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A IPM Definitions and Proofs

A.1 Definitions

Given a positive definite n× n matrix A, we define the norm ‖·‖A by

‖x‖A =
√
xTAx.

Given a twice differentiable function f with domain Df , which has positive definite Hessian H(x)
at some x ∈ Df , we define

‖y‖x = ‖y‖H(x) ,

and when M is a matrix, let ‖M‖x denote the corresponding induced matrix norm.

We let Bx(y, r) denote the open ball centered at y of radius r in the ‖·‖x norm.

Again, suppose f is a twice differentiable convex function with Hessian H , defined on a domain
Df . If for all x ∈ Df we have

Bx(x, 1) ⊆ Df ,

and for all y ∈ Bx(x, 1) and all v 6= 0 we have

1− ‖y − x‖x ≤
‖v‖y
‖v‖x

≤ 1

1− ‖y − x‖x
,

then we say the function is self-concordant. We denote the set of self-concordant functions by SC.
A key theorem about self-concordant functions is the following (Theorem 2.2.1 of Renegar [35]).
Theorem A.1. Suppose f is a twice differentiable function with Hessian H , defined on a domain
Df , and for all x ∈ Df we have

Bx(x, 1) ⊆ Df ,

Then f ∈ SC iff ∥∥H(x)−1H(y)
∥∥
x
,
∥∥H(x)−1H(y)

∥∥
x
≤ 1

(1− ‖y − x‖x)2
.

Also f ∈ SC iff∥∥I −H(x)−1H(y)
∥∥
x
,
∥∥I −H(x)−1H(y)

∥∥
x
≤ 1

(1− ‖y − x‖x)2
− 1.

∗Code from this work is available at https://github.com/sachdevasushant/Isotonic
†Part of this work was done when this author was a graduate student at Yale University.
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If f ∈ SC also satisfies supx∈Df ‖gx(x)‖2x <∞, we say that f is a self-concordant barrier function.
Given any θ(f) ≥ supx∈Df ‖gx(x)‖2x, we say θ(f) is a complexity parameter for f . We denote the
set of self-concordant barrier functions by SCB.

We need the following notion of symmetry. We state a definition that is equivalent to the definition
used by Renegar (Section 2.3.4 of [35]).
Definition A.2. Given a convex set S and a point x ∈ S, the symmetry of x w.r.t. S is defined as

sym(x, S) = inf
z∈∂S

inf

{
t > 0 : x+

(x− z)
t

∈ S
}
.

A.2 A Barrier Function for DK

Hertog et al. [34] proved the existence of self-concordant barrier functions for a class of domains
including ones capable of expressing program (3). The exact statement we wish to employ can be
found in lecture notes by Nemirovski [36].

Theorem A.3. For every pair of variables (x, t) ∈ IR2, and for every constant p ≥ 1, a self-
concordant barrier function f ∈ SCB exists for the domain

{(x, t) ∈ IR2 : |x|p ≤ t}.
This barrier function is given by

f(t, x) = − log(t2/p − x2)− 2 log t,

and has complexity parameter θ(f) ≤ 4.

We are now ready to introduce a number of barrier functions:

F (x, t) =

(∑
v∈V
− log

(
t(v)2/p − (x(v)− y(v))2

)
− 2 log t(v)

)
+

 ∑
(a,b)∈E

− log(x(b)− x(a))

 .

fK(x, t) = − log(K − 〈wp , t〉).
FK(x, t) = F (x, t) + fK(x, t).

(1)

Proof of Corollary 3.6: To prove the corollary, we need the standard fact that − log x is a self-
concordant barrier for the domain x ≥ 0 with complexity parameter 1, as shown in Renegar’s section
2.3.1 [35]. We also need standard results on composition of barrier functions (adding barriers and
composition with an affine function), as given by Renegar’s Theorems 2.2.6, 2.2.7, 2.3.1, and 2.3.2
[35]. Given these and Theorem A.3, the corollary follows immediately. �

A.3 Fast Solver for Approximate Hessian Inverse

Table 1: Algorithm HESSIANSOLVE ((G, y), (x, t), µ, a): Given a p-ISO instance (G, y), a
feasible point (x, t) of program, a vector a, outputs vector b.

1. u← 1
(K−〈1,t〉)1.

2. τ ← 1/50
3. M ← BLOCKSOLVE ((G, y), (x, t), µ, τ)
4. return RANKONEMORE (M,u, a)

Table 2: Algorithm BLOCKSOLVE ((G, y), (x, t), µ, τ)

1. Let r ← BT (x⊕ y).
2. For each v ∈ V , identify t(v̂, v) = t(v).
3. Compute R, T and C as given by equations (8), (7), and (9).
4. S ← QTB(R− CT−1CT )BTQ.
5. MS ← SDDSOLVE(S, µ, τ).
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6. Z ←
[

I 0
−QTCBT−1 I

]
.

7. Return a procedure that given vector a returns vector

b← ZT
[
T−1 0

0 MS

]
Za.

Table 3: Algorithm RANKONEMORE(M,u, a): Given a linear operator M , a vector u, and a
vector a, outputs vector b.

1. w = Mu.
2. z = Ma.
3. Return

b = z − wTa

1 + uTw
w.

We introduce an extended graph Ĝ = (V ∪ V̂ , E ∪ Ê), which includes our original vertex set V ,
and a second vertex set

V̂ = {v̂ : v ∈ V } .
We define an additional set of edges

Ê = {(v̂, v) : v ∈ V }

Given vectors t ∈ IRÊ and r ∈ IRE∪Ê , we define a function

h(r, t) =

∑
e∈Ê

− log(t(e)2/p − r(e)2)− 2 log t(e)

+

(∑
e∈E
− log(r(e))

)
.

We associate with Ĝ a matrix B known as the signed edge-vertex incidence matrix. B has rows
indexed by the set V ∪ V̂ , and columns indexed by the set E ∪ Ê. It is given by

B(a, e) =


1 if e = (a, b) ∈ E ∪ Ê for some b ∈ V ∪ V̂
−1 if e = (a, b) ∈ E ∪ Ê for some b ∈ V ∪ V̂
0 otherwise.

Now, we define a vector x⊕ y ∈ IRV ∪V̂ by

(x⊕ y)(u) =

{
x(u) for u ∈ V
y(v) where v̂ = u and u ∈ V̂

Note that
∣∣∣Ê∣∣∣ = |V |. Abusing notation, we identify the vector t ∈ IRÊ with the vector t ∈ IRV by

equating t(v̂, v) = t(v). We then get

F (x, t) = h(BT (x⊕ y), t).

We compute the Hessian Hh of h(r, t) in variables r and t. The Hessian can be expressed as a block
matrix

Hh =

[
T CT

C R

]
,

where T contains derivatives in two coordinates of t, whileR contains derivatives in two coordinates
in r, and C has the cross-terms. T and R are square diagonal matrices, and C is not generally
square, but has non-zero entries on the principal diagonal. In fact, the only thing we will need about
the explicit forms of these matrices is that they are efficiently computable. For completeness, we
state them:

T (e, e) =

(
2
p t(e)

−1+2/p

t(e)2/p − r(e)2

)2

−
(

2

p
− 1

)(
2

p

)
t(e)−2+2/p

t(e)2/p − r(e)2
+

2

t(e)2
, where e ∈ Ê (2)
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and

R(e, e) =

{(
2r(e)

t(e)2/p−r(e)2

)2

+ 2
t(e)2/p−r(e)2 for e ∈ Ê

1/r(e)2 for e ∈ E,
(3)

while

C(e, e) = −4

p

t(e)−1+2/pr(e)

(t(e)2/p − r(e)2)2
where e ∈ Ê. (4)

Finally, let Q denote the
∣∣∣V ∪ V̂ ∣∣∣ × |V | projection matrix which maps x to (x ⊕ 0). It is a matrix

with non-zeroes only on the principal diagonal:

Q(v, v) =

{
1 for v ∈ V
0 otherwise.

