
Supplementary Material

Appendix A: Details for the FWBQ and FWLSBQ Algorithms

A high-level pseudo-code description for the Frank-Wolfe Bayesian Quadrature (FWBQ) algorithm
is provided below.

Algorithm 1 The Frank-Wolfe Bayesian Quadrature (FWBQ) Algorithm
Require: function f , reproducing kernel k, initial point x0 ∈ X .

1: Compute design points
{
xFW
i

}n
i=1

using the FW algorithm (Alg. 1).
2: Compute associated weights

{
wBQ
i

}n
i=1

using BQ (Eqn. 4).
3: Compute the posterior mean p̂FWBQ[f], i.e. the quadrature rule with

{
xFW
i , wBQ

i

}n
i=1

.
4: Compute the posterior variance vBQ

(
{xFW

i }ni=1

)
using BQ (Eqn. 5).

5: Return the full posterior N
(
p̂FWBQ, vBQ({xFW

i }ni=1)
)

for the integral p[f].

Frank-Wolfe Line-Search Bayesian Quadrature (FWLSBQ) is simply obtained by substituting the
Frank-Wolfe algorithm with the Frank-Wolfe Line-Search algorithm. In this appendix, we derive
all of the expressions necessary to implement both the FW and FWLS algorithms (for quadrature)
in practice. All of the other steps can be derived from the relevant equations as highlighted in
Algorithm 1 above.

The FW/FWLS are both initialised by the user choosing a design point xFW
1 . This can be done either

at random or by choosing a location which is known to have high probability mass under p(x). The
first approximation to µp is therefore given by g1 = k(·, xFW

1). The algorithm then loops over the
next three steps to obtain new design points {xFW

i }ni=2:

Step 1) Obtaining the new Frank-Wolfe design points xFW
i+1.

At iteration i, the step consists of choosing the point x̄FW
i . Let {w(i)

l }
i−1
l=1 denote the Frank-Wolfe

weights assigned to each of the previous design points {xFW
l }

i−1
l=1 at this new iteration, given that

we choose x as our new design point. The choice of new design point is done by computing the
derivative of the objective function J(gi−1) and finding the point x∗ which minimises the inner
product:

arg ming∈G
〈
g, (DJ)(gi−1)

〉
× (1)

To do so, we need to obtain an equivalent expression of the minimisation of the linearisation of J
(denotedDJ) in terms of kernel values and evaluations of the mean element µp. Since minimisation
of a linear function can be restricted to extreme points of the domain, we have that

arg ming∈G
〈
g, (DJ)(gi−1)

〉
× = arg minx∈X

〈
Φ(x), (DJ)(gi−1)

〉
×. (2)

Then using the definition of J we have:

arg minx∈X
〈
Φ(x), (DJ)(gi−1)

〉
× = arg minx∈X

〈
Φ(x), gi−1 − µp

〉
H, (3)

where 〈
Φ(x), gi−1 − µp

〉
H =

〈
Φ(x),

i−1∑
l=1

w
(i−1)
l Φ(xl)− µp

〉
H

=

i−1∑
i=1

w
(i−1)
l

〈
Φ(x),Φ(xl)

〉
H −

〈
Φ(x), µp

〉
H

=

i−1∑
l=1

w
(i−1)
l k(x, xl)− µp(x).

(4)

Our new design point xFW
i is therefore the point x∗ which minimises this expression. Note that this

equation may not be convex and may require us to make use of approximate methods to find the

1

minimum x∗. To do so, we sampleM points (whereM is large) independently from the distribution
p and pick the sample which minimises the expression above. From [5] this introduces an additive
error term of size O(M−1/4), which does not impact our convergence analysis provided that M(n)
vanishes sufficiently quickly. In all experiments we tookM between 10, 000 and 50, 000 so that this
error will be negligible.

It is important to note that sampling from p(x) is likely to not be the best solution to optimising this
expression. One may, for example, be better off using any other optimisation method which does not
require convexity (for example, Bayesian Optimization). However, we have used sampling as the
result from [5] discussed above allows us to have a theoretical upper bound on the error introduced.

