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A Representative Stochastic Gradient MCMC Algorithms

This section briefly introduces three recently proposed stochastic gradient MCMC algorithms, in-
cluding the stochastic gradient Langevin dynamic (SGLD) [4], the stochastic gradient Hamiltonian
MCMC (SGHMC) [1], and the stochastic gradient Nosé-Hoover thermostat [2] (SGNHT).

Given data X = {x1, · · · ,xN}, a generative model p(X |θ) =
∏N
i=1 p(xi |θ) with model parameter

θ, and prior p(θ), we want to compute the posterior:

π(θ) , p(θ|X) ∝ p(X |θ)p(θ) , e−U(θ) .

A.1 Stochastic gradient Langevin dynamics

The SGLD [4] is based on the following 1st-order Langevin dynamic defined as:

dθ = −1

2
∇θU(θ)dt+ dW , (10)

where W is the standard Brownian motion. We can show via the Fokker–Planck equation that the
equilibrium distribution of (10) is:

p(θ) = π(θ) .

As described in the main text, when sampling from this continuous-time diffusion, two approxima-
tions are adopted, e.g., a numerical integrator and a stochastic gradient version Ũl(θ(l−1)h) of the
log-likelihood U(θ) from the l-th minibatch. This results in the following SGLD algorithm.

Algorithm 1: Stochastic Gradient Langevin Dynamics
Input: Parameters h.
Initialize θ0 ∈ Rn ;
for l = 1, 2, . . . do

Evaluate ∇Ũl(θ(l−1)h) from the l-th minibatch ;
θlh = θ(l−1)h −∇Ũl(θ(l−1)h)h+

√
2hN (0, I);

end

A.2 Stochastic gradient Hamiltonian MCMCs

The SGHMC [1] is based on the 2nd-order Langevin dynamic defined as:{
dθ = p dt

dp = −∇θU(θ)dt−D p dt+
√

2DdW ,
(11)

where D is a constant independent of θ and p. Again we can show that the equilibrium distribution
of (11) is:

P (θ,p) ∝ e−U(θ)+ pT p
2 .

Similar to the SGLD, we use the Euler scheme to simulate the dynamic (11), shown in Algorithm 2.
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Algorithm 2: Stochastic Gradient Hamiltonian MCMC
Input: Parameters h,D.
Initialize θ0 ∈ Rn, p0 ∼ N (0, I) ;
for l = 1, 2, . . . do

Evaluate ∇Ũl(θ(l−1)h) from the l-th minibatch ;
plh = p(l−1)h−D p(l−1)h h−∇Ũl(θ(l−1)h)h+

√
2DhN (0, 1);

θlh = θ(l−1)h + plh h;
end

A.3 Stochastic gradient Nośe-Hoover thermostats

The SGNHT [2] is based on the Nośe-Hoover thermostat defined as:
dθ = p dt

dp = −∇θU(θ)dt− ξ p dt+
√

2DdW
dξ =

(
pT p /n− 1

)
,

(12)

If D is independent of θ and p, it can also be shown that the equilibrium distribution of (12) is [2]:

P (θ,p, ξ) ∝ e−U(θ)− 1
2 pT p+ 1

2 (ξ−D)2 .

The SGNHT is much more interesting than the SGHMC when considering subsampling data in
each iteration, as the covariance D in SGHMC is hard to estimate, a thermostat is used to adaptively
control the system temperature, thus automatically estimate the unknown D. The whole algorithm
is shown in Algorithm 3.