To prove Theorem 3.7, we will need three results: The first is a theorem on fast SDD solvers proven
by Koutis et al. [30].
Theorem A.4. Given an n × n SDD matrix X with m non-zero entries, an error probability µ,
and an error parameter τ , with probability ≥ 1− µ the procedure SDDSOLVE(X,µ, τ) returns an
(implicitly represented) symmetric linear operator M satisfying

(1− τ)X−1 �M � (1 + τ)X−1.

SDDSOLVE(X,µ, τ) runs in time Õ(m log n log(1/µ) log(1/τ)), andM can be applied to a vector
in time Õ(m log n log(1/µ) log(1/τ)) as well.
Lemma A.5. Suppose X is a positive definite matrix, and τ ∈ [0, 1/5) is an error parameter, and
we are given a symmetric linear operator M satisfying

(1− τ)X−1 �M � (1 + τ)X−1,

and suppose we are given a vector u ∈ IRn. Then RANKONEMORE(M,u, a) acts as a linear
operator on a and returns a vector b = Za for a symmetric matrix Z satisfying

(1− 5τ)(X + uuT )−1 � Z � (1 + 5τ)(X + uuT )−1.

If M can be applied in time TM , then RANKONEMORE runs in time O(TM + n).
Lemma A.6. For any instance of program (5) given by some (G, y), at any point z ∈ DK ,
given an error probability µ, and an error parameter τ , with probability ≥ 1 − µ the procedure
BLOCKSOLVE(X,µ, τ) returns an (implicitly represented) symmetric linear operator M satisfying

(1− τ)HF (z)−1 �M � (1 + τ)HF (z)−1.

BLOCKSOLVE(X,µ, τ) runs in time Õ(m log n log(1/µ) log(1/τ)), and M can be applied to a
vector in time
Õ(m log n log(1/µ) log(1/τ)) as well.

We prove Lemmas A.6 and A.5 at the end of this section.

Proof of Theorem 3.7: By Lemma A.6, BLOCKSOLVE ((G, y), (x, t), µ, 1/50) returns an implic-
itly represented linear operator M satisfying(

1− 1

50

)
HF ((x, t))−1 �M �

(
1 +

1

50

)
HF ((x, t))−1.

This M satisfies the requirements of M in Lemma A.5 with X = HF ((x, t)) and τ = 1/50. With
u = 1

(K−〈1,t〉)1, where HF (x, t) + uuT = HFK (x, t), we get that RANKONEMORE (M,u, a)

returns a vector Za, for a symmetric matrix Z satisfying

9

10
HFK (x, t)−1 � Z � 11

10
HFK (x, t)−1.

The total running time is Õ(m log n log(1/µ)), as the running time of BLOCKSOLVE dominates.
The algorithms fails only if BLOCKSOLVE fails, which happens with probability < µ. �
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Proof of Lemma A.6: Note T is a diagonal matrix, so that its inverse can be computed in linear
time.

Using standard facts about the Hessian under function composition, we can express the Hessian of
F as

HF =

[
I 0
0 QTB

] [
T CT

C R

] [
I 0
0 BTQ

]
=

[
T CTBTQ

QTBC QTBRBTQ.

]
A block-wise LDU decomposition of HF gives

HF =

[
I 0

QTBCT−1 I

] [
T 0
0 S

] [
I T−1CTBTQ
0 I

]
.

Where the matrix

S = QTBRBTQ−QTBCT−1CTBTQ = QTB(R− CT−1CT )BTQ

is the Schur-complement of T in Hf̄ . Now, R − CT−1CT is the Schur-complement of T in H .
A standard result about Schur complements states that H is positive definite if and only if both T
and R − CT−1CT are positive definite. We know that H is positive definite, and consequently
R − CT−1CT is too. But R − CT−1CT is a diagonal matrix, and so every entry must be strictly
positive. This implies that B(R − CT−1CT )BT is a Laplacian matrix. The matrix has O(m)
non-zero entries. Since S = QTB(R−CT−1CT )BTQ is a principal minor of a Laplacian matrix,
it is positive definite and SDD. Because S is PD and SDD, by Theorem A.4, using SDDSOLVE we
can compute an (implicitly represented) approximate inverse matrix MS that satisfies

(1− τ)S−1 �MS � (1 + τ)S−1. (5)

in time Õ(m log n log 1
µ log 1

τ ). This call may fail with a probability < µ. The matrix MS can be

applied in time Õ(m log n log 1
µ log 1

τ ).

A block-wise inversion of the Hessian gives

H−1
F =

[
I −T−1CTBTQ
0 I

] [
T−1 0

0 S−1

] [
I 0

−QTCBT−1 I

]
. (6)

We define

M =

[
I −T−1CTBTQ
0 I

] [
T−1 0

0 MS

] [
I 0

−QTCBT−1 I

]
. (7)

By equations (10) and (11), and the fact that for all matrices W , X � Y implies WXWT �
WYWT , it follows that

(1− τ)H−1
F �M � (1 + τ)H−1

F .

We observe that the output of BLOCKSOLVE ((G, y), (x, t), µ, τ) is a procedure which applies
M . We require a constant number of linear time matrix operations (inversion of a diagonal ma-
trix, multiplication of a vector with matrix), and one call to SDDSOLVE, which runs in time
Õ(m log n log 1

µ log 1
τ ). This call dominates the running time of BLOCKSOLVE. The call to SDD-

SOLVE may fail with a probability < µ, and in that case BLOCKSOLVE also fails. �

Proof of Lemma A.5: From our assumptions about M and the computation in RANKONEMORE,
it follows that

b = Za.

for some

Z = M − MuuTM

1 + uTMuT
,

where τ = δ
5 < 1/5 and

(1− τ)X−1 �M � (1 + τ)X−1.
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Thus, RANKONEMORE acts as a linear operator on a, and it is symmetric. Suppose Y = X +uuT ,
then by the Sherman-Morrison formula,

Y −1 = X−1 − X−1uuTX−1

1 + uTX−1u
.

We can restate the spectral inequalities for M as M = X−1 + E, for some symmetric matrix E
with

−τX−1 � E � τX−1.

We want to show that
(1− δ)Y −1 � Z � (1 + δ)Y −1,

where δ = 5τ .

First observe that for any vector v,

vTY −1v = vTX−1v−v
TX−1uuTX−1v

1 + uTX−1u
=

vTX−1v

1 + uTX−1u
+

(vTX−1v)(uTX−1u)− (uTX−1v)2

1 + uTX−1u
,

where in the latter expression, both terms are non-negative. Similarly

vTZv = vTMv − vTMuuTMv

1 + uTMu
=

vTMv

1 + uTMu
+

(vTMv)(uTMu)− (uTMv)2

1 + uTMu
,

and again in the final expression, both terms are non-negative. We state two claims that help prove
the main lemma.

Claim A.7. ∣∣∣∣ 1

1 + uTMu
− 1

1 + uTX−1u

∣∣∣∣ ≤ τ

1− τ
· 1

1 + uTX−1u
.

Claim A.8. ∣∣(vTX−1v)(uTX−1u)− (vTX−1u)2 −
(
(vTMv)(uTMu)− (vTMu)2

)∣∣
≤ 2(τ + τ2)

(
(vTX−1v)(uTX−1u)− (vTX−1u)2

)
.