Step 2) Computing the Step-Sizes and Weights for the Frank-Wolfe and Frank-Wolfe Line-Search
Algorithms.

Computing the weights {w(i)
l }nl=1 assigned by the FW/FWLS algorithms to each of the design points

is obtained using the equation:

w
(i)
l =

i∏
j=l+1

(
1− ρj−1

)
ρl−1 (5)

Clearly, this expression depends on the choice of step-sizes {ρl}il=1. In the case of the standard
Frank-Wolfe algorithm, this step-size sequence is a an input from the algorithm and so computing
the weights is straightforward. However, in the case of the Frank-Wolfe Line-Search algorithm, the
choice of step-size is optimized at each iteration so that gi minimises J the most.

In the case of computing integrals, this optimization step can actually be obtained analytically. This
analytic expression will be given in terms of values of the kernel values and evaluations of the mean
element.

First, from the definition of J

J
(
(1− ρ)gi−1 + ρΦ(xi)

)
=

1

2

〈
(1− ρ)gi−1 + ρΦ(xi)− µp, (1− ρ)gi−1 + ρΦ(xi)− µp

〉
H

=
1

2

[
(1− ρ)2

〈
gi−1, gi−1

〉
H + 2(1− ρ)ρ

〈
gi−1,Φ(xi)

〉
H

+ 2ρ2
〈
Φ(xi),Φ(xi)

〉
H − 2(1− ρ)

〈
gi−1, µp

〉
H

− 2ρ
〈
Φ(xi), µp

〉
H +

〈
µp, µp

〉
H

]
.

(6)

Taking the derivative of this expression with respect to ρ, we get:

∂J
(
(1− ρ)gi−1 + ρΦ(xi)

)
∂ρ

=
1

2

[
− 2(1− ρ)

〈
gi−1, gi−1

〉
H + 2(1− 2ρ)

〈
gi−1,Φ(xi)

〉
H

+ 2ρ
〈
Φ(xi),Φ(xi)

〉
H + 2

〈
gi−1, µp

〉
H − 2

〈
Φ(xi), µp

〉
H

]
= ρ

[〈
gi−1, gi−1

〉
H − 2

〈
gi−1,Φ(xi)

〉
H +

〈
Φ(xi),Φ(xi)

〉
H

= ρ
∥∥gi−1 − Φ(xi)

∥∥2
H −

〈
gi−1 − Φ(xi), gi−1 − µp

〉
H.

(7)

Setting this derivative to zero gives us the following optimum:

ρ∗ =

〈
gi−1 − µp, gi−1 − Φ(xi)

〉
H∥∥∥gi−1 − Φ(xi)

∥∥∥2
H

. (8)

Clearly, differentiating a second time with respect to ρ gives ‖gi−1−Φ(xi)‖2H, which is non-negative
and so ρ∗ is a minimum. One can show using geometrical arguments about the marginal polytope
M that ρ∗ will be in [0, 1] [4].

2

The numerator of this line-search expression is〈
gi−1 − µp, gi−1 − Φ(xi)

〉
H

=
〈
gi−1, gi−1

〉
H −

〈
µp, gi−1

〉
H −

i−1∑
l=1

w
(i−1)
l k(xl, xi) + µp(xi)

=

i−1∑
l=1

i−1∑
m=1

w
(i−1)
l w(i−1)

m k(xl, xm)−
i−1∑
l=1

w
(i−1)
l

[
k(xl, xi) + µp(xl)

]
+ µp(xi).

(9)

Similarly the denominator is∥∥gi−1 − Φ(xi)
∥∥2
H =

〈
gi−1 − Φ(xi), gi−1 − Φ(xi)

〉
H

=
〈
gi−1, gi−1

〉
H − 2

〈
gi−1,Φ(xi)

〉
H +

〈
Φ(xi),Φ(xi)

〉
H

=

i−1∑
l=1

i−1∑
m=1

w
(i−1)
l w(i−1)

m k(xl, xm)− 2

i−1∑
l=1

w
(i−1)
l k(xl, xi) + k(xi, xi).