Algorithm 3: Stochastic Gradient Nosé-Hoover Thermostats
Input: Parameters h,D.
Initialize θ0 ∈ Rn, p0 ∼ N (0, I), and ξ0 = D ;
for l = 1, 2, . . . do

Evaluate ∇Ũl(θ(l−1)h) from the l-th minibatch ;
plh = p(l−1)h−ξ(l−1)h p(l−1)h h−∇Ũl(θ(l−1)h)h+

√
2DhN (0, I);

θlh = θ(l−1)h + plh h;
ξlh = ξ(l−1)h + ( 1

n p>lh plh−1)h;
end

B More Details on Kolmogorov’s Backward Equation

The generator L is used in the formulation of Kolmogorov’s backward equation, which intuitively
tells us how the expected value of any suitably smooth statistic of X evolves in time. More precisely:
Definition 11 (Kolmogorov’s Backward Equation). Let u(t,x) = E [φ(Xt)], then u(t,x) satisfies
the following partial differential equation, known as Kolmogorov’s backward equation:{

∂u
∂t (t,x) = Lu(t,x) , t > 0,x ∈ Rn
u(0,x) = φ(x), x ∈ Rn (13)

Based on the definition, we can write u(t, ·) = Ptφ(·) so that (Pt)t≥0 is the transition semigroup
associated with the Markov process (X(t,x))t≥0,x∈Rn [23] (also called the Kolmogorov operator).
Note that the Kolmogorov’s backward equation can be written in another form as:

u(t,x) = E [φ(Xt)] = etLφ(x) , (14)

where etL is the exponential map operator associated with the generator defined as:

etL , I +

∞∑
i=1

(tL)
i

i!
,
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with I being the identity map. This is obtained by expanding u(t,x) in time by using Taylor expan-
sion [23]:

u(t,x) = u(0,x) +

∞∑
i=1

ti

i!

di

dti
u(t,x) |t=0

= u(0,x) +

∞∑
i=1

ti

i!

di−1

dti−1

d

dt
u(t,x) |t=0

= u(0,x) +

∞∑
i=1

ti

i!
L di−1

dti−1
u(t,x) |t=0

= φ(x) +

∞∑
i=1

ti

i!
Liφ(x) = etLφ(x) . (15)

The form (14) instead of the original form (13) of the Kolmogorov’s backward equation is used in
our analysis. To be able to expand the form (14) to some particular order such that remainder terms
are bounded, the following assumption is required [24].
Assumption 3. Assume 1) F (X) is C∞ with bounded derivatives of any order, furthermore, and 2)
|F (x)| ≤ C(1+|X |s) for some positive integer s. Under these assumptions, series of the generator
expansion can be bounded, thus (15) can be written in the following form [6, 24]:

u(t,x) = φ(x) +
∑̀
i=1

ti

i!
Liφ(x) + t`+1r`(F, φ)(x) , (16)

with |r`(F, φ)(x)| ≤ C`(1 + |x |k`) for some constant C`, k`.

C More Comments on Assumption 1

Assumption 1 assumes that the solution functional ψ of the Poisson equation (4) satisfies: ψ and
its up to 3-rd order derivatives, Dkψ, are bounded by a function V , i.e., ‖Dkψ‖ ≤ CkVpk for
k = (0, 1, 2, 3), Ck, pk > 0. Furthermore, V is smooth such that sups∈(0,1) Vp(sX+(1− s)Y) ≤
C(Vp(X) + Vp(Y)), ∀X,Y, p ≤ p∗ , max{2pk} for some C > 0. Finally, supl EVp(Xlh) <∞
for p ≤ p∗. This is summarized as:

sup
l

EVp(Xlh) <∞ (17)

sup
s∈(0,1)

Vp(sX+(1− s)Y) ≤ C(Vp(X) + Vp(Y)) (18)

‖Dkψ‖ ≤ CkVpk (19)

Compared to the SGLD case [6], in our proofs, we only need k be up to 3 in (19) instead of 4. More
specifically, the proof for the bias only needs k be up to 0 given other assumptions in this paper, and
the proof for the MSE needs k be up to 3.

As long as the corresponding SDE is hypoelliptic, meaning that the Brownian motion W is able to
propagate to the other variables of the dynamics [12], e.g., the model parameter θ in SGHMC, we
can extend Assumption 4.1 of [6] to our setting. Thus we have that (17) is equivalent to finding a
function V : Rn → [1,∞] (n is the dimension of x, e.g., including the momentum in SGHMC),
which tends to infinity as x → ∞, and is twice differentiable with bounded second derivatives and
satisfies the following conditions:

1. V is a Lyapunov function of the SDE, i.e., there exists constants α, β > 0, such that for
x ∈ Rn, we have 〈∇xV(x), F (x)〉 ≤ −αV(x) + β.