We also make frequent use of the fact that 1+uTMu ≥ 1+(1−τ)uTX−1u ≥ (1−τ)(1+uTX−1u).
Thus

∣∣vTZv − vTY −1v
∣∣ ≤ ∣∣∣∣vTMv − vTX−1v

1 + uTMu

∣∣∣∣+ vTX−1v ·
∣∣∣∣ 1

1 + uTMu
− 1

1 + uTX−1u

∣∣∣∣
+

∣∣∣∣ (vTMv)(uTMu)− (uTMv)2 − (vTX−1v)(uTX−1u)− (uTX−1v)2

1 + uTMu

∣∣∣∣
+
(
(vTX−1v)(uTX−1u)− (uTX−1v)2

) ∣∣∣∣ 1

1 + uTMu
− 1

1 + uTA−1u

∣∣∣∣
≤ 2τ

1− τ
· vTX−1v

1 + uTX−1u
+

3τ + 2τ2

1− τ
· (vTX−1v)(uTX−1u)− (uTX−1v)2

1 + uTX−1u

≤ 3τ + 2τ2

1− τ
vTY −1v.

≤ 5τ · vTY −1v.

�

Proof of Claim A.7:∣∣∣∣ 1

1 + uTMu
− 1

1 + uTX−1u

∣∣∣∣ =

∣∣∣∣ uTEu

(1 + uTMu)(1 + uTX−1u)

∣∣∣∣
6



≤ 1

1 + uTMu
· τuTX−1u

1 + uTX−1u

≤ τ

1− τ
· 1

1 + uTX−1u
.

�

Proof of Claim A.8: Let

v = αv̂ where v̂X−1v̂ = 1,

u = βû where ûX−1û = 1.

Also let û = γv̂ +
√

1− γ2ŵ, where ŵX−1v̂ = 0. Now

1 = ûX−1û = γ2 + (1− γ2)ŵX−1ŵ,

so ŵX−1ŵ = 1. Thus

(vTX−1v)(uTX−1u)− (vTX−1u)2 = α2β2(1− γ2). (8)

And

(vTMv)(uTMu)− (vTMu)2 = α2β2
[
v̂TMv̂(γv̂ +

√
1− γ2ŵ)TM(γv̂ +

√
1− γ2)ŵ)

−
(
v̂TM(γv̂ +

√
1− γ2ŵ)

)2
]

= α2β2(1− γ2)
[
(v̂TMv̂)(ŵTMŵ)− (v̂TMŵ)2

]
= α2β2(1− γ2)

[
(1 + v̂TEv̂)(1 + ŵTEŵ)− (v̂TEŵ)2

]
.

Thus∣∣(vTX−1v)(uTX−1u) − (vTX−1u)2 −
(
(vTMv)(uTMu)− (vTMu)2

)∣∣
= α2β2(1− γ2)

∣∣1− ((1 + v̂TEv̂)(1 + ŵTEŵ)− (v̂TEŵ)2
)∣∣

= α2β2(1− γ2)
∣∣v̂TEv̂ + ŵTEŵ + (ŵTEŵ)(v̂TEv̂)− (v̂TEŵ)2

∣∣
≤ α2β2(1− γ2)2(τ + τ2).

To establish the final inequality, we used that
∥∥X1/2EX1/2

∥∥ ≤ τ , and hence∣∣v̂TEŵ∣∣ ≤ τ ∣∣v̂TX−1ŵ
∣∣ ≤ τ.

Combined with Equation (13), this proves the claim. �

A.4 Starting Point

Table 4: Algorithm GOODSTART: Given an instance (G, y), outputs feasible starting point
(x0, t0).

1. Use a linear time DFS to compute a topological sort on G to order vertices in a se-
quence (v1, . . . , vn), s.t. for every edge (vi, vj), i < j.

2. for i← 1, . . . , n :
x0(vi)← i/n.

3. for i← 1, . . . , n :
t0(vi)← |x0(vi)− y(vi)|p + 1.

We prove the following claim, which in turn will help us prove Lemmas 3.4 and 3.5.
Claim A.9. Let (x0, t0) be the point returned by GOODSTART. For every vertex v,

0 ≤ x0(v) ≤ 1.

Proof. Follows immediately from the GOODSTART algorithm.
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Proof of Lemma 3.4: First we consider another program minimizing a linear objective over a
convex domain.

min
x,t

〈wp , t〉

s.t. (x, t) ∈ DG ∩ (IG × IRV )
(9)

Let OPTlin denote the optimal value of program (14). The value OPTlin is attained only when
t(v) = |x(v)− y(v)|p for every vertex v, and when this holds, the program is exactly identical
to program (3). Hence OPTlin = OPTp-ISO.

Now observe that the point (x0, t0) computed GOODSTART is feasible for program (14). This is
true because the topological sort ensures that for every edges (a, b), the indices ia and ib assigned to
vertices a and b satisfy ia < ib and hence x(b) − x(a) = 1

n (ia − ib) > 0. Meanwhile, the assign-
ment t0(vi) = |x0(vi)− y(vi)|p + 1 ensures that constraints on t are not violated. By Claim A.9,
〈wp , t0〉 ≤ 2nwp

max < K = 3nwp
max. Hence (x0, t0) is also feasible for program (5). Thus, the

domain DK is non-empty, as (x0, t0) is contained in it. Let (x∗, t∗) be a feasible, optimal point for
program (14), then clearly 〈wp , t∗〉 ≤ 〈wp , t0〉 < K, so this point is feasible for program (5), and
thus OPTbnd ≤ OPTlin = OPTp-ISO. And, as program (14) is a relaxation of program (5), it follows
that OPTbnd ≥ OPTlin = OPTp-ISO. Thus OPTbnd = OPTp-ISO.

Finally, DK is bounded, because for each vertex v, 0 ≤ t(v) ≤ K, and y(v) − K1/p ≤ x(v) ≤
y(v) +K1/p. �

Proof of Lemma 3.5: Recall that

sym(z,DK) = inf
q∈∂DK

inf

{
s > 0 : z +

(z − q)
s

∈ DK
}
.

Hence for any norm ‖·‖

sym(p,DK) ≥ infq∈∂DK ‖q − p‖
supr∈∂DK ‖r − p‖

.

We use a norm given by ‖(x, t)‖ = ‖x‖∞ + ‖t‖∞. By giving upper and lower bounds on the
distance from (x0, t0) to the boundary of DK in this norm, we can lower bound the symmetry of
this point.

max
(t,x)∈∂DK

‖(x− x0, t− t0)‖ = max
(t,x)∈∂DK

‖x− x0‖∞ + ‖t− t0‖∞

≤ 2 ·K1/p +K ≤ 6nwp
max.

because for each vertex v, we have 0 ≤ t(v) ≤ K, and y(v)−K1/p ≤ x(v) ≤ y(v) +K1/p.

For every point (x, t) on the boundary of DK , we lower bound the minimum distance to
‖(x− x0, t− t0)‖ by considering several conditions:

1. The value constraint 〈1, t〉 ≤ K is active, i.e. 〈1, t〉 = K.

2. x(a) = x(b) for some edge (a, b) ∈ E.

3. |x(a)− y(a)|p = t(a) for some v ∈ V .

At least one of the above conditions must hold for (x, t) to be on the boundary ofDK . We will show
that each condition individually is sufficient to lower bound the distance to (x0, t0).

Condition 1: 〈1, t〉 = K. Then

‖(x− x0, t− t0)‖ ≥ ‖t− t0‖∞ ≥
1

n
‖t− t0‖1 ≥

1

n
(‖t‖1 − ‖t0‖1) ≥ 1

n
(K − 2n) ≥ wp

max.

Condition 2: x(a) = x(b) = γ for some edge (a, b) ∈ E. Then

‖(x− x0, t− t0)‖ ≥ ‖x− x0‖∞

8



≥ 1

2
(|x(b)− x0(b)|+ |x(a)− x0(a)|)

=
1

2
(|γ − x0(b)|+ |γ − x0(a)|)

≥ 1

2
(|x0(b)− x0(a)|) ≥ 1

2n
.

Condition 3: |x(a)− y(a)| = t(a)1/p for some a ∈ V . We consider two cases. First case is when
‖t− t0‖∞ ≥ 1/2. This immediately implies ‖(x− x0, t− t0)‖ ≥ 1/2.