(10)

Clearly all expressions provided here can be vectorised for efficient computational implementation.

Step 3) Computing a new approximation of the mean element.

The final step consists of updating the approximation of the mean element, which can be done
directly by setting:

gi = (1− ρi)gi−1 + ρiḡi (11)

Appendix B: Proofs of Theorems and Corollaries

Theorem (Consistency). The posterior mean p̂FWBQ[f] converges to the true integral p[f] at the
following rates:∣∣∣p[f]− p̂FWBQ[f]

∣∣∣ ≤ MMD
(
{xi, wi}ni=1

)
≤

{
2D2

R n−1 for FWBQ√
2D exp(− R2

2D2n) for FWLSBQ

where the FWBQ uses step-size ρi = 1/(i+1),D ∈ (0,∞) is the diameter of the marginal polytope
M and R ∈ (0,∞) gives the radius of the smallest ball of center µp included inM.

Proof. The posterior mean in BQ is a Bayes estimator and so the MMD takes a minimax form [3].
In particular, the BQ weights perform no worse than the FW weights:

MMD
({
xFW
i , wBQ

i

}n
i=1

)
= inf

w∈Rn
MMD

({
xFW
i , wi

}n
i=1

)
≤ MMD

({
xFW
i , wFW

i

}n
i=1

)
. (12)

Now, the values attained by the objective function J along the path {gi}ni=1 determined by the
FW(/FWLS) algorithm can be expressed in terms of the MMD as follows:

J(gn) =
1

2

∥∥µ̂FW − µp
∥∥2
H =

1

2
MMD2

({
xFW
i , wFW

i

}n
i=1

)
. (13)

Combining (12) and (13) gives∣∣∣p[f]− p̂FWBQ[f]
∣∣∣ ≤ MMD

({
xFW
i , wBQ

i

}n
i=1

)∥∥f∥∥H ≤ 21/2J1/2(gn), (14)

since ‖f‖H ≤ 1. To complete the proof we leverage recent analysis of the FW algorithm with steps
ρi = 1/(n+ 1) and the FWLS algorithm. Specifically, from [2, Prop. 1] we have that:

J(gn) ≤
{

2D4

R2 n
−2 for FW with step size ρi = 1/(i+ 1)

D2 exp(−R2n/D2) for FWLS
(15)

whereD is the diameter of the marginal polytopeM andR is the radius of the smallest ball centered
at µp included inM.

3

Theorem (Contraction). Let S ⊆ R be an open neighbourhood of the true integral p[f] and let
γ = infr∈SC |r− p[f]| > 0. Then the posterior probability mass on Sc = R \ S vanishes at a rate:

prob(Sc) ≤

2
√
2D2

√
πRγ

n−1 exp
(
− γ2R2

8D4 n
2
)

for FWBQ, ρi = 1/(i+ 1)

2D√
πγ

exp
(
− R2

2D2n− γ2

2
√
2D

exp
(
R2

2D2n
))

for FWLSBQ

where D ∈ (0,∞) is the diameter of the marginal polytopeM and R ∈ (0,∞) gives the radius of
the smallest ball of center µp included inM.

Proof. We will obtain the posterior contraction rates of interest using the bounds on the MMD
provided in the proof of Theorem 1. Given an open neighbourhood S ⊆ R of p[f], we have that
the complement Sc = R \ S is closed in R. We assume without loss of generality that Sc 6= ∅,
since the posterior mass on Sc is trivially zero when Sc = ∅. Since Sc is closed, the distance γ =
infr∈Sc

∣∣r−p[f]
∣∣ > 0 is strictly positive. Denote the posterior distribution byN (mn, σ

2
n) where we

have that mn := p̂FWBQ[f] where p̂FWBQ =
∑n
i=1 w

BQ
i δ(xFW

i) and σn := MMD({xFW
i , wBQ

i }ni=1).
Directly from the supremum definition of the MMD we have:∣∣∣p[f]−mn

∣∣∣ ≤ σn∥∥f∥∥H. (16)

