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Here we provide more details underlying the derivations of results in the main paper.

1 Continuous time Markov processes

In this section we’ll provide a summary of all the relevant properties of ergodic Markov chains in
continuous time to define notation. It is a generalization of material that can be found in [1] with
some ideas from [2].

1.1 Notation

For any matrix A, we define matrices Adg and A as

Adg
ij ≡ δijAij , A ≡ A−Adg. (1)

We let e denote a column-vector of ones and E = eeT denote a matrix of ones.

A continuous time Markov process is described by a matrix of transitions rates, Qij , from state i
to j with row sums equal to zero (Qe = 0). The probabilities of being in each state at time t, the
row-vector p(t), evolve according to

dp(t)

dt
= p(t)Q, (2)

where p(t)e = 1.

The equilibrium probabilities, p∞, satisfy

p∞Q = 0, p∞e = 1. (3)

As we assume an ergodic process, this eigenvalue is non-degenerate. If all other eigenvalues have
strictly negative real parts, the process is regular (aperiodic).

We define additional matrices

Λ ≡ (−Qdg)−1, P ≡ I + ΛQ. (4)

It can be shown that Λii is the mean time it takes to leave state i and Pij is the probability the the
next transition from state i goes to state j:

Λii =
1∑

j 6=j Qij
, Pij =

{
0 if i = j,

Qij∑
k 6=j Qik

otherwise. (5)

Furthermore, we also define

D ≡ diag(p∞)−1, =⇒ p∞D = eT. (6)

1

mailto:sulahiri@stanford.edu
mailto:sulahiri@stanford.edu


1.2 Fundamental matrix

For our results below regarding the integral of the memory curve, it can be useful to invert the
stochastic transition matrix, Q. However, since Q has a zero eigenvalue, it cannot be inverted. For
this reason, the fundamental matrix arises as a useful surrogate for the inverse of Q. It is related to
the first passage times, as we will see in the next subsection. Here we define the fundamental matrix
and review its properties.
Definition 1: Fundamental matrix
For discrete time, the generalized fundamental matrix was defined in [3]. For continuous time, we
define:

Z ≡ (−Q + eπ)−1, (7)
where π is any row-vector with πe = 1/τ 6= 0.

Note that the canonical choice for the discrete time version, π = p∞, is not available here due to
problems with units. It will be helpful to choose π to be independent of Q, e.g. π = eT/(nτ). All
quantities that we calculate using Z below will be independent of this choice.
Theorem 1:
The definition of Z is valid, i.e. (−Q + eπ) is invertible.

Proof. Assume there exists an x such that

(−Q + eπ)x = 0. (8)

Multiplying from the left with p∞ gives
πx = 0. (9)

Substituting back into (8) gives
Qx = 0.

As we assume an ergodic process, the zero eigenvalue is non-degenerate. Therefore, x = λe.
Substituting this into (9) gives

λπe =
λ

τ
= 0.

As we defined π such that 1/τ 6= 0, this means λ = 0 =⇒ x = 0.

Corollary 2:

πZ = p∞, (10)
Ze = τe, (11)

I + QZ = ep∞, (12)
I + ZQ = τeπ. (13)

Proof. We can deduce (10) and (11) be pre/post-multiplying the following equations by Z:

p∞(−Q + eπ) = π,

(−Q + eπ)e =
e

τ
.

We can then deduce (12) and (13) by substituting these into

(−Q + eπ)Z = Z(−Q + eπ) = I.

1.3 First passage times

Definition 2: First passage time matrix
We define Tij as the mean time it takes the process to reach state j for the first time, starting from
state i. We also define Tdg

ii as the mean time it takes the process to return to state i. As usual,
T = T + Tdg.
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This matrix is given by

T = (EZdg − Z + Λ)D, (14)

see [4] for a proof. We can separate this into its diagonal and off-diagonal pieces.

The recurrence times are given by

Tdg = ΛD. (15)

or in component form

p∞i Λ−1ii Tdg
ii = 1.

