+1 (see Equation (A.2)).

E[G
t+1] =

✓
1� 1

n

◆
E [G

t

] +

1

n
E[D

g

(xt, x⇤
)].

Applying the recurrence relationship in Equation (A.18) with the derived bound on e
t

, we have

R
km+m

✓
1� 1

◆
m

˜R
k

+

m�1X

j=0

✓
1� 1

◆
m�1�j

e
km+j

✓
1� 1

◆
m

˜R
k

+

m�1X

j=0

✓
1� 1

◆
m�1�j

e0
km+j

,

where e0
t

is defined as follows

˜R
k

= E
h
ckx̃k � x⇤k2 + ˜G

k

i

e0
t

= �
✓
2c⌘ � 2c

�

◆
E
⇥
f(xt

)� f(x⇤
)

⇤
+

✓
1

� 1

n

◆
E[G

t

]

+

c⌘2 +

✓
1� 1

◆�⌧

cL�⌧2⌘3

!
E[kutk2] + 1

n
E[D

g

(xt, x⇤
)].

The last inequality follows from that fact that the delay is at most ⌧ . In particular, each index
j 2 {D(t), . . . , t� 1} occurs at most ⌧ times. We use the following notation for ease of exposition:

⇣ =

c⌘2 +

✓
1� 1

◆�⌧

cL�⌧2⌘3

!
.

Substituting the bound in Equation (A.17), we get the following:

R
km+m

✓
1� 1

◆
m

˜R
k

�
✓
2c⌘ � 2c

�

◆
m�1X

j=0

✓
1� 1

◆
m�1�j

E
⇥
f(xkm+j

)� f(x⇤
)

⇤

+ 4⇣

m�1X

j=0

✓
1� 1

◆
m�1�j

E[kvkm+jk2]

+

"
96⇣L⌧

n

✓
1� 1

◆�⌧

+

1

n

#
m�1X

j=0

✓
1� 1

◆
m�1�j

E
⇥
D

g

(xkm+j , x⇤
)

⇤

+

"
1

+

96⇣L⌧

n

✓
1� 1

◆�⌧

� 1

n

#
m�1X

j=0

✓
1� 1

◆
m�1�j

E
⇥
G

D(km+j)

⇤
. (A.19)

We now use the following previously used bound on vt (see bound T2 in the proof of Theorem 1):

E[kvtk2] 2L

✓
1 +

1

�

◆⇥
G

t

+D
h

(x̃k, x⇤
)

⇤
+ 2L(1 + �)E[f(xt

)� f(x⇤
)].

18

Substituting the above bound on vt in Equation (A.19), we get the following:

R
km+m

✓
1� 1

◆
m

˜R
k

�
"
2c⌘ � 8⇣L(1 + �)� 2c

�
� 96⇣L⌧

n

✓
1� 1

◆�⌧

� 1

n

#
⇥

m�1X

j=0

✓
1� 1

◆
m�1�j

E
⇥
f(xkm+j

)� f(x⇤
)

⇤

+

"
1

+ 8⇣L

✓
1 +

1

�

◆
+

96⇣L⌧

n

✓
1� 1

◆�⌧

� 1

n

#
⇥

m�1X

j=0

✓
1� 1

◆
m�1�j

E [G
km+j

]

+ 8⇣L

✓
1 +

1

�

◆
m�1X

j=0

✓
1� 1

◆
m�1�j

E
⇥
D

h

(x̃k, x⇤
)

⇤

 2c

�

✓
1� 1

◆
m

E
⇥
f(x̃k

)� f(x⇤
)

⇤
+

✓
1� 1

◆
m

E
h
˜G
k

i

�
"
2c⌘ � 8⇣L(1 + �)� 2c

�
� 96⇣L⌧

n

✓
1� 1

◆�⌧

� 1

n

#
⇥

m�1X

j=0

✓
1� 1

◆
m�1�j

E
⇥
f(xkm+j

)� f(x⇤
)

⇤

+ 8⇣L

✓
1 +

1

�

◆

1�

✓
1� 1

◆
m

�
E
⇥
D

h

(x̃k, x⇤
)

⇤
. (A.20)

The first step is due to the Bregman divergence based inequality D
f

(x, x⇤
) � D

g

(x, x⇤
). The

second step follows from the expanding ˜R
k

and using the strong convexity of function f . For
brevity, we use the following notation:

�
a

=

1�

✓
1� 1

◆
m

� "
2c⌘ � 8⇣L(1 + �)� 2c

�
� 96⇣L⌧

n

✓
1� 1

◆�⌧

� 1

n

#

✓
a

= max

8
<

:

2

4 2c

�
a

�

✓
1� 1

◆
m

+

8⇣L
⇣
1 +

1
�

⌘

�
a

1�

✓
1� 1

◆
m

�3

5 ,

✓
1� 1

◆
m

9
=

; .