Now the posterior probability mass on Sc is given by

Mn =

∫
Sc

φ(r|mn, σn)dr, (17)

where φ(r|mn, σn) is the p.d.f. of the posterior normal distribution. By the definition of γ we get
the upper bound:

Mn ≤
∫ p[f]−γ

−∞
φ(r|mn, σn)dr +

∫ ∞
p[f]+γ

φ(r|mn, σn)dr (18)

= 1 + Φ
(p[f]−mn

σn︸ ︷︷ ︸
(∗)

− γ

σn

)
− Φ

(p[f]−mn

σn︸ ︷︷ ︸
(∗)

+
γ

σn

)
. (19)

From (16) we have that the terms (∗) are bounded by ‖f‖H ≤ 1 <∞ as σn → 0, so that asymptot-
ically we have:

Mn . 1 + Φ
(
− γ/σn

)
− Φ

(
γ/σn

)
(20)

= erfc
(
γ/
√

2σn
)
∼
(√

2σn/
√
πγ
)

exp
(
− γ2/2σ2

n

)
. (21)

Finally we may substitute the asymptotic results derived in the proof of Theorem 1 for the MMD σn
into (21) to complete the proof.

Corollary. The consistency and contraction rates obtained for FWLSBQ apply also to OBQ.

Proof. By definition, OBQ chooses samples that globally minimise the MMD and we can hence
bound this quantity from above by the MMD of FWLSBQ:

MMD
({
xOBQ
i , wBQ

i

}n
i=1

)
= inf
{xi}ni=1∈X

MMD
({
xi, w

BQ
i

}n
i=1

)
≤ MMD

({
xFW
i , wBQ

i

}n
i=1

)
. (22)

Consistency and contraction follow from inserting this inequality into the above proofs.

Appendix C: Computing the Mean Element for the Simulation Study

We compute an expression for µp(x) =
∫∞
−∞ k(x, x′)p(x′)dx′ in the case where k is an

exponentiated-quadratic kernel with length scale hyper-parameter σ:

k
(
x, x′

)
:= λ2 exp

(−∑d
i=1(xi − x′i)2

2σ2

)
= λ2(

√
2πσ)dφ

(
x
∣∣x′,Σσ), (23)

4

where Σσ is a d-dimensional diagonal matrix with entries σ2, and where p(x) is a mixture of d-
dimensional Gaussian distributions:

p(x) =

L∑
l=1

ρl φ
(
x
∣∣µl,Σl). (24)

(Note that, in this section only, xi denotes the ith component of the vector x.) Using properties of
Gaussian distributions (see Appendix A.2 of [8]) we obtain

µp(x) =

∫ ∞
−∞

k(x, x′)p(x′)dx′

=

∫ ∞
−∞

λ2(
√

2πσ)dφ
(
x′
∣∣x,Σσ)× (L∑

l=1

ρl φ
(
x′
∣∣µl,Σl))dx′

= λ2(
√

2πσ)d
L∑
l=1

ρl

∫ ∞
−∞

φ
(
x′
∣∣x,Σσ)× φ(x′∣∣µl,Σl)dx′

= λ2(
√

2πσ)d
L∑
l=1

ρl

∫ ∞
−∞

a−1l φ
(
x′
∣∣cl, Cl)dx′

= λ2(
√

2πσ)d
L∑
l=1

ρla
−1
l .

