
7 Appendix

7.1 Identifiability for Single Subunit Model

Lemma 1. [b1 � e
k,b2 � e

k, . . . ,bd � e
k] is a linearly independent set.

If it is not linearly independent, there is a column vector bp � e
k which is a linear combination of

other vectors, thus

bp � e
k =

X

q 6=p

↵qbq � e
k = (

X

q 6=p

↵qbq)� e
k (25)

Since e
k has no zeros, we have

bp =

X

q 6=p

↵qbq (26)

where ↵q is the arbitrary coefficient for vector bq � e
k. This contradicts that B has orthogonal

columns in (14). Thus [b1 � e
k,b2 � e

k, . . . ,bd � e
k] must be a linearly independent set and span a

d-dimensional space.

7.2 Identifiability for Multiple Subunits Model with Same Pooling Weights

Proof. We also follow the similar contradiction proof as in single model situation by proving
rank(R) = 1. Suppose there are multiple solutions,

C =

fW � (

e
KA

e
K

H
)

>
=

eV � (

e
GM e

G

H
)

> (27)

Since both fW and eV are assumed to have no zeros, let R := (

fW./eV )

>, then we have

R� e
KA

e
K

H
=

e
GM e

G

H (28)

Given that R could be diagonalized by DFT and

e
KA

e
K

H
=

mX

i=1

↵i
e
ki
e
k

H
i , e

GM e
G

H
=

Pm
i=1 �iegiegH

i (29)

we can write

R� e
KA

e
K

H
=

dX

i=1

ribib
H
i �

mX

i=1

↵i
e
ki
e
k

H
i (30)

=

mX

i=1

dX

j=1

rj↵ibjb
H
j � e

ki
e
k

H
i (31)

=

mX

i=1

dX

j=1

rj↵i(bj � e
ki)(bj � e

ki)
H (32)

Expanding R� e
KA

e
K

H in a more explicit way, we have

R� eKA eKH = r1↵1(b1 � ek1)(b1 � ek1)
H + r2↵1(b2 � ek1)(b2 � ek1)

H + . . .+ rd↵1(bd � ek1)(bd � ek1)
H +

r1↵2(b1 � ek2)(b1 � ek2)
H + r2↵2(b2 � ek2)(b2 � ek2)

H + . . .+ rd↵2(bd � ek2)(bd � ek2)
H +

r1↵3(b1 � ek3)(b1 � ek3)
H + r2↵3(b2 � ek3)(b2 � ek3)

H + . . .+ rd↵3(bd � ek3)(bd � ek3)
H +

...
r1↵m(b1 � ekm)(b1 � ekm)H + r2↵m(b2 � ekm)(b2 � ekm)H + . . .+ rd↵m(bd � ekm)(bd � ekm)H (33)

Define Si := Span( eKi�1
) = Span([bi � e

k1,bi � e
k2, . . . ,bi � e

km]) is a m-dimensional span for
any i. S1 = Span( eK) = Span([b1 � e

k1,b1 � e
k2, . . . ,b1 � e

km]).

If rank(R) = 2 with ri 6= 0 and rj 6= 0,

R� e
KA

e
K

H
= ri↵1(bi � e

k1)(bi � e
k1)

H
+ rj↵1(bj � e

k1)(bj � e
k1)

H
+
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ri↵2(bi � e
k2)(bi � e

k2)
H
+ rj↵2(bj � e

k2)(bj � e
k2)

H
+

ri↵3(bi � e
k3)(bi � e

k3)
H
+ rj↵3(bj � e

k3)(bj � e
k3)

H
+

...
ri↵m(bi � e

km)(bi � e
km)

H
+ rj↵m(bj � e

km)(bj � e
km)

H (34)

To satisfy the rank of R� e
KA

e
K

H to be m, we have

Lemma 2. Si = Sj when rank(R) = 2.

Since if Si 6= Sj , there should be a vector bj � e
kp which cannot be represented as a linear combi-

nation of [bi� e
k1,bi� e

k2, . . . ,bi� e
km] (same proof as Lemma 1), then rank(R� e

KA

e
K

H
) > m.

Thus Si and Sj must be the same.

In addition, Lemma 2 implies that

Corollary 1. For any p, Sp = Sp+� , where � = j � i.

We now argue for multiple situations that given Corollary 1, rank(R) = 1 under the mild Assump-
tion 4.

• If � - d (� does not divide d), 8p, Sp = Sp+� means S1 = S2 = . . . = Sd. All vectors
8j,bi�e

kj lie in the same m-dimensional subspace. We also know that for any ith set, [b1�
e
ki,b2 � e

ki, . . . ,bd � e
ki] are linearly independent (Lemma 1) and span a d-dimensional

space. Thus it induces a contradiction when m < d. A simpler illustration would be that it
is impossible to claim that points in the same 2D space cannot spread out a 3D space, but
the contrary holds. Therefore when � - d, rank(R) < 2 = 1.

• If � | d = !, Sp = Sp+� only indicates that Sp = Sp+� = Sp+2� = . . . = Sp+d�� (!
equal spans).

– If ! > m, this is similar to � - d case. That is, [bp � e
ki,bp+� � e

ki,bp+2� �
e
ki, . . . ,bp+d�� � e

ki] span an !-dimensional subspace which has higher dimension
than m. But they also stay in the same m-dimensional subspace. Thus there is a
contradiction and rank(R) = 1.

– If !  m, it is possible that R � e
KA

e
K

H consists of vectors from K

i�1 and K

j�1

with rank m. But Ki�1 have the same column span with K

j�1, because Si = Sj .
If Ki�1 and K

j�1 share the same column span, then there exists a linear projection
coefficient matrix ⌦ satisfying K

j�1
= K

i�1
⌦. Let P be the permutation matrix

from K

i�1 to K

j�1 by shifting rows, namely K

j�1
= PK

i�1. This implies that we
need to cook up a K whose projection matrix ⌦ for its i � 1 shift Ki�1 and j � 1

shift Kj�1 satisfies Ki�1
⌦ = PK

i�1. In practice, this condition is barely satisfied.
Thus, as long as @⌦, such that Ki�1

⌦ = PK

i�1, Ki�1 and K

j�1 will not share
the same span, then rank(R � e

KA

e
K

H
) > m conflicts with rank( eGM e

G

H
)  m.

Consequently, rank(R) = 1. (This is the interpretation for Assumption 4.)

We can make similar arguments when rank(R) > 2, which only introduces more m-dimensional
subspaces compared to rank(R) = 2 case. In sum, when rank(R) � 2, there is always a contra-
diction that rank(R � e

KA

e
K

H
) > rank(

e
GM e

G

H
) if 9⌦ such that Ki�1

⌦ = PK

i�1. Thus, there
should be always rank(R) = 1.

Setting ri 6= 0 and all others to be zero, we have

ri(bib
H
i )� eV =

fW (35)

If we also assume both w and v are unit vectors to remove scaling vagueness, then ri = 1, thus
w = v

i�1.
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We cannot claim the rigorous identifiability of K and A, but we can claim

(bib
H
i )� e

KA

e
K

H
=

e
GM e

G

H ) diag(bi)
e
KA

e
K

H
diag(bi)

H
=

e
GM e

G

H (36)
) K

i�1
A(K

i�1
)

>
= GMG

> (37)

When A has all positive or negative values and K has orthogonal columns (Assumption 3 and 5),
the identifiability is reduced to the uniqueness of SVD, then A and K are both identifiable.
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