We now use the fact that x̃k+1 is chosen randomly from {xkm, . . . , xkm+m�1} with probabili-
ties proportional to {(1 � 1/)m�1, . . . , 1}. Hence, we have the following inequality from Equa-
tion (A.20):

E

f(x̃k+1

)� f(x⇤
) +

1

�
a

˜G
k+1

�
 ✓

a

E

f(x̃k

)� f(x⇤
) +

1

�
a

˜G
k

�
,

where ✓
a

< 1 is a constant that depends on the parameters used in the algorithm.

19

Remarks about the parameters in Theorem 1 & Theorem 3

In this section, we briefly remark about the parameters in Theorems 1 & 3. For Theorem 1, suppose
we use the following instantiation of the parameters:

⌘ =

1

16(�n+ L)

 =

4

�⌘
= 64

✓
n+

L

�

◆

� =

2�n+ L

L

c =
2

⌘n
= 32

✓
�+

L

n

◆
.

Then we have,

✓ = max

("
2(1� 1

)

m

3

�
1� (1� 1

)

m

�
+

1

3

�
1 +

2�n
L

�
#
,

✓
1� 1

◆
m

)
.

In the interesting case of L/� = n (high condition number regime), since = ⇥(n), one can obtain
a constant ✓ (say ✓ = 0.5) with m = O(n). This leads to ✏ accuracy in the objective function after
O(log(1/✏)) epochs of HSAG. When m = O(n), the computational complexity of each epoch of
HSAG is O(n). Hence, the total computational complexity of HSAG is O(n log(1/✏)). On the other
hand, because L/� = n, batch gradient descent method requires O(n log(1/✏)) iterations to achieve
✏ accuracy in the objective value. Since the complexity of each iteration of gradient descent is
O(n) (as it passes through the whole dataset for calculating the gradient), the overall computational
complexity of batch gradient descent is O(n2

log(1/✏)). In general, for high condition number
regimes (which is typically the case in machine learning applications), HSAG (like SVRG, SAGA)
will be significantly faster than the batch gradient methods. Furthermore, the convergence rate is
strictly better than the sublinear rate obtained for SGD.

The parameter instantiations for Theorem 3 are much more involved. Suppose �

1/2⌧ < 1 (this is
the sparse regime that is typically of interest to the machine learning community) and m > n > 9⌧ .
The other case (�1/2⌧ � 1) can be analyzed in a similar fashion. We set the following parameters:

⌘ =

�
1� 1

�
m

64(�n+ L)

 =

4

�⌘
=

256

�
n+

L

�

�

(1� 1

)

m

� =

2�n+ L

L

c =
2

⌘n
= 32

✓
�+

L

n

◆
.

Then we have the following:

⇣
�
1� 1

�
m

32n(�n+ L)

✓
1 +

L

64(�n+ L)

◆

✓
a

 max

("
6(1� 1

)

m

7

�
1� (1� 1

)

m

�
+

195

�
1� 1

�
⌧

448(1 +

2�n
L

)

#
,

✓
1� 1

◆
m

)

Again, in the case of L/� = n, we can obtain constant ✓
a

(say ✓
a

= 0.5) with m = ⇥(n) and
 = ⇥(n). The constants in the parameters are not optimized and can be improved by a more
careful analysis. Furthermore, sharper constants can be obtained in specific cases. For example,
see [10] and Theorem 2 for synchronous and asynchronous convergence rates of SVRG respectively.
Similarly, sharper constants for SAGA can also be derived by simple modifications of the analysis.

20

Other Lemmatta

Lemma 1. [10] For any ↵
i

2 Rd where i 2 [n] and x⇤, we have

E
⇥
krf

it(↵it)�rf
it(x

⇤
)k2
⇤
 2L

n

X

i

[f
i

(↵
i

)� f(x⇤
)� hrf

i

(x⇤
),↵

i

� x⇤i] .

Lemma 2. Suppose f : Rd ! R and f = g+ h where f, g and h are convex and differentiable. x⇤

is the optimal solution to argmin

x

f(x) then we have the following

D
f

(x, x⇤
) = f(x)� f(x⇤

)

D
f

(x, x⇤
) = D

g

(x, x⇤
) +D

h

(x, x⇤
)

D
f

(x, x⇤
) � D

g

(x, x⇤
).

Proof. The proof follows trivially from the fact that x⇤ is the optimal solution and linearity and
non-negative properties of Bregman divergence.

Lemma 3. For random variables z1, . . . , zr, we have

E
⇥
kz1 + ...+ z

r

k2
⇤
 rE

⇥
kz1k2 + ...+ kz

r

k2
⇤
.

21