(25)

where we have:

a−1l = (2π)−
d
2

∣∣Σσ + Σl
∣∣− 1

2 exp
(
− 1

2

(
x− µl

)T (
Σσ + Σl

)−1(
x− µl

))
. (26)

This last expression is in fact itself a Gaussian distribution with probability density function
φ(x|µl,Σl + Σσ) and we hence obtain:

µp(x) := λ2
(√

2πσ
)d L∑

l=1

ρl φ
(
x|µl,Σl + Σσ

)
. (27)

Finally, we once again use properties of Gaussians to obtain∫ ∞
−∞

µp(x)p(x)dx =

∫ ∞
−∞

[
λ2
(√

2πσ
)d L∑

l=1

ρl φ
(
x|µl,Σl + Σσ

)]
×
[L∑
m=1

ρm φ
(
x
∣∣µm,Σm)]dx

= λ2
(√

2πσ
)d L∑

l=1

L∑
m=1

ρlρm

∫ ∞
−∞

φ
(
x|µl,Σl + Σσ

)
φ
(
x
∣∣µm,Σm)dx

= λ2
(√

2πσ
)d L∑

l=1

L∑
m=1

ρlρma
−1
lm

= λ2
(√

2πσ
)d L∑

l=1

L∑
m=1

ρlρmφ
(
µl|µm,Σl + Σm + Σσ

)
.

(28)

Other combinations of kernel k and density p that give rise to an analytic mean element can be found
in the references of [1].

Appendix D: Details of the Application to Proteomics Data

Description of the Model Choice Problem

The ‘CheMA’ methodology described in [6] contains several elements that we do not attempt to
reproduce in full here; in particular we do not attempt to provide a detailed motivation for the
mathematical forms presented below, as this requires elements from molecular chemistry. For our

5

present purposes it will be sufficient to define the statistical models {Mi}mi=1 and to clearly specify
the integration problems that are to be solved. We refer the reader to [6] and the accompanying
supplementary materials for a full biological background.

Denote by D the dataset containing normalised measured expression levels yS(tj) and y∗S(tj) for,
respectively, the unphosphorylated and phosphorylated forms of a protein of interest (‘substrate’) in
a longitudinal experiment at time tj . In addition D contains normalised measured expression levels
y∗Ei

(tj) for a set of possible regulator kinases (‘enzymes’, here phosphorylated proteins) that we
denote by {Ei}.
An important scientific goal is to identify the roles of enzymes (or ‘kinases’) in protein signaling;
in this case the problem takes the form of variable selection and we are interested to discover which
enzymes must be included in a model for regulation of the substrate S. Specifically, a candidate
model Mi specifies which enzymes in the set {Ei} are regulators of the substrate S, for example
M3 = {E2, E4}. Following [6] we consider models containing at most two enzymes, as well as the
model containing no enzymes.

Given a dataset D and model Mi, we can write down a likelihood function as follows:

L(θi,Mi) =

N∏
n=1

φ

y∗S(tn+1)− y∗S(tn)

tn+1 − tn

∣∣∣∣∣∣− V0y
∗
S(tn)

y∗S(tn) +K0
+
∑

Ej∈Mi

Vjy
∗
Ej

(tn)yS(tn)

yS(tn) +Kj
, σ2

err

 . (29)

Here the model parameters are θi = {K,V, σerr}, where (K)j = Kj , (V)j = Vj , φ is the normal
p.d.f. and the mathematical forms arise from the Michaelis-Menten theory of enzyme kinetics. The
Vj are known as ‘maximum reaction rates’ and theKj are known as ‘Michaelis-Menten parameters’.
This is classical chemical notation, not to be confused with the kernel matrix from the main text. The
final parameter σerr defines the error magnitude for this ‘approximate gradient-matching’ statistical
model.

The prior specification proposed in [6] and followed here is

K ∼ φT
(
K
∣∣1, 2−1I

)
, (30)

σerr|K ∼ p(σerr) ∝ 1/σerr, (31)

V|K, σ ∼ φT
(
V
∣∣1, Nσ2

err

(
X(K)TX(K)

)−1)
, (32)

where φT denotes a Gaussian distribution, truncated so that its support is [0,∞) (since kinetic
parameters cannot be non-negative). Here X(K) is the design matrix associated with the linear
regression that is obtained by treating the K as known constants; we refer to [6] for further details.