2. There exists an exponent pH ≥ 2 such that E
∥∥∥F̃ (x)− EsF̃ (x)

∥∥∥ . VpH (x), where Es
means expectation with respect to the random permutation of the data, E means expectation
with respect to the randomness of the dynamic with Brownian motion. Furthermore, for
x ∈ Rn, we have: ‖∇xV(x)‖2 + ‖F (x)‖2 . V(x).
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Similar to [6], (18) is an extra condition that needs to be satisfied, and (19) is more subtle and needs
more assumptions to verify in this case. We will not address these issues because it is out of the
scope of the paper.

D The Proof of Theorem 2

Proof. For an SG-MCMC with a Kth-order integrator, according to Definition 1 and (3), we have:

E[ψ(Xlh)] = P̃ lhψ(X(l−1)h) = ehL̃lψ(X(l−1)h) +O(hK+1)

=
(
I + hL̃l

)
ψ(X(l−1)h) +

K∑
k=2

hk

k!
L̃kl ψ(X(l−1)h) +O(hK+1) , (20)

where I is the identity map. Sum over l = 1, · · · , L in (20), take expectation on both sides, and use
the relation L̃l = L+∆Vl to expand the first order term. We obtain

L∑
l=1

E[ψ(Xlh)] =ψ(X0) +
L−1∑
l=1

E[ψ(Xlh)] + h
L∑
l=1

E[Lψ(X(l−1)h)]

+ h

L∑
l=1

E[∆Vlψ(X(l−1)h)] +

K∑
k=2

hk

k!

L∑
l=1

E[L̃kl ψ(X(l−1)h)] +O(LhK+1).

Divide both sides by Lh, use the Poisson equation (4), and reorganize terms. We have:

E[
1

L

∑
l

φ(Xlh)− φ̄] =
1

L

L∑
l=1

E[Lψ(X(l−1)h)] (21)

=
1

Lh
(E[ψ(Xlh)]− ψ(X0))− 1

L

∑
l

E[∆Vlψ(X(l−1)h)]−
K∑
k=2

hk−1

k!L

L∑
l=1

E[L̃kl ψ(X(l−1)h)] +O(hK)

To transform terms containing L̃kl (k ≥ 2) to high-order terms, based on ideas from [12], we apply
the following procedure. First replace ψ with L̃K−1

l ψ from (20) to (21), and apply the same logic
for L̃K−1

l ψ as for ψ in the above derivations, but this time expand in (20) up to the order of O(h2),
instead of the previous order O(hK+1). After simplification, we obtain:∑

l

E[L̃Kl ψ(X(l−1)h)] = O

(
1

h
+ Lh

)
(22)

Similarly, replace ψ with L̃K−2

l ψ from (20) to (21), follow the same derivations as for L̃K−1

l ψ, but
expand in (20) up to the order of O(h3) instead of O(h2). We have:

∑
l

E[L̃K−1

l ψ(X(l−1)h)] = O

(
1

h
+ Lh2

)
+
h

2

L∑
l=1

E[L̃Kl ψ(X(l−1)h)] = O

(
1

h
+ Lh2

)
,

(23)

where the last equation in (23) is obtained by substituting (22) into it and collecting low order terms.
By induction on k, it is easy to show that for 2 ≤ k ≤ K, we have:∑

l

E[L̃kl ψ(X(l−1)h)] = O

(
1

h
+ LhK−k+1

)
, (24)

Substituting (24) into (21), after simplification, we have: E
(

1
L

∑
l φ(Xlh)− φ̄

)
=

1

Lh
(E[ψ(Xlh)]− ψ(X0))︸ ︷︷ ︸

C1

− 1

L

∑
l

E[∆Vlψ(X(l−1)h)]−
K∑
k=2

O

(
hk−1

Lh
+ hK

)
+ C3h

K ,
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for some C3 ≥ 0. According to the assumption, the term C1 is bounded. As a result, collecting low
order terms, the bias can be expressed as:∣∣∣Eφ̂− φ̄∣∣∣ =