The extra factor of Λii, compared to the discrete case [1, Th.4.4.5], occurs because in this case we
are demanding that the process leaves the initial state once before returning, whereas in the discrete
case we only measure the time it takes to go to the initial state after the first time-step.

The off-diagonal mean first passage times are given by

T = (EZdg − Z)D. (16)

or in component form:

Tij =
Zjj − Zij

p∞j
. (17)

1.4 Mixing time (Kemeny’s constant)

Theorem 3:
The quantity

η ≡
∑
j

Tijp
∞
j (18)

is independent of i.

Proof. For discrete time, a proof can be found in [1, Th.4.4.10]. For continuous time, we use (16),
(11) and the transpose of (6):

T(p∞)T = (EZdg − Z)D(p∞)T

= (eeTZdg − Z)e

= (eTZdge)e− Ze

= (tr Z− τ)e.

which proves (18) with η = tr Z− τ .

Note that it is essential that we use T and not T here, as that would lead to ηi = η+ Λii, unlike the
discrete time version, where this would only shift η by 1.

1.5 Sensitivity of equilibrium distribution

Suppose that the Markov process, defined by Q, depends on some parameter α. Differentiating (7)
gives

dZ

dα
= Z

dQ

dα
Z. (19)

We can substitute this into the derivative of (10):

dp∞

dα
= πZ

dQ

dα
Z = p∞

dQ

dα
Z. (20)
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We can rewrite this in component form and use the fact that Qii = −
∑
i 6=j Qij :

dp∞k
dα

=
∑
i,j

p∞i
dQij

dα
Zjk

=
∑
i 6=j

p∞i
dQij

dα
Zjk +

∑
i

p∞i
dQii

dα
Zik

=
∑
i 6=j

p∞i
dQij

dα
(Zjk − Zik)

=
∑
i 6=j

dQij

dα
p∞i p∞k (Tik −Tjk).

(21)

This is a generalization of a result of [5] from discrete to continuous time that we will need below.
Note that the summand vanishes for i = j, so we can drop the restriction i 6= j from the range of
the sum.

1.6 Subsets and flux

Let us denote the set of states by S. Consider a subset A ⊂ S. We can define a projection operator
onto this subset: (

IA
)
ij

=

{
1 if i = j ∈ A,
0 otherwise.

(22)

We will use superscripts/subscripts to denote projection onto/summation over a subset:

πA = πIA, M·A = MIA, MA· = IAM, xA = IAx,

πA = πeA, M·A = MeA, MA· =
(
eA
)T

M, xA =
(
eA
)T

x,
(23)

where π is a row vector, M is a matrix and x is a column vector.

We can define a flux matrix, a.k.a. ergodic flow:

Φ = D−1Q, Φij = p∞i Qij . (24)

This measures the flow of probability between states in the equilibrium distribution. Detailed bal-
ance, a.k.a. reversibility, is equivalent to Φ = ΦT.

The flux between two subsets is a particularly useful quantity:

ΦAB = p∞AQeB. (25)

One can show that
ΦAAc = ΦAcA = −ΦAA = −ΦAcAc (26)

using
(
p∞A + p∞A

c
)

Q = 0 and Q
(
eA + eA

c)
= 0.

1.7 Lumpability

Suppose we have partitioned the states into disjoint subsets, {Aα}:⋃
α

Aα = S, Aα ∩ Aβ = δαβAα. (27)

We will use α instead of Aα in superscripts and subscripts in the following. The fact that these
subsets are disjoint and exhaustive allows us to define the function

σ(i) = α ⇐⇒ i ∈ Aα. (28)

We can use this partition to define a new stochastic process associated with the original Markov
chain. At time t, if the state of the original process is i, the state of the new process is σ(i).
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One may ask if this new process is a Markov chain. The answer is yes, if the original Markov chain
has a property called lumpability wrt. the partition (see [1, §6.3] for the discrete time version and
[6, 7] for continuous time):

σ(i) = σ(j) =⇒ Qiα = Qjα ≡
∑
k∈Aα

Qjk, (29)

i.e. the total transition rate from some state to some subset is the same for all starting states within
the same subset. This common value is the transition rate for the new lumped Markov chain.

