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1 Proof of Theorem 2.2

Theorem 2.2 Alg. 1 is universally consistent, that is

lim
n→∞

LD(πn1 , . . . , πnK)→ LD (1)

where πn1 , . . . , π
n
K are the policy functions learned using Alg. 1, which in turn uses Learn described by Eq. 8.

Proof. The proof can be broken down into two steps. First, we show that training the policy function with no down-
stream policy functions decouples from other policies. Next, we show that sequentially learning policy functions from
leaf to root leads to an optimal policy.

Consider first the node associated with state sj whose outgoing edges lead to leaves. Alg. 1 trains the policy πnj over
the entire training set using (8). As (8) is a universally consistent algorithm, the πnj converges to the optimal policy as
the data grows:

lim
n→∞

Ex,y,∼D
[
C(x, y, sj , π

n
j (x))

]
→ inf{Ex,y,∼D

[
C(x, y, sj , π

∗
j (x))

]
|π∗j : X → S}

where the infimum is over any measurable function π∗j . As this infimum is over any measurable function, we point out
that this convergence holds for any realization x ∈ X

Ey∼D(x)

[
C(x, y, sj , π

n
j (x))|x

]
→ inf{Ey∼D(x)

[
C(x, y, sj , π

∗
j (x))|x

]
|π∗j : X → S}

where D(x) is the distribution of y conditioned on x. As the outgoing edges of node sj contain only leaves, other
policy functions πn1 , . . . , π

n
j−1, π

n
j+1, . . . , π

n
K do not affect the conditional distributionD(x). Instead, they only reduce

the support of X observed by πnj , and therefore πnj converges to the Bayes optimal function independent of the other
policy functions.

Alg. 1 updates the edge costs (costs-to-go) of edges directed to sj . These costs-to-go do not vary as we train new
policy functions in ancestor nodes of sj and these values can be viewed as fixed when training the next policy function,
πnk . The dependence on πnj is well captured when learning πnk . As πnj converges to the Bayes optimal function, the
costs-to-go converge to the Bayes optimal values, πnk is trained on the Bayes optimal costs-to-go as n→∞.

By recursion, this implies that every decision function is learned on costs-to-go approaching the Bayes optimal, and
therefore each function approaches the point-wise Bayesian optimal decision. Consequently, the learned system ap-
proaches the Bayesian optimal system.
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2 Proof of Lemma 3.1 and Theorem 3.2

For convenience, we repeat the subset optimization problem.

G =

N∑
i=1

max
j∈{1,...,t}

[
1fσj (xi)=yi

]
→ max

σ1,...,σt

1

N
G(c1, . . . , ct) such that:

t∑
j=1

|σj | ≤
B

δ
. (2)

Lemma 3.1 The objective of the maximization in (2) is submodular with respect to the set of subsets, such that adding
any new set to the reward yields diminishing returns.

Proof. This follows directly from the fact that maximization over a set of objects is a submodular function.

Theorem 3.2 Given that the empirical risk of each classifier fσk is submodular and monotonically decreasing w.r.t
the elements in σk and uniform costs among sensors, the strategy in Alg. 2 is an O(1) approximation of the optimal
reward in (2).

Proof. Consider adding a sensor k to any subset σj . By assumption, the empirical risk of each classifier is mono-
tonically decreasing and therefore the reward is monotonically increasing. Additionally, note that the reward for any
training point xi using σj is less than the reward from using σj ∪ k and therefore the objective is equal to the objective
without replacement of σj by σj ∪ k:

G(c1, . . . , cj−1, cj ∪ k, . . . , cK) = G(c1, . . . , cj , cj ∪ k, . . . , cK).

As a result, we can view adding a sensor to a subset as adding an entirely new subset without changing the objective
in (2). From the above lemma, adding a new subset results in a submodular function, and therefore the reward in
(2) is submodular with respect to adding sensors to each subset. Applying a greedy strategy therefore yields a 1 − 1

e
approximation of the optimal strategy [1].
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