In the second case is when ‖t− t0‖∞ < 1/2. We write x(a) = x0(a) + ∆.

|∆ + x0(a)− y(a)|p = t(a) ≥ t0(v)− ‖t− t0‖∞
≥ 1/2 + |x0(a)− y(a)|p

As p ≥ 1, the growth rate of |∆ + x0(a)− y(a)|p is largest when |x0(a)− y(a)| is maximized
and as x0, y ∈ [0, 1], we get |x0(a)− y(a)| = 1, and hence |∆| is minimized in this case. Thus
||∆|+ 1|p ≥ 1/2 + 1 = 3/2. Consequently,

|∆| ≥
(

3

2

)1/p

− 1 = exp

[
log(3/2)

p

]
− 1 ≥ log(3/2)

p
≥ 1

3p
.

Thus,

sym((x0, t0),DK) ≥ min(1/(3p), 1/(2n))

6n
≥ 1

18n2pwp
max

.

�

A.5 Primal Path Following IPM with Approximate Hessian Inverse

Table 5: Algorithm ISOTONICIPM:

Run APPROXIPM with:
Objective vector c = (0,wp) s.t. (0,wp)T (x, t) =

∑
v∈V wp(v)t(v).

Gradient function g = gFK .
Hessian function M = HESSIANSOLVE with µ = 1/n3.
Complexity parameter θ(f) = θ(FK) = O(m).
Symmetry lower bound s = 1

18n2pwp
max
.

Value upper bound K = 3nwp
max.

Error parameter ε = δ
K .

Starting point (x0, t0) given by GOODSTART(G, y).
APPROXIPM outputs (xapx, tapx).
Return xapx.

Table 6: Algorithm APPROXIPM: Given an objective vector c ∈ IRn, a gradient function
g : IRn → IRn, a Hessian function M : IRn × IRn → IRn, a complexity parameter θ(f), a
feasible starting point x0, a symmetry lower bound s > 0, a value upper bound K ≥ 0, and an
error parameter ε > 0, outputs a vector xapx.

1. x← x0.
2. ρ← 1.
3. T1 ← 20

√
θ(f) log (30θ(f)(1 + 1/s)).

4. for i← 1, . . . , T1 :

5. ρ← ρ ·
(

1− 1

20
√
θ(f)

)
6. z ← −ρg(x0) + g(x)
7. x← x−M(x, z)

8. α←
√
cTM(x, c)

9. η ← 1
50α

10. z ← ηc+ g(x)
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11. x← x−M(x, z)

12. T2 ← 20
√
θ(f) log

(
66θ(f)
ε

)
.

13. for i← 1, . . . , T2 :

14. η ← η ·
(

1 + 1

20
√
θ(f)

)
15. z ← ηc+ g(x)
16. x← x−M(x, z)
17. return xapx ← x.

In this section we prove Theorem 3.2. We start by proving a central lemma shows that approximate
Newton steps are sufficient to ensure convergence of our primal path following IPM.

The rest of this section is a matter of connecting this statement with Renegar’s primal following
machinery.
Lemma A.10. Assume f ∈ SC and is defined on a domain D. If δ =

∥∥H(x)−1g(x)
∥∥
H(x)

≤ 1
2 ,

τ < 1, and
(1− τ)H(x)−1 �M � (1 + τ)H(x)−1.

then taking x+ = x−Mg(x) will ensure both that x+ ∈ D and∥∥H(x+)−1g(x+)
∥∥
H(x+)

≤ 1

1− (1 + τ)δ

(
τδ +

((1 + τ)δ)2

1− (1 + τ)δ

)
.

Proof. For brevity write Hx = H(x). Firstly,

‖x+ − x‖Hx = ‖Mg(x)‖Hx ≤ (1 + τ)
∥∥Hx

−1g(x)
∥∥
Hx

= (1 + τ)δ < 1,

which guarantees feasibility of x+. Further,

‖I −MHx‖2Hx = max
‖y‖Hx=1

yT (I −HxM)Hx(I −MHx)y

= max
‖y‖Hx=1

yTHx
1/2(I −Hx

1/2MHx
1/2)(I −Hx

1/2MHx
1/2)Hx

1/2y

= max
‖y‖Hx=1

yTHx
1/2(I −Hx

1/2MHx
1/2)2Hx

1/2y

≤ max
‖y‖Hx=1

τ2yTHxy = τ2

Then∥∥Hx
−1g(x)−Mg(x)

∥∥
Hx

=
∥∥(I −MHx)Hx

−1g(x)
∥∥
Hx
≤ ‖I −MHx‖Hx

∥∥Hx
−1g(x)

∥∥
Hx

≤ τ
∥∥Hx

−1g(x)
∥∥
Hx

.

Now,

Hx
−1g(x+) = Hx

−1g(x) +

∫ 1

0

Hx
−1H(x+ t(x+ − x))(x+ − x) dt

= (Hx
−1g(x)−Mg(x)) +Mg(x) +

∫ 1

0

Hx
−1H(x+ t(x+ − x)) (x+ − x) dt

= (Hx
−1g(x)−Mg(x)) +

∫ 1

0

[
I −Hx

−1H(x+ t(x+ − x))
]
Mg(x) dt

Thus, using Theorem A.1∥∥Hx
−1g(x+)

∥∥
Hx
≤
∥∥Hx

−1g(x)−Mg(x)
∥∥
Hx

+

∥∥∥∥∫ 1

0

[
I −Hx

−1H(x+ t(x+ − x))
]
Mg(x) dt

∥∥∥∥
Hx
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≤ τ
∥∥Hx

−1g(x)
∥∥
Hx

+

∫ 1

0

∥∥I −Hx
−1H(x+ t(x+ − x))

∥∥
Hx

dt ‖Mg(x)‖Hx

≤ τδ + (1 + τ)δ

∫ 1

0

∥∥I −Hx
−1H(x+ t(x+ − x))

∥∥
Hx

dt

≤ τδ + (1 + τ)δ

∫ 1

0

1

(1− t(1 + τ)δ)2
− 1 dt

≤ τδ +
((1 + τ)δ)2

1− (1 + τ)δ
.

Finally, we can use the self-concordance of f to get∥∥H(x+)−1g(x+)
∥∥
H(x+)

≤ 1

1− ‖x+ − x‖Hx

∥∥Hx
−1g(x+)

∥∥
Hx

≤ 1

1− (1 + τ)δ

(
τδ +

((1 + τ)δ)2

1− (1 + τ)δ

)
.

For completeness, we now restate several results from a textbook by Renegar [35].

Definition A.11. Consider a function f ∈ SC with bounded domain Df . Let Df be the closure of
the domain. Given an objective vector c, we define the associated minimization problem as

min
x

〈c, x〉

subject to x ∈ Df ,
(10)

and, we define the associated η-minimization problem as

min
x

η 〈c, x〉+ f(x)

subject to x ∈ Df .
(11)

For each η, let z(η) ∈ Df denote an optimum of the η-minimization problem.

Using this definition, we can state two lemmas, which are proven by Renegar, and appear equations
(2.13) and (2.14) in [35].

Lemma A.12. Given a function f ∈ SC with bounded domain Df and an objective vector c, let
OPT denote the value of the associated minimization problem. Then for any η > 0 and any x ∈ Df∥∥H(x)−1c

∥∥
x
≤ 〈c, x〉 − OPT.

Lemma A.13. Given a function f ∈ SCB with bounded domain Df and an objective vector c, let
OPT denote the value of the associated minimization problem. Then for any η > 0 and any x ∈ Df

〈c, x〉 − OPT ≤ 1

η
θ(f)(1 + ‖x− z(η)‖z(η)),

where z(η) is an optimum of the associated η-minimization problem.

The following is a restricted form of Renegar’s Theorem 2.2.5 [35].