This can be rewritten with the aid of two matrices

Uαi =
δασ(i)

|Aα|
, Viα = δσ(i)α. (30)

Left multiplication by U averages over subsets, right multiplication by V sums over subsets. For
U , we chose the uniform measure in each subset. Any measure would work equally well, e.g. one
proportional to the equilibrium distribution:

Uαi =
p∞i

α

p∞α
. (31)

One can show that (UV )αβ = δαβ . The matrix V U is also interesting. It has a block diagonal
structure, with each block corresponding to a subset. Each block is a discrete-time ergodic Markov
matrix (it is an independent trials process with probabilities given by the measure chosen for U ).
This means that the right eigenvectors with eigenvalue 1 will be those that are constant in each
subset:

V Ux = x ⇐⇒ x =
∑
α

xαeα. (32)

This allows us to write the lumpability condition (29), and the transition matrix for the lumped
process compactly:

V UQV = QV, Q̂ = UQV. (33)

By induction, one can show that similar relations hold for all powers:

V UQnV = QnV, Q̂n = UQnV, (34)

and, via the Taylor series, for the exponential as well:

V UetQV = etQV, etQ̂ = UetQV. (35)

The equilibrium distribution of the lumped process is given by

p̂∞ = p∞V. (36)

2 Signal-to-Noise ratio (SNR)

In this section we will look at the signal-to-noise curve, and put an upper bound on its initial value.
We need only consider ergodic Markov chains. Transient states would be unoccupied in equilibrium
and would not be accessed by the signal creation process, therefore they could be removed from
the analysis. Absorbing chains are degenerate cases: they have zero initial signal but infinite decay
times, so they can only be approached as the limit of a sequence of ergodic chains.

2.1 Framework

The individual potentiation/depression events will be described by discrete-time Markov chains:

Mpot/dep ≡ I + Wpot/dep, Mpot/depe = e, Mpot/dep
ij ∈ [0, 1]. (37)

The initial signal creation event occurs at time t = 0, but all subsequent potentiation/depression
events occur at random times according to Poisson processes with rates rf pot/dep, where f pot+f dep =
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1 are the fraction of plasticity events that are potentiating/depressing respectively. This means that
the “forgetting” process will be described by the continuous-time Markov chain:

Q = rWF ≡ r
(
f potWpot + f depWdep) . (38)

We only require that this Markov chain is ergodic. The Markov chains described by Mpot/dep need
not be.

We assume that the probability distribution starts in the equilibrium distribution (3). During the
initial signal creation, a fraction f pot will change to p∞Mpot and a fraction f dep will change to
p∞Mdep. After this, probabilities will evolve according to (2).

2.2 SNR curve

As discussed in the main text, the signal-to-noise ratio is given by

SNR(t) =
〈~wideal · ~w(t)〉 − 〈~wideal · ~w(∞)〉√

Var(~wideal · ~w(∞))
. (39)

First, let’s look at the denominator, remembering that the states and plasticity events of each synapse
are independent and identically distributed:

Var(~wideal · ~w(∞)) =
∑
αβ

〈
~wαideal ~w

α(∞)~wβideal ~w
β(∞)

〉
−

(∑
α

〈~wαideal ~w
α(∞)〉

)2

=
∑
α

〈
(~wαideal)

2(~wα(∞))2
〉

+
∑
α6=β

〈~wαideal ~w
α(∞)〉 〈~wβ ideal ~w

β(∞)〉

−

(∑
α

〈~wαideal ~w
α(∞)〉

)2

= N 〈1〉+N(N − 1)
〈
~w1

ideal ~w
1(∞)

〉2 −N2
〈
~w1

ideal ~w
1(∞)

〉2
= N(1−

〈
~w1

ideal ~w
1(∞)

〉2
),

(40)

where we used ~wα = ±1.