Due to its careful design, the likelihood in Eqn. 29 is partially conjugate, so the following integral
can be evaluated in closed form:

L(K,Mi) =

∫ ∞
0

∫ ∞
0

L(θi,Mi)p(V, σerr|K)dVdσerr. (33)

The numerical challenge is then to compute the integral

L(Mi) =

∫ ∞
0

L(K,Mi)p(K)dK, (34)

for each candidate modelMi. Depending on the number of enzymes in modelMi, this will either be
a 1-, 2- or 3-dimensional numerical integral. Whilst such integrals are not challenging to compute on
a per-individual basis, the nature of the application means that the values L(Mi) will be similar for
many candidate models and, when the number of models is large, this demands either a very precise
calculation per model or a careful quantification of the impact of numerical error on the subsequent
inferences (i.e. determining the MAP estimate). It is this particular issue that motivates the use of
probabilistic numerical methods.

Description of the Computational Problem

We need to compute integrals of functions with domain X = [0,∞)d where d ∈ {1, 2, 3} and the
sampling distribution p(x) takes the form φT (x|1, 2−1I). The test function f(x) corresponds to

6

L(K,Mi) with x = K. This is given explicitly by the g-prior formulae as:

L(K,Mi) =
1

(2π)N/2
1

(N + 1)d/2
Γ

(
N

2

)
b
−N

2

N , (35)

bN =
1

2

(
YTY +

1

N
1TXTX1−VT

NΩNVN

)
, (36)

VN = Ω−1N

(
1

N
XTX1 + XTY

)
, (37)

ΩN =

(
1 +

1

N

)
XTX, (38)

(Y)n =
y∗S(tn+1)− y∗S(tn)

tn+1 − tn
, (39)

(40)

where for clarity we have suppressed the dependence of X on K. For the Frank-Wolfe Bayesian
Quadrature algorithm, we require that the mean element µp is analytically tractable and for this
reason we employed the exponentiated-quadratic kernel with length scale λ and width scale σ pa-
rameters:

k(x, x′) = λ2 exp

(
−
∑d
i=1(xi − x′i)2

2σ2

)
. (41)

For simplicity we focussed on the single hyper-parameter pair λ = σ = 1, which produces:

µp(x) =

∫ ∞
0

k(x, x′)p(x′)dx′ (42)

=

∫ ∞
0

exp

(
−

d∑
i=1

(xi − x′i)2
)
φT
(
x′
∣∣1, 2−1I

)
dx′ (43)

= 2−d/2
(
1 + erf(1)

)−d d∏
i=1

exp

(
− (xi − 1)2

2

)(
1 + erf

(
xi + 1√

2

))
, (44)

where φT is the p.d.f. of the truncated Gaussian distribution introduced above and erf is the error
function. To compute the posterior variance of the numerical error we also require the quantity:∫ ∞

0

∫ ∞
0

k(x, x′)p(x)p(x′)dxdx′ =

∫ ∞
0

µp(x)p(x)dx =

{
0.629907... for d = 1
0.396783... for d = 2
0.249937... for d = 3

, (45)

which we have simply evaluated numerically. We emphasise that principled approaches to hyper-
parameter elicitation are an important open research problem that we aim to address in a future
publication (see discussion in the main text). The values used here are scientifically reasonable and
serve to illustrate key aspects of our methodology.

FWBQ provides posterior distributions over the numerical uncertainty in each of our estimates for
the marginal likelihoods L(Mi). In order to propagate this uncertainty forward into a posterior
distribution over posterior model probabilities (see Figs. 3 in the main text and S2 below), we
simply sampled values L̂(Mi) from each of the posterior distributions for L(Mi) and used these
samples values to construct posterior model probabilities L̂(Mi)/

∑
j L̂(Mj). Repeating this pro-

cedure many times enables us to sample from the posterior distribution over the posterior model
probabilities (i.e. two levels of Bayes’ theorem). This provides a principled quantification of the
uncertainty due to numerical error in the output of our primary Bayesian analysis.