Lemma A.14. Assume f ∈ SC. If δ =
∥∥H(x)−1g(x)

∥∥
x
≤ 1/4 for some x ∈ Df , then f has a

minimizer z and

‖z − x‖x ≤ δ +
3δ2

(1− δ)3
.

The next lemma appears in Renegar [35] as Proposition 2.3.7:
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Lemma A.15. Assume f ∈ SCB. For all x, y ∈ Df ,∥∥H(y)−1g(x)
∥∥
y
≤
(

1 +
1

sym(x,Df )

)
θ(f).

Proof of Theorem 3.2: Given a vector v, and γ > 0, let fv,γ(x) = f(x) + γ 〈v, x〉. Let

nv,γ(x) = H(x)−1 (g(x) + γv) = gx(x) + γH(x)−1v.

Now, for any γ1 and γ2

nv,γ2(x) =
γ2

γ1
nv,γ1(x) +

(
γ2

γ1
− 1

)
gx(x).

Thus

‖nv,γ2(x)‖x ≤
γ2

γ1
‖nv,γ1(x)‖x +

∣∣∣∣γ2

γ1
− 1

∣∣∣∣√θ(f).

Observe that for any γ, the HessianH(x) of f is also the Hessian of fγ . Consequently, we have fγ ∈
SC because f ∈ SCB. Thus by Lemma A.10 applied to the function fv,γ , if δ = ‖nv,γ(x)‖H(x) ≤
1
2 , τ < 1, and

(1− τ)H(x)−1 �M � (1 + τ)H(x)−1,

then for x+ = x−M (g(x) + γv), we have x+ ∈ Dfv,γ = Df and

‖nv,γ(x+)‖x+
=
∥∥H(x+)−1(g(x+) + γ2v)

∥∥
H(x+)

≤ 1

1− (1 + τ)δ

(
τδ +

((1 + τ)δ)2

1− (1 + τ)δ

)
.

(12)
Suppose we start with

‖nv,γ1(x)‖x ≤ 1/9,

And take

γ2 =

(
1 +

1

20
√
θ(f)

)
γ1.

Then using θ(f) ≥ 1, we find
‖nv,γ2(x)‖x ≤ 1/6.

For τ = 1/10, letting x+ = x−M (g(x) + γ2v), we get

‖nv,γ2(x+)‖x+
=
∥∥H(x+)−1(g(x+) + γ2v)

∥∥
H(x+)

≤ 1

1− 11/60

(
1/60 +

(11/60)2

1− 11/60

)
< 1/9.

Similarly, if we take

γ2 =

(
1− 1

20
√
θ(f)

)
γ1.

then
‖nv,γ2(x)‖x ≤ 1/6.

So again, taking x+ = x−M (g(x) + γ2v) gives

‖nv,γ2(x+)‖x+
=
∥∥H(x+)−1(g(x+) + γ2v)

∥∥
H(x+)

≤ 1

1− 11/60

(
1/60 +

(11/60)2

1− 11/60

)
< 1/9.

With these observations in mind, we are ready to prove the correctness of the APPROXIPM algo-
rithm.

We refer to the for loop in step 7 as phase 1 of the algorithm. In phase 1, we take v1 = −g(x0), so

nv1,ρ(x) = H(x)−1 (g(x)− ρg(x0)) .

Initially, as x = x0, so as ρ = 1, we ‖nv1,ρ(x)‖x = 0 ≤ 1/9. Thus, by our observations on
decreasing γ, we find that after each iteration of the for loop, we get ‖nv1,ρ(x)‖x ≤ 1/9, and after
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the ith iteration of the for loop, we get ρ ≤
(

1− 1

20
√
θ(f)

)i
. When the for loop completes, we thus

have

ρ ≤

(
1− 1

20
√
θ(f)

)20
√
θ(f) log(30θ(f)(1+1/s))

≤ 1

30θ(f)(1 + 1/s)
.

Hence, for the x obtained at the end of phase 1, by applying Lemma A.15 and our symmetry lower
bound s, we get∥∥H(x)−1g(x)

∥∥
x

=
∥∥ρH(x)−1g(x0) + nv1,ρ(x)

∥∥
x

≤ ρ
∥∥H(x)−1g(x0)

∥∥
x

+ ‖nv1,ρ(x)‖x
≤ ρθ(f)(1 + 1/s) + 1/9 ≤ 1/30 + 1/9 = 13/90.

We refer to steps 12 and 16 as phase 2. In phase 2, we consider

nc,η(x) = H(x)−1 (g(x) + ηc) .

Using
√
cTMc ≥

√
9
10c

TH(x)−1c ≥ 9
10

∥∥H(x)−1c
∥∥
x

, we get that at the start of step 12,

‖nc,η(x)‖ =
∥∥ηH(x)−1c+H(x)−1g(x)

∥∥
x

≤ η
∥∥H(x)−1c

∥∥
x

+
∥∥H(x)−1g(x)

∥∥
x

≤ 1

45
+ 13/90 = 1/6.

Hence, at the end of step 12, we get ‖nc,η(x)‖x ≤ 1/9. Thus, at the end of each iteration of the for
loop in step 16, we also get ‖nc,η(x)‖x ≤ 1/9.

So once the loop completes, using
√
cTMc ≤ 11

10

∥∥H(x)−1c
∥∥
x

, and that by Lemma A.12∥∥H(x)−1c
∥∥
x
≤ K − OPT, we have

η ≥ 1

55 ‖H(x)−1c‖x

(
1 +

1

20
√
θ(f)

)20
√
θ(f) log( 66θ(f)

ε )

≥ 6θ(f)

5ε(K − OPT)
.

Now from ‖nc,η(x)‖x ≤ 1/9 and Lemma A.14 applied to fc,η , we get that ‖x− z(η)‖x ≤ 1/9 +

3(1/9)2/(1−1/9)3 ≤ 1/6, and by the self-concordance of f , ‖x− z(η)‖z(η) ≤ (1/6)/(1−1/6) =

1/5. Then by Lemma A.13 applied to f , we have

〈c, x〉 − OPT ≤ θ(f)

η
(1 + ‖x− z(η)‖z(η)) ≤ ε · (K − OPT).

�

B Inf and Lex minimization on DAGs

In this section, we show that given a partially labeled DAG (G, v0), we can find an inf-minimizer in
O(m) time and a lex-minimizer in O(mn) time.

Notations and Convention. We assume that G = (V,E, len) is a DAG and the vertex set is
denoted by V = {1, 2, ..., n}. We further assume that the vertices are topologically sorted. A
topological sorting of the vertices can be computed by a well-known algorithm in O(m) time. This
means that if (i, j) ∈ E, then i < j. len : E → R≥0 denotes non-negative edge lengths. For all
x, y ∈ V , by dist(x, y), we mean the length of the shortest directed path from x to y. It is set to∞
when no such path exists.

A path P in G is an ordered sequence of (distinct) vertices P = (x0, x1, . . . , xk), such that
(xi−1, xi) ∈ E for i ∈ [k]. For notational convenience, we also refer to repeated pairs (x, x) as
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paths. The endpoints of P are denoted by ∂0P = x0, ∂1P = xk. The set of interior vertices of P
is defined to be int(P ) = {xi : 0 < i < k}. For 0 ≤ i < j ≤ k, we use the notation P [xi : xj ] to
denote the subpath (xi, . . . , xj). The length of P is len(P ) =

∑k
i=1 len(xi−1, xi).

A function v0 : V → R ∪ {∗} is called a labeling (of G). A vertex x ∈ V is a terminal with
respect to v0 iff v0(x) 6= ∗. The other vertices, for which v0(x) = ∗, are non-terminals. We let
T (v0) denote the set of terminals with respect to v0. If T (v0) = V, we call v0 a complete labeling
(of G). We say that an assignment v : V → R ∪ {∗} extends v0 if v(x) = v0(x) for all x such that
v0(x) 6= ∗.
Given a labeling v0 : V → R ∪ {∗}, and two terminals x, y ∈ T (v0) for which (x, y) ∈ E, we
define the gradient on (x, y) due to v0 to be

grad+
G[v0](x, y) = max

{
v0(x)− v0(y)

len(x, y)
, 0

}
.