For the numerator, we can write

〈~wideal · ~w(t)〉 =
∑
α

〈~wαideal ~w
α(t)〉 = N

〈
~w1

ideal ~w
1(t)

〉
, (41)

Noting that ~wideal = ±1 with probability f pot/dep,〈
~w1

ideal ~w
1(t)

〉
= f pot 〈~w1(t)

〉
pot,t=0

− f dep 〈~w1(t)
〉

dep,t=0

= f pot
∑
i

P (state = i, t | pot, 0)wi − f dep
∑
i

P (state = i, t | dep, 0)wi.
(42)

From the previous section,

P (state = i, t | pot/dep, 0) =
[
p∞Mpot/dep ertW

F
]
i
, (43)

which describes the synapses starting in the equilibrium distribution, changing state due to the plas-
ticity event at t = 0 and subsequent evolution according to (2) due to plasticity events uncorrelated
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with ~wideal.1 This results in〈
~w1

ideal ~w
1(t)

〉
= p∞(f potMpot − f depMdep) ertW

F

w,〈
~w1

ideal ~w
1(∞)

〉
= p∞(f potMpot − f depMdep) ep∞w

= p∞(f pote− f depe) p∞w

= (f pot − f dep) p∞w

= (f pot − f dep) p∞ertW
F

w.

(44)

Combining these allows us to write the numerator as

〈~wideal · ~w(t)〉 − 〈~wideal · ~w(∞)〉 = Np∞(f pot(Mpot − I)− f dep(Mdep − I)) ertW
F

w

= Np∞(f pot(Wpot −WF)− f dep(Wdep −WF)) ertW
F

w

= N(2f potf dep)p∞(Wpot −Wdep) ertW
F

w.

(45)

where we used p∞WF = 0 in going from the first to second lines. Combining with (40) gives

SNR(t) =

√
N(2f potf dep)p∞(Wpot −Wdep) ertW

F

w√
1− (f pot − f dep)2(p∞+ − p∞− )2

. (46)

The denominator will not play any role in what follows, as the models that maximize the various
measures of memory performance all have some sort of balance between potentiation and depres-
sion, either with f pot = f dep or p∞+ = p∞− . We can set the denominator to 1 without changing any
of our results.

This results in our final formula:

SNR(t) =
√
N(2f potf dep) p∞(Wpot −Wdep) ertW

F

w. (47)

The factor of p∞ describes the synapses being in the steady-state distribution before the memory
is encoded. The factor of (Mpot −Mdep) comes from the encoding of the memory at t = 0, with
~wideal being ±1 in synapses that are potentiated/depotentiated. The factor of ertW

F

describes the
subsequent evolution of the probability distribution, averaged over all sequences of plasticity events,
and the factor of w indicates the readout via the synaptic weight.

We can express this in terms of the one parameter family of transition matrices:

W(α) = αWpot + (1− α)Wdep, =⇒ WF = W(f pot),

Wpot −Wdep =
dW

dα
,

p∞
dW

dα
= −dp∞

dα
WF.

(48)

Then (47) becomes

SNR(t) =
√
N(2f potf dep)

dp∞

dα
(−WF) ertW

F

w. (49)

2.3 Lumpability and the SNR curve

Suppose that we have a partition such that Wpot and Wdep are simultaneously lumpable, and that all
the states in each subset have the same synaptic strength (see §1.7):

V UWpot/depV = Wpot/depV, V Uw = w. (50)
1Note that expanding the exponential gives

ertW
F

=

∞∑
n=0

(rt)n e−rt

n!

n∑
m=0

(f pot)m(f dep)n−m
[
MpotMdepMpotMpot . . .+ permutations

]
.

Thus, evolving according to (2) results in averaging over all sequences of plasticity events, as we only need
linear expectations of ~w(t) in the end.
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We can define a new synapse with

Ŵpot/dep = UWpot/depV, ŵ = Uw, p̂∞ = p∞V. (51)

This synapse has an SNR curve:
SNR(t)√

N(2f potf dep)
= p̂∞(Ŵpot − Ŵdep)ertŴ

F

ŵ.

= p∞V U(Wpot −Wdep)V UertW
F

V Uw.

= p∞(Wpot −Wdep)V UertW
F

V Uw.