Description of the Data

The proteomic dataset D that we considered here was a subset of the larger dataset provided in [6].
Specifically, the substrate S was the well-studied 4E-binding protein 1 (4EBP1) and the enzymes
Ej consisted of a collection of key proteins that are thought to be connected with 4EBP1 regulation,
or at least involved in similar regulatory processes within cellular signalling. Full details, including

7

experimental protocols, data normalisation and the specific choice of measurement time points are
provided in the supplementary materials associated with [6].

For this particular problem, biological interest arises because the data-generating system was pro-
vided by breast cancer cell lines. As such, the textbook description of 4EBP1 regulation may not
be valid and indeed it is thought that 4EBP1 dis-regulation is a major contributing factor to these
complex diseases (see [9]). We do not elaborate further on the scientific rationale for model-based
proteomics in this work.

0

50

100

150

200

250

−0.025 0.000 0.025 0.050 0.075
weights

de
ns

ity

Type of weight

BQ weights

FWLS weights

Figure S1: Comparison of quadrature methods on the proteomics dataset. Left: Value of the MMD2

for FW (black), FWLS (red), FWBQ (green), FWLSBQ (orange) and SBQ (blue). Once again,
we see the clear improvement of using Bayesian Quadrature weights and we see that Sequen-
tial Bayesian Quadrature improves on Frank-Wolfe Bayesian Quadrature and Frank-Wolfe Line-
Search Bayesian Quadrature. Right: Empirical distribution of weights. The dotted line represent the
weights of the Frank-Wolfe algorithm with line search, which has all weights wi = 1/n. Note that
the distribution of Bayesian Quadrature weights ranges from −17.39 to 13.75 whereas all versions
of Frank-Wolfe have weights limited to [0, 1] and have to sum to 1.

10 20 30 40 50...
0

0.01

0.02

0.03

Candidate Models

P
o
s
te

ri
o
r

P
ro

b
a
b
ili

ty

n = 50

10 20 30 40 50...
0

0.02

0.04

0.06

Candidate Models

P
o
s
te

ri
o
r

P
ro

b
a
b
ili

ty

n = 200

Figure S2: Quantifying numerical error in a model selection problem. Marginalisation of model
parameters necessitates numerical integration and any error in this computation will introduce error
into the reported posterior distribution over models. Here FWBQ is used to model this numerical
error explicitly. Left: At n = 50 design points the uncertainty due to numerical error prevents us
from determining the true MAP estimate. Right: At n = 200 design points, models 16 and 26 can
be better distinguished as the uncertainty due to numerical error is reduced (model 26 can be seen
to be the MAP estimate, although some uncertainty about this still remains even at this value of n,
due to numerical error).

8

Appendix E: FWBQ algorithms with Random Fourier Features

In this section, we will investigate the use of random Fourier features (introduced in [7]) for the
FWLS and FWLSBQ algorithms. An advantage of using this type of approximation is that the
cost of manipulating the Gram matrix, and in particular of inverting it, goes down from O(n3) to
O(nD2) for some user-defined constant D which controls the quality of approximation. This could
make Bayesian Quadrature more competitive against other integration methods such as MCMC or
QMC. Furthermore, the kernels obtained using this method lead to finite-dimensional RKHS, which
therefore satisfy the assumptions required for the theory in this paper to hold. This will be the aspect
that we will focus on. In particular, we will show empirically that exponential convergence may be
possible even when the RKHS is infinite-dimensional.

We will re-use the 20-component mixture of Gaussians example with d = 2 from our simulation
studies, but using instead a random Fourier approximation of the exponentiated-quadratic (EQ) ker-
nel k(x, x′) := λ2 exp(−1/2σ2‖x− x′‖22) with (λ, σ) = (1, 0.8) and M = 10000.