Here and wherever applicable, we follow the convention 0
0 = 0, 0 · ∞ = 0 and finite number

∞ = 0.

When v0 is a complete labeling, we interpret grad+
G[v0] as a vector in Rm, with one entry for each

edge.

A graph G along with a labeling v of G is called a partially-labeled graph, denoted (G, v). We say
that a partially-labeled graph (G, v0) is a well-posed instance if for every vertex x ∈ V , either there
is a path from x to a terminal t ∈ T (v0) or there is a path from a terminal t ∈ T (v0) to x. We note
that instances arising from isotonic regression problem are well-posed instances and in fact satisfy
a stronger condition. Every vertex lies on a terminal-terminal path.

A path P in a partially-labeled graph (G, v0) is called a terminal path if both endpoints are termi-
nals. We define ∇+P (v0) to be its gradient:

∇+P (v0) = max

{
v0(∂0P )− v0(∂1P )

len(P )
, 0

}
.

If P contains no terminal-terminal edges (and hence, contains at least one non-terminal), it is a free
terminal path.

Lex-Minimization. An instance of the LEX-MINIMIZATION problem is described by a partially-
labeled graph (G, v0). The objective is to compute a complete labeling v : VG → R extending v0 that
lex-minimizes grad+

G[v]. We refer to such a labeling as a lex-minimizer. Note that if T (v0) = VG,
then trivially, v0 is a lex-minimizer.
Definition B.1. A steepest fixable path in an instance (G, v0) is a free terminal path P that has the
largest gradient∇+P (v0) amongst such paths.

Observe that if P is a steepest fixable path with∇+P (v0) > 0 then P must be a simple path.
Definition B.2. Given a steepest fixable path P in an instance (G, v0),we define fixG[v0, P ] : VG →
R ∪ {∗} to be the labeling given by

fixG[v0, P ](x) =

{
v0(∂0P )−∇+P (v0) · lenG(P [∂0P : x]) x ∈ int(P ) \ T (v0),

v0(x) otherwise.

We say that the vertices x ∈ int(P ) are fixed by the operation fix[v0, P ]. If we define v1 =
fixG[v0, P ], where P = (x0, . . . , xr) is the steepest fixable path in (G, v0), then it is easy to ar-
gue that for every i ∈ [r], we have grad[v1](xi−1, xi) = ∇+P.

B.1 Sketch of the Algorithms

We now sketch the ideas behind our algorithms and give precise statements of our results. A full
description of all the algorithms is included in the appendix.

We define the pressure of a vertex to be the gradient of the steepest terminal path through it:

pressure[v0](x) = max{∇+P (v0) | P is a terminal path in (G, v0) and x ∈ P}.
Observe that in a graph with no terminal-terminal edges, a free terminal path is a steepest fixable
path iff its gradient is equal to the highest pressure amongst all vertices. Moreover, vertices that
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lie on steepest fixable paths are exactly the vertices with the highest pressure. For a given α ≥
0, in order to identify vertices with pressure exceeding α, we compute vectors vHigh[α](x) and
vLow[α](x) defined as follows in terms of dist, the metric on V induced by `:

vLow[α](x) = min
t∈T (v0)

{v0(t) + α · dist(x, t)} vHigh[α](x) = max
t∈T (v0)

{v0(t)− α · dist(t, x)}.

Later in this section, we show how to find a steepest fixable path in expected time O(m) for DAGs
using the notion of pressure, and prove the following theorem about the STEEPESTPATH algorithm
(Algorithm 13).
Theorem B.3. Given a well-posed instance (G, v0), STEEPESTPATH(G, v0) returns a steepest ter-
minal path in O(m) expected time.

By repeatedly finding and fixing steepest fixable paths, we can compute a lex-minimizer. Theorem
3.3 in [32] gives an algorithm MetaLex that computes lex-minimizers given an algorithm for finding
a steepest fixable path in (G, v0). Though the theorem is proven for undirected graphs, the same
holds for directed graphs as long as the steepest path has gradient > 0.

We state Theorem 5.2 from [32]:
Theorem B.4. Given a well-posed instance (G, v0) on a directed graph G, let v1 be the partial
voltage assignment extending v0 obtained by repeatedly fixing steepest fixable (directed) paths P
with ∇P > 0. Then, any lex-minimizer of (G, v0) must extend v1. Moreover, every v that extends
v1 is a lex-minimizer of (G, v0) if and only if for every edge e ∈ EG \ (T (v1) × T (v1)), we have
grad+[v](e) = 0.

When the gradient of the steepest fixable path is equal to 0, there may be more than one lex-
minimizing assignment to the remaining non-terminals. But we can still label all the remaining
vertices in O(m) time by a two stage algorithm so that all the new gradients are zero, and thus by
the above theorem we get a lex-minimizer.
Lemma B.5. Given a well-posed instance (G, v0),with T (v0) 6= VG whose steepest fixable path has
gradient 0, Algorithm AssignWithZeroGradient(G, v0) runs in time O(m) and returns a complete
labeling v that extends v0 and has grad+[v](e) = 0 for every e ∈ EG \ (T (v0)× T (v0)).

Proof. Consider a well-posed instance (G, v0), with T (v0) 6= VG whose steepest fixable path has
gradient 0. In the first stage, AssignWithZeroGradientlabels all the vertices x such that there is a
path from some terminal t ∈ T to x. We label x with the label of the highest labeled terminal from
which there is a path to x. This is the least possible label we can assign to x in order to not create
any positive gradient edges. If this procedure creates any positive gradient edges, then it would
imply that the the steepest path gradient was not 0 to begin with, which we know is false. Hence,
this creates only 0 gradient edges. The steepest fixable path has zero gradient since after stage one,
none of the unlabeled vertices lie on a terminal-terminal path. In the second stage, we label all the
remaining vertices. An unlabeled vertex x is now labeled with the label of the least labeled terminal
to which there is a path from x. It is again easy to see that this does not create any edges with positive
gradient. The routine AssignWithZeroGradient (Algorithm 15) achieves this in O(m) time.

On the basis of these results, we can prove the correctness and running time bounds for the COM-
PLEXMIN algorithm (Algorithm 14) for computing a lex-minimizer.
Theorem B.6. Given a well-posed instance (G, v0), COMPLEXMIN(G, v0) outputs a lex-minimizer
whose steepest fixable path has gradient 0, v of (G, v0). The algorithm runs in expected time
O(mn).

B.1.1 Lex-minimization on Star Graphs

We first consider the problem of computing the lex-minimizer on a star graph in which every vertex
but the center is a terminal. This special case is a subroutine in the general algorithm, and also
motivates some of our techniques.

Let x be the center vertex, T = L t R be the set of terminals, and all edges be of the form (x, t) if
t ∈ R and (t, x) if t ∈ L. The initial labeling is given by v : T → R, and we abbreviate dist(x, t)
by d(t) = len(x, t) if t ∈ R and dist(t, x) by d(t) = len(t, x) if t ∈ L.
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From Theorem B.4 we know that we can determine the value of the lex minimizer at x by finding a
steepest fixable path. By definition, we need to find t1 ∈ L, t2 ∈ R that maximize the gradient of
the path from t1 to t2, ∇+(t1, t2) = max

{
v(t1)−v(t2)
d(t2)+d(t2) , 0

}
. As observed above, this is equivalent

to finding a terminal with the highest pressure. We now present a simple randomized algorithm for
this problem that runs in expected linear time.