= p∞(Wpot −Wdep)ertW
F

V Uw.

= p∞(Wpot −Wdep)ertW
F

w.

(52)

i.e. the lumped process has exactly the same SNR as the original one.

2.4 Initial SNR and flux

Using p∞WF = 0 and the first line of (45), we can write the initial SNR as
SNR(0)√

N
= I = (p∞+ + p∞−)(f potWpot − f depWdep)(e+ − e−). (53)

Using Wpot/dep(e+ + e−) = 0 and (26):

rp∞−(f potWpot + f depWdep)e+ = Φ−+ = Φ+− = rp∞+(f potWpot + f depWdep)e−,

we can rewrite (53) as

I =
4Φ−+
r
− 4p∞+f potWpote− − 4p∞−f depWdepe+. (54)

The last two terms are guaranteed to be negative, as the diagonal parts of Wpot/dep cannot contribute.
Therefore

SNR(0) ≤ 4
√
NΦ−+
r

. (55)

This inequality is saturated if potentiation never takes it from a + state to a − state and depression
never takes it from a − state to a + state.

3 Area maximisation

In this section we will find an upper bound on the area under the signal-to-noise curve. As in §2, we
will only consider ergodic Markov chains. We will see in §3.4 that the optimal chain is absorbing,
so it lies on the boundary of the (open) set of ergodic chains, but it still puts an upper bound on the
area for any chain in the interior.

3.1 Area under signal-to-noise curve

The signal-to-noise curve is given by (49). The area is computed by integrating this

A =

√
N(2f potf dep)

r

dp∞

dα

[
−ertW

F
]∞
0

w

=

√
N(2f potf dep)

r

dp∞

dα
(I− ep∞)w

=

√
N(2f potf dep)

r

dp∞

dα
w.

(56)

We can rewrite this using (21), with A =
√
N(2f potf dep)Â and qij ≡

dWF
ij

dα = Wpot
ij −Wdep

ij

Â =
∑
i,j,k

p∞i qij(Tik −Tjk)p∞k wk. (57)
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Definition 3: Partial mixing times
We define the ± mixing times as

η±i ≡
∑
k

Tikp
∞
k

(
1±wk

2

)
=
∑
k∈±

Tikp
∞
k

=
∑
k

(Zkk − Zik)

(
1±wk

2

)
=
∑
k∈±

(Zkk − Zik) .

(58)

We can think of η+i as a measure of the “distance” to the wk = +1 states and η−i as the “distance”
to the wk = −1 states.

Using (18), we can write:

η+i + η−i = η,

2(η+i − η
+
j ) =

∑
k

(Tik −Tjk)p∞k wk =
∑
k

(Zjk − Zik)wk.
(59)

We could arrange the states in order of decreasing η+, which is the same as the order of increasing
η−.

We can rewrite (57) as

Â = 2
∑
i,j

qijp
∞
i (η+i − η

+
j ) = −2

∑
i,j

qijp
∞
i η

+
j

= 2
∑
i,j

qijp
∞
i (η−j − η

−
i ) = 2

∑
i,j

qijp
∞
i η
−
j .

(60)

We can also express it in terms of the fundamental matrix (7) as

Â =
∑
i,j,k,l

qijπlZli(Zjk − Zik)wk = πZqZw. (61)

It is also helpful to define the following quantities:

ck =
d ln p∞k

dα
=
∑
ij

p∞i qij
(
Tik −Tjk

)
= −

(
p∞qT

)
k

=
(p∞qZ)k

p∞k
,

ai =
∑
j

qijp
∞
i (η+i − η

+
j ),

=⇒ Â =
∑
k

ckp
∞
k wk = 2

∑
i

ai.

(62)

Note that the optimal choice of w is wk = sgn(ck).

3.2 Derivatives wrt. Wpot/dep

In the following, we will mathematically define the classes of perturbations pictorially described in
Figure 3 of the main paper. In order to do so, we will need to consider expressions for derivatives of
various quantities with respect to Wpot/dep

ij .