Following Bochner’s theorem, we can always express translation invariant kernels in Fourier space:

k(x, x′) =

∫
W
g(w) exp

(
jw(x− x′)

)
dw = E

[
exp

(
jwTx

)
exp

(
jwTx′

)]
(46)

where w ∼ g(w) for g(w) being the Fourier transform of the kernel. One can then use a Monte
Carlo approximation of the kernel’s Fourier expression with D samples whenever g is a p.d.f.. Our
approximated kernel will then lead to a D-dimensional RKHS and will be given by:

k(x, x′) ≈ 1

D

D∑
j=1

zwj ,bj (x)zwj ,bj (x′) = k̂D(x, x′) (47)

where zwj ,bj (x) =
√

2 cos(wTj x + bj) and bj ∼ [0, 2π] uniformly. Random Fourier features ap-
proximations are unbiased and, in the specific case of a d-dimensional EQ kernel with λ = 1, we
have to samples from the following Fourier transform:

g(w) =
(2π

σ2

)− d
2

exp
(
− σ2‖w‖22

2

)
(48)

which is a d-dimensional Gaussian distribution with zero mean and covariance matrix with all diag-
onal elements equal to (1/σ2).

The impact on the MMD from the use of random Fourier features to approximate the kernel for both
the FWLS and FWLSBQ algorithms is demonstrated in Figure S3. In this example, the quadrature
rule uses the kernel with random features but the MMD is calculated using the original H-norm.
The reason for using thisH-norm is to have a unique measure of distance between points which can
be compared.

Clearly, we once again have that the rate of convergence of the FWLSBQ is much faster than FWLS
when using the exact kernel. The same phenomena is observed for the method with high number of
random features (D = 5000). This suggests that both the choice of design points and the calculation
of the BQ weights is not strongly influenced by the approximation. It is also interesting to notice
that the rates of convergence is very close for the exact and D = 5000 methods (atleast when n is
small), potentially suggesting that exponential convergence is possible for the exact method. This is
not so surprising in itself since using a Gaussian kernel represents a prior belief that the integrand of
interest is very smooth, and we can therefore expect fast convergence of the method.

However, in the case with a smaller number of random features is used (D = 1000), we actually
observe a very poor performance of the method, which is mainly due to the fact that the weights are
not well approximated anymore.

In summary, the experiments in this section suggest that the use of random features is a potential
alternative for scaling up Bayesian Quadrature, but that one needs to be careful to use a high enough
number of features. The experiments also give hope of having very similar convergence for infinite-
dimensional and finite-dimensional spaces.

9

Figure S3: Random Fourier Features (RFF) for Bayesian Quadrature. RFF are used to approximate
the EQ kernel in the example of the simulation study. The MMD2 is plotted in the case where the
EQ kernel is used (FWLS: blue; FWLSBQ: black), as well as when a using random features with
D = 1000 (FWLS: red; FWLSBQ: purple) and D = 5000 (FWLS: orange; FWLSBQ: green).

References
[1] F. Bach. On the Equivalence between Quadrature Rules and Random Features. arXiv:1502.06800, 2015.

[2] F. Bach, S. Lacoste-Julien, and G. Obozinski. On the Equivalence between Herding and Conditional
Gradient Algorithms. In Proceedings of the 29th International Conference on Machine Learning, pages
1359–1366, 2012.

[3] F. Huszar and D. Duvenaud. Optimally-Weighted Herding is Bayesian Quadrature. In Uncertainty in
Artificial Intelligence, pages 377–385, 2012.

[4] M. Jaggi. Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization. In Proceedings of the
30th International Conference on Machine Learning, volume 28, pages 427–435, 2013.

[5] S. Lacoste-Julien, F. Lindsten, and F. Bach. Sequential Kernel Herding : Frank-Wolfe Optimization for Par-
ticle Filtering. In Proceedings of the 18th International Conference on Artificial Intelligence and Statistics,
pages 544–552, 2015.

[6] C.J. Oates, F. Dondelinger, N. Bayani, J. Korkola, J.W. Gray, and S. Mukherjee. Causal Network Inference
using Biochemical Kinetics. Bioinformatics, 30(17):i468–i474, 2014.

[7] A. Rahimi and B. Recht. Random Features for Large-Scale Kernel Machines. Advances in Neural Infor-
mation Processings Systems, 2007.

[8] C. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine Learning. MIT Press, 2006.

[9] R.A. Weinberg. The Biology of Cancer, volume 1. Garland Science, 2006.

10