Theorem B.7. Given a pair of terminal sets (L,R), an initial labeling v : (L t R) → R, and
distances d : L t R → R≥0, STARSTEEPESTPATH(T, v, d) returns (t1, t2) with t1 ∈ L, t2 ∈ R

maximizing v(t1)−v(t2)
d(t1)+d(t2) , and runs in expected time O(|L tR|).

Proof. The algorithm is described in Algorithm 17 (named STARSTEEPESTPATH). Given a terminal
t1 ∈ L (or t2 ∈ R), we can compute its pressure α along with the terminal t2 such that either
∇+(t1, t2) = α in time O(|T |) by scanning over the terminals in R (or terminals in L). Now
sample a random terminal t1 ∈ L, and a random terminal t2 ∈ R. Let α1 be the pressure of t1 and
α2 be the pressure of t2, and set α = max{α1, α2}. We will show that in linear time one can then
find the subset of terminals T ′ = L′ t R′ such that L′ ⊂ L,R′ ⊂ R whose pressure is greater than
α. Assuming this, we complete the analysis of the algorithm. If L′ = ∅ (or R′ = ∅), t1 (or t2) is a
vertex with highest pressure. Hence the path from t1 to t3 (or t4 to t2) is a steepest fixable path, and
we return (t1, t3) (or (t4, t2)). If neither L′ 6= ∅ nor R′ 6= ∅ the terminal with the highest pressure
must be in T ′, and we recurse by picking a new random t1 ∈ L′ and t2 ∈ R′. As the size of T ′ will
halve in expectation at each iteration, the expected time of the algorithm on the star is O(|T |).

To determine which terminals have pressure exceeding α, we observe that the condition ∃t2 ∈ R :

α < ∇+(t1, t2) = v(t1)−v(t2)
d(t1)+d(t2) , is equivalent to ∃t2 ∈ R : v(t2) +αd(t2) < v(t1)−αd(t1). This, in

turn, is equivalent to vLow[α](x) < v(t1) − αd(t1). We can compute vLow[α](x) in deterministic
O(|T |) time. Similarly, we can check if ∃t2 ∈ L : α < ∇+(t2, t1) by checking if vHigh[α](x) >
v(t1)+αd(t1). Thus, in linear time, we can compute the set T ′ of terminals with pressure exceeding
α.

B.1.2 Lex-minimization on General Graphs

In this section we describe and prove the correctness of the algorithm STEEPESTPATH which finds
the steepest fixable path in (G, v0) in O(m) expected time.

Theorem B.8. For a well-posed instance (G, v0) and a gradient value α ≥ 0, MODDIJKSTRA
computes in time O(m) a complete labeling v and an array parent : V → V ∪ {null} such that,
∀x ∈ VG, v(x) = mint∈T (v0){v0(t) + αdist(t, x)}. Moreover, the pointer array parent satisfies
∀x /∈ T (v0) such that parent(x) 6= null, v(x) = v(parent(x)) + α · len(parent(x), x).

As in the algorithm for the star graph, we need to identify the vertices whose pressure exceeds a given
α. For a fixed α, we can compute vLow[α](x) and vHigh[α](x) for all x ∈ VG using topological
ordering in O(m) time. We describe the algorithms COMPVHIGH, COMPVLOW for these tasks in
Algorithms 9 and 10.

Corollary B.9. For a well-posed instance (G, v0) and a gradient value α ≥ 0,
let (vLow[α], LParent) ← COMPVLOW(G, v0, α) and (vHigh[α],HParent) ←
COMPVHIGH(G, v0, α). Then, vLow[α], vHigh[α] are complete labeling of G such that, ∀x ∈ VG,

vLow[α](x) = min
t∈T (v0)

{v0(t) + α · dist(x, t)} vHigh[α](x) = max
t∈T (v0)

{v0(t)− α · dist(t, x)}.

Moreover, the pointer arrays LParent,HParent satisfy ∀x /∈ T (v0), LParent(x),HParent(x) 6= null
and

vLow[α](x) = vLow[α](LParent(x)) + α · dist(x, LParent(x)),

vHigh[α](x) = vHigh[α](HParent(x))− α · dist(HParent(x), x).

The following lemma encapsulates the usefulness of vLow and vHigh.

Lemma B.10. For every x ∈ VG, pressure[v0](x) > α iff vHigh[α](x) > vLow[α](x).
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Proof of Lemma B.10:
vHigh[α](x) > vLow[α](x)

is equivalent to
max
t∈T (v0)

{v0(t)− α · dist(t, x)} > min
t∈T (v0)

{v0(t) + α · dist(x, t)},

which implies that there exists terminals s, t ∈ T (v0) such that
v0(t)− α · dist(t, x) > v0(s) + α · dist(x, s)

thus,

pressure[v0](x) ≥ v0(t)− v0(s)

dist(t, x) + dist(x, s)
> α.

So the inequality on vHigh and vLow implies that pressure is strictly greater than α. On the other
hand, if pressure[v0](x) > α, there exists terminals s, t ∈ T (v0) such that

v0(t)− v0(s)

dist(t, x) + dist(x, s)
= pressure[v0](x) > α.

Hence,
v0(t)− α · dist(t, x) > v0(s) + α · dist(x, s)

which implies vHigh[α](x) > vLow[α](x). �

It immediately follows from Lemma B.10 and Corollary B.9 that the algorithm COMPHIGH-
PRESSGRAPH described in Algorithm 12 computes the vertex induced subgraph on the vertex set
{x ∈ VG| pressure[v0](x) > α}, which proves the corollary stated below.
Corollary B.11. For a well-posed instance (G, v0) and a gradient value α ≥ 0,
COMPHIGHPRESSGRAPH(G, v0, α) outputs a minimal induced subgraph G′ of G where every ver-
tex x has pressure[v0](x) > α.

We now describe an algorithm VERTEXSTEEPESTPATH that finds a terminal path P through any
vertex x such that∇+P (v0) = pressure[v0](x) in expected O(m) time.
Theorem B.12. Given a well-posed instance (G, v0), and a vertex x ∈ VG,
VERTEXSTEEPESTPATH(G, v0, x) returns a terminal path P through x such that
∇+P (v0) = pressure[v0](x) in O(m) expected time.

We can combine these algorithms into an algorithm STEEPESTPATH that finds the steepest fixable
path in (G, v0) in O(m) expected time. We may assume that there are no terminal-terminal edges
in G. We sample an edge (x1, x2) uniformly at random from EG, and a terminal x3 uniformly
at random from VG. For i = 1, 2, 3, we compute the steepest terminal path Pi containing xi. By
Theorem B.12, this can be done in O(m) expected time. Let α be the largest gradient maxi∇+Pi.
As mentioned above, we can identifyG′, the induced subgraph on vertices xwith pressure exceeding
α, in O(m) time. If G′ is empty, we know that the path Pi with largest gradient is a steepest fixable
path. If not, a steepest fixable path in (G, v0) must be in G′, and hence we can recurse on G′. Since
we picked a uniformly random edge, and a uniformly random vertex, the expected size of G′ is at
most half that ofG. Thus, we obtain an expected running time ofO(m). This algorithm is described
in detail in Algorithm 13.