As discussed in the main text, we will regard the off-diagonal elements of Wpot/dep
ij to be the inde-

pendent variables, with Wpot/dep
ii = −

∑
j 6=i W

pot/dep
ij imposed by hand. Thus,

∂WF
ij

∂Wpot/dep
gh

= f pot/depδgi(δhj − δij),
∂qij

∂Wpot/dep
gh

= ±δgi(δhj − δij). (63)

The implicit g 6= h that comes with all derivatives is unnecessary, as the derivatives above vanish
when g = h.
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In particular, differentiating (7),

∂Zij

∂Wpot/dep
gh

= rf pot/depZig(Zhj − Zgj). (64)

We can then differentiate expression (61) to get

∂Â

∂Wpot/dep
gh

= 2rf pot/depp∞g

[∑
i

ai(Tgi −Thi) + cg(η
+
g − η+h )

]
± 2p∞g (η+g − η+h ). (65)

where ai and ck were defined in (62).

It is sometimes useful to consider the following derivatives:

∂

∂WF
gh

≡ ∂

∂Wpot
gh

+
∂

∂Wdep
gh

,
∂

∂qgh
≡ f dep ∂

∂Wpot
gh

− f pot ∂

∂Wdep
gh

. (66)

Each of these derivatives behaves as their names suggest:

∂WF
ij

∂WF
gh

=
∂qij
∂qgh

= δgi(δhj − δij),
∂qij
∂WF

gh

=
∂WF

ij

∂qgh
= 0. (67)

This is because we could treat WF and q as the independent variables. However, the boundaries of
the allowed region are more easily expressed in terms of Wpot/dep.

3.2.1 Scaling mode

Consider the following differential operator:

∆ ≡
∑
g,h

Wpot
gh

∂

∂Wpot
gh

+ Wdep
gh

∂

∂Wdep
gh

. (68)

This corresponds to the scaling, Wpot/dep → (1+ε)Wpot/dep. Intuitively, this has two effects: it scales
up the initial potentiation/depression and it scales down all timescales. This intuition is confirmed
by the following results:

∆Z = τep∞ − Z, ∆p∞ = 0, ∆T = −T,

∆η±i = −η±i , ∆qij = qij , ∆Â = 0,
(69)

The anomalous bit in the scaling of Z is due to the lack of dependence of π and τ on Wpot/dep.

As the area is invariant under this scaling, we can consider the Wpot/dep to be projective coordinates.
Therefore we don’t need to enforce the lower bound on the diagonal matrix elements while looking
for the maximum area, as we can use this null-mode to enforce it afterwards without changing the
area.

3.3 Kuhn-Tucker conditions

Consider the Lagrangian
L = Â+

∑
pot/dep

∑
i6=j

µpot/dep
ij Wpot/dep

ij . (70)

Necessary conditions for an extremum are

∂L
∂Wpot/dep

gh

= 0, µpot/dep
gh ≥ 0, Wpot/dep

gh ≥ 0, µpot/dep
gh Wpot/dep

gh = 0. (71)

with g 6= h. This enforces the positivity constraints on the off-diagonal elements, but not the
diagonals. As discussed in §3.2.1, that can be enforced after finding the maximum using the null
scaling degree of freedom.
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3.3.1 Triangularity

Here we describe the perturbations corresponding to Figure 3(a,b) of the main paper.

Consider
∂L
∂qgh

= f dep ∂L
∂Wpot

gh

− f pot ∂L
∂Wdep

gh

= (f depµpot
gh − f

potµdep
gh ) + 2p∞g (η+g − η+h ) = 0. (72)

This corresponds to the shift

Wpot
ij →Wpot

ij + f depεij , Wdep
ij →Wdep

ij − f
potεij ,

∑
j

εij = 0, (73)

which leaves WF unchanged, and therefore p∞, T and η± as well.

Assume η+g > η+h . Then

f depµpot
gh − f

potµdep
gh < 0 =⇒ µdep

gh > 0 =⇒ Wdep
gh = 0. (74)

Similarly, if η+g < η+h , then

f depµpot
gh − f

potµdep
gh > 0 =⇒ µpot

gh > 0 =⇒ Wpot
gh = 0. (75)

Thus, if we arrange the states in order of decreasing η+, Wpot is upper-triangular and Wdep is lower
triangular.