B.1.3 Linear-time Algorithm for Inf-minimization

Given the algorithms in the previous section, it is straightforward to construct an infinity minimizer.
Let α? be the gradient of the steepest terminal path. From Lemma 3.5 in [32] , we know that the
norm of the inf minimizer is α?. Considering all trivial terminal paths (terminal-terminal edges), and
using STEEPESTPATH, we can compute α? in randomized O(m) time. It is well known ([37, 38])
that v1 = vLow[α?] and v2 = vHigh[α?] are inf-minimizers. One slight issue occurs when a vertex
x does not lie on a terminal-terminal path. In such a case, one of vLow[α?](x) or vLow[α?](x)
will not be finite. But the routine AssignWithZeroGradient described earlier can be used to fix the
values of such vertices. It is also known that 1

2 (v1 + v2) is the inf-minimizer that minimizes the
maximum `∞-norm distance to all inf-minimizers. For completeness, the algorithm is presented as
Algorithm 11, and we have the following result.
Theorem B.13. Given a well-posed instance (G, v0), COMPINFMIN(G, v0) returns a complete
labeling v of G extending v0 that minimizes

∥∥grad+[v]
∥∥
∞ , and runs in O(m) expected time.
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B.2 Algorithms

Table 7: MODDIJKSTRA(G, v0, α): Given a well-posed instance (G, v0), a gradient value
α ≥ 0, outputs a complete labeling v of G, and an array parent : V → V ∪ {null}.

1. for i = 1 to n
2. if v0(i) 6= ∗ then set v(i) = +∞ else set v(i) = v0(i)
3. parent(i)← null.
4. for i = 1 to n
5. for j > i : (i, j) ∈ EG
6. if v(j) > v(i) + α · len(i, j)
7. Decrease v(j) to v(i) + α · len(i, j).
8. parent(j)← i.
9. return (v, parent)

Table 8: Algorithm COMPVLOW(G, v0, α): Given a well-posed instance (G, v0), a gradient
value α ≥ 0, outputs vLow, a complete labeling forG, and an array LParent : V → V ∪{null}.

1. (vLow, LParent)← MODDIJKSTRA(G, v0, α)

2. return (vLow, LParent)

Table 9: Algorithm COMPVHIGH(G, v0, α): Given a well-posed instance (G, v0), a gradient
valueα ≥ 0, outputs vHigh, a complete labeling forG, and an array HParent : V → V ∪{null}.

1. Let G1 denote the graph G with all edges reversed in direction.
2. for x ∈ VG
3. if x ∈ T (v0) then v1(x)← −v0(x) else v1(x)← v1(x).
4. (temp,HParent)← MODDIJKSTRA(G1, v1, α)
5. for x ∈ VG1 : vHigh(x)← −temp(x)
6. return (vHigh,HParent)

Table 10: Algorithm COMPINFMIN(G, v0): Given a well-posed instance (G, v0), outputs a
complete labeling v for G, extending v0 that minimizes

∥∥grad+[v]
∥∥
∞.

1. α← max{grad+[v0](e) | e ∈ EG ∩ (T (v0)× T (v0))}.
2. EG ← EG \ (T (v0)× T (v0))
3. P ←STEEPESTPATH(G, v0).
4. α← max{α,∇+P (v0)}
5. (vLow, LParent)← COMPVLOW(G, v0, α)
6. (vHigh,HParent)← COMPVHIGH(G, v0, α)
7. for x ∈ VG
8. if x ∈ T (v0)
9. then v(x)← v0(x)

10. else if {vLow(x), vHigh(x)} ∩ {∞,−∞} = ∅ then v(x) ← 1
2 · (vLow(x) +

vHigh(x)).
11. else v(x)← ∗
12. v ← AssignWithZeroGradient(G, v)
13. return v

Table 11: Algorithm COMPHIGHPRESSGRAPH(G, v0, α): Given a well-posed instance
(G, v0), a gradient value α ≥ 0, outputs a minimal induced subgraph G′ of G where every
vertex has pressure[v0](·) > α.

1. (vLow, LParent)← COMPVLOW(G, v0, α)
2. (vHigh,HParent)← COMPVHIGH(G, v0, α)
3. VG′ ← {x ∈ VG | vHigh(x) > vLow(x) }
4. EG′ ← {(x, y) ∈ EG | x, y ∈ VG′}.
5. G′ ← (V ′, E′, len)
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6. return G′

Table 12: Algorithm STEEPESTPATH(G, v0): Given a well-posed instance (G, v0), with
T (v0) 6= VG, outputs a steepest free terminal path P in (G, v0).

1. Sample uniformly random e ∈ EG. Let e = (x1, x2).
2. Sample uniformly random x3 ∈ VG.
3. for i = 1 to 3
4. P ← VERTEXSTEEPESTPATH(G, v0, xi)
5. Let j ∈ arg maxj∈{1,2,3}∇+Pj(v0)

6. G′ ← COMPHIGHPRESSGRAPH(G, v0,∇+Pj(v0))
7. if EG′ = ∅,
8. then return Pj
9. else return STEEPESTPATH(G′, v0|VG′ )

Table 13: Algorithm COMPLEXMIN(G, v0): Given a well-posed instance (G, v0), outputs a
lex-minimizer v of (G, v0).

1. while T (v0) 6= VG
2. EG ← EG \ (T (v0)× T (v0))
3. P ← STEEPESTPATH(G, v0)
4. if ∇+P = 0 then v0 ← AssignWithZeroGradient(G, v0)
5. else v0 ← fix[v0, P ]
6. return v0

Table 14: Algorithm AssignWithZeroGradient(G, v0): Given a well-posed instance (G, v0),
with T (v0) 6= VG, outputs a complete labeling v0.

1. T ← T (v0)
2. for i = 1 to n : v0(i) 6= ∗
3. for j > i : (i, j) ∈ EG
4. if v0(j) < v0(i) or v0(j) = ∗
5. v0(j)← v0(i)
6. T ← T (v0)
7. for i = n to 1 : v0(i) 6= ∗
8. for j < i : (j, i) ∈ EG and j /∈ T
9. if v0(j) > v0(i) or v0(j) = ∗

10. v0(j)← v0(i)
11. return v0

Table 15: Algorithm VERTEXSTEEPESTPATH(G, v0, x): Given a well-posed instance (G, v0),
and a vertex x ∈ VG, outputs a steepest terminal path in (G, v0) through x.

1. Let L := {i ∈ T (v0)| there is a path from i to x} and R := {i ∈
T (v0)| there is a path from x to i}

2. if L = ∅ or R = ∅ then return (x, x)
3. Compute dist(t, x) for all t ∈ L and dist(x, t) for all t ∈ R
4. if x ∈ T (v0)

5. y1 ← arg maxy∈R
v0(x)−v0(y)

dist(x,y) ; y2 ← arg maxy∈L
v0(y)−v0(x)

dist(y,x)

6. if v0(x)−v0(y1)
dist(x,y1) ≥ v0(y2)−v0(x)

dist(y2,x)

7. then return a shortest path from x to y1

8. else return a shortest path from y2 to x
9. else

10. for t ∈ L ∪R,
11. if t ∈ L then d(t)← dist(t, x) else d(t)← dist(x, t)
12. (t1, t2)← STARSTEEPESTPATH(L,R, v0|L∪R, d)
13. Let P1 be a shortest path from t1 to x. Let P2 be a shortest path from x to t2.
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14. P ← (P1, P2). return P.

Table 16: STARSTEEPESTPATH(L,R, v, d): Returns the steepest path in a star graph, with a
single non-terminal connected to terminals in T, with lengths given by d, and labels given by
v.

1. Sample t1 uniformly and randomly from L and t2 uniformly and randomly from R

2. Compute t3 ∈ arg maxt∈R
v(t1)−v(t)
d(t1)+d(t) and t4 ∈ arg maxt∈L

v(t)−v(t2)
d(t2)+d(t)

3. α← max
{
v(t1)−v(t3)
d(t1)+d(t3) ,

v(t4)−v(t2)
d(t4)+d(t2)

}
4. Compute vlow ← mint∈R(v(t) + α · d(t))
5. L′ ← {t ∈ L | v(t) > vlow + α · d(t)}
6. Compute vhigh ← maxt∈L(v(t)− α · d(t))
7. R′ ← {t ∈ R | v(t) < vhigh − α · d(t)}
8. if L′ ∪R′ = ∅ then return (t1, t2)
9. else return STARSTEEPESTPATH(L′, R′, v|L′∪R′ , dL′∪R′)
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