We have ignored the possibility that p∞g = 0, as this would imply that Tig = ∞, which would in
turn imply that the Markov process is not ergodic.

3.3.2 Shortcuts

In this subsection we will define perturbations corresponding to Figure 3(c) of the main text.

Now consider the following combinations of derivatives for m > 1:

∆̃pot/dep
g,m ≡

m−1∑
k=0

1

p∞g±k

(
∂

∂Wpot/dep
g±k,g±(k+1)

)− 1

p∞g

(
∂

∂Wpot/dep
g,g±m

)
. (76)

Once again, they are only well defined if all the states have non-zero equilibrium probabilities (see
the comment in §3.3.1 about this being satisfied for ergodic chains).

One can show that the equilibrium probabilities, p∞, are invariant under these operators (21):

∆̃pot/dep
g,m p∞i = 0, (77)

which makes it possible to integrate the perturbation:

Wpot/dep →Wpot/dep+Dε±(g,m),

(
ε±(g,m)

)
g,g±m

= −ε,(
ε±(g,m)

)
g±k,g±(k+1)

= ε ∀ k ∈ [0,m− 1],(
ε±(g,m)

)
g±k,g±k

= −ε ∀ k ∈ [1,m− 1].

(78)

But more interestingly for our purposes:

∆̃pot/dep
g,m L =

[
m−1∑
k=0

µpot/dep
g±k,g±(k+1)

p∞g±k
−
µpot/dep
g,g±m

p∞g

]
+ 2rf pot/dep

m−1∑
k=0

(
η+g±k − η

+
g±(k+1)

)
(cg±k − cg) ,

(79)

In the section below, we will show that the ck are non-decreasing, if we put the states in order of
decreasing η+k . This implies that the last term of the final expression in (79) is non-negative. If
it is non-zero (there would need to be a lot of degeneracy for it to be zero), this would imply that
µpot/dep
g,g±m > 0, which in turn implies that Wpot/dep

g,g±m = 0. This would tell us that the process with the
maximal area has to have a multi-state topology.
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3.3.3 Increasing ck

In the previous subsection we defined perturbations corresponding to Figure 3(c) of the main text.
In order to show that those perturbations increase the area, we must now show that the ck are non-
decreasing, if we put the states in order of decreasing η+k .

Consider the following combinations of derivatives:

∆gh ≡
1

p∞g

(
∂

∂WF
gh

)
+

1

p∞h

(
∂

∂WF
hg

)
, (80)

(81)
Note that they are only well defined if all the states have non-zero equilibrium probabilities (see the
comment in §3.3.1 about this being satisfied for ergodic chains).

One can show that the equilibrium probabilities, p∞, are invariant under these operators using (21):
∆ghp

∞
i = 0, (82)

which makes it possible to integrate the perturbation:

Wpot/dep →Wpot/dep + Dε,
ε = εT,

εe = 0.
(83)

But more interestingly:

∆ghL =
µpot
gh + µdep

gh

p∞g
+
µpot
hg + µdep

hg

p∞h
+ 2r (cg − ch)

(
η+g − η+h

)
, (84)

(85)
where ck were defined in (62).

Using the non-negativity of the Kuhn-Tucker multipliers, µpot/dep
ij , (84) tells us that if we arrange the

states in order of decreasing η+i , the optimal process will have non-decreasing ck (if any of the η+k
are degenerate, we can choose their order to ensure this).

Note that, according to §3.3.1, either Wpot
gh or Wdep

gh will be zero at the maximum, therefore we can

expect one of µpot
gh + µdep

gh to be non-zero. This would rule out degeneracy of the ck or η+k . Looking

at (72) closely, the only way µpot
gh + µdep

gh could be zero is if η+g = η+h or p∞g = 0.

3.3.4 Summary

Using the Kuhn-Tucker formalism, we have shown that, with the states arranged in order of non-
increasing η+i :

• There can be no ergodic maximum for which Wpot contains backwards transitions or Wdep

contains forwards transitions.
• There can be no ergodic maximum with the ck decreasing.
• The ck may only be degenerate at an ergodic maximum if the corresponding η+k are also

degenerate.
• If the ck increase and the η+i decrease, there can be no ergodic maximum with shortcuts.

These were shown by finding allowed perturbations that increase the area.

This leaves two possibilities for the maximum area Markov chain. Either there is no degeneracy and
no shortcuts, which implies the Multi-state/serial topology that we’ll discuss in §3.4, or there is some
degeneracy, which would allow shortcuts provided that they do not bypass an entire degenerate set
(see (79)).

Degeneracy tends to be very delicate. It is usually hard to arrange without some symmetry relating
degenerate states. Such a symmetry would imply lumpability (see §1.7). The lumped chain would
not have any shortcuts, as an entire degenerate set cannot be bypassed. As this lumped chain has the
same area (see §2.3), we would need only consider the multi-state topology.

12



3.4 Multi-state/Serial topology

The previous results indicate that the area under the memory curve of any model is bounded by the
area under the memory curve of a model with the serial/multistate topology having the same equi-
librium distribution. Here we compute this area, which we will see depends only on this equilibrium
distribution.

The multi-state/serial topology is defined by (see [8–10]):

Wpot
ij = qpot

i δi+1,j , Wdep
ij = qdep

j δi,j+1. (86)

Because it has no shortcuts, it saturates various inequalities:

Tik −Tjk =

{
Tij , if i ≤ j ≤ k or i ≥ j ≥ k,
−Tji, if j ≤ i ≤ k or j ≥ i ≥ k,

rp∞i WF
ij

(
Tij + Tji

)
= 1 if i = j ± 1,

(87)

and it satisfies detailed balance (a.k.a. reversibility a.k.a. L2
p∞ self-adjointness):

f potqpot
i p∞i = f depqdep

i p∞i+1, (88)

which means we can always choose the transition rates, qpot/dep
i , to give any desired equilibrium

probabilities, p∞i .

This allows us to calculate the ck’s:

ck =
∑
i<k

Ti,i+1

(
p∞i q

pot
i + p∞i+1q

dep
i

)
−
∑
i≥k

Ti+1,i

(
p∞i q

pot
i + p∞i+1q

dep
i

)
,

ck+1 − ck = (Tk,k+1 + Tk+1,k)

(
p∞k WF

k,k+1

f pot +
p∞k+1W

F
k+1,k

f dep

)
=

1

rf potf dep ,∑
k

ckp
∞
k =

∑
ij

p∞i qij(η − η) = 0,

=⇒ ck =
k −

∑
j jp

∞
j

rf potf dep ,

(89)

where we used (87) to derive the first two equations respectively and Th.3 to derive the third. This
allows us to write the area as

A =
2
√
N

r

∑
k

k −∑
j

jp∞j

p∞k wk =
2
√
N

r

∑
k

∣∣∣∣∣∣k −
∑
j

jp∞j

∣∣∣∣∣∣p∞k , (90)

where we used wk = sgn(ck), as discussed after (62). This reproduces equation (15) of the main
paper.

In order to obtain an upper bound on the area under the memory curve of any model, we now max-
imise the area of the serial model with respect to its equilibrium distribution. First let us maximise
(90) at fixed p∞± =

∑
k p∞k

(
1±wk

2

)
. Clearly this will happen when we put all of the probability at

the ends: p∞1 = p∞− and p∞n = p∞+ are the only non-zero p∞k . This gives an area of

A ≤
√
N

r
(M − 1)

(
4p∞+ p∞−

)
. (91)

This is maximised at p∞+ = p∞− = 1
2 :

A ≤
√
N

r
(M − 1). (92)

This yields the area bound of equation (16) of the main text.

Note that the chain that achieves this is not ergodic, the two states at each end are absorbing. This is
similar to the results found numerically in [11] in a slightly different situation.
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