∣∣∣∣∣E
(

1

L

∑
l

φ(Xlh)− φ̄

)∣∣∣∣∣ =

∣∣∣∣C1

Lh
−
∑
l E∆Vlψ(X(l−1)h)

L
+ C3h

K

∣∣∣∣
≤
∣∣∣∣C1

Lh

∣∣∣∣+

∣∣∣∣∑l E∆Vlψ(X(l−1)h)

L

∣∣∣∣+
∣∣C3h

K
∣∣ = O

(
1

Lh
+

∑
l ‖E∆Vl‖
L

+ hK
)
,

where the last equation follows from the finiteness assumption of ψ, ‖ · ‖ denotes the operator norm
and is bounded in the space of ψ due to the assumptions. This completes the proof.

E The Proof of Theorem 3

Proof. For a K-order integrator, from Theorem 2, we can expand E (ψ(Xlh)) as:

E (ψ(Xlh)) = (I + h(L+ ∆Vl))ψ(X(l−1)h) +

K∑
k=2

hk

k!
L̃kl ψ(X(l−1)h) +O(hK+1) .

Sum over l from 1 to L+ 1 and simplify, we have:

L∑
l=1

E (ψ(Xlh)) =

L∑
l=1

ψ(X(l−1)h) + h

L∑
l=1

Lψ(X(l−1)h) + h

L∑
l=1

∆Vlψ(X(l−1)h)

+

K∑
k=2

hk

k!

L∑
l=1

L̃kl ψ(X(l−1)h) +O(LhK+1) .

Substitute the Poisson equation (4) into the above equation, divide both sides by Lh and rearrange
related terms, we have

φ̂− φ̄ =
1

Lh
(Eψ(XLh)− ψ(X0))− 1

Lh

L∑
l=1

(
Eψ(X(l−1)h)− ψ(X(l−1)h)

)
− 1

L

L∑
l=1

∆Vlψ(X(l−1)h)−
K∑
k=2

hk−1

2L

L∑
l=1

L̃kl ψ(X(l−1)h) +O(hK)

Taking square and expectation on both sides, since the terms
(
Eψ(X(l−1)h)− ψ(X(l−1)h)

)
and

∆Vlψ(X(l−1)h) are martingale, it is then easy to see there exists some positive constant C, such that

E
(
φ̂− φ̄

)2

≤ CE

 (Eψ(XLh)− ψ(X0))
2

L2h2︸ ︷︷ ︸
A1

+
1

L2h2

L∑
l=1

(
Eψ(X(l−1)h)− ψ(X(l−1)h)

)2
︸ ︷︷ ︸

A2

+
1

L2

L∑
l=1

∆V 2
l ψ(X(l−1)h) +

K∑
k=2

h2(k−1)

k!L2

(
L∑
l=1

L̃kl ψ(X(l−1)h)

)2

︸ ︷︷ ︸
A3

+h2K

 (25)

A1 is easily bounded by the assumption that ‖ψ‖ ≤ V p0 < ∞, the expectation of A3 can also
be shown to be bounded later in (31). Now we show that A2 is bounded as well by deriving the
following bound: E (ψ(Xlh)) − ψ(Xlh) ≤ C1

√
h + O(h) for C1 ≥ 0. To do this, it is enough to

consider the 2nd order symmetric splitting scheme, as higher order integrators generally introduce
higher order errors. Furthermore, we see that different splitting schemes, e.g., ABOBA and OABAO,
are essentially equivalent as long as they are symmetric [15], thus we focus on the ABOAB scheme
in the proof. Let the flow propagators (mappings) of ‘A’ , ‘B’ and ‘O’ be denoted as ϕ̃Ah , ϕ̃Bh and
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ϕ̃Ol

h respectively. Since ϕ̃Ah and ϕ̃Bh are deterministic, we combine them and use ϕ̃ABh to represent
the composition flow ϕ̃Ah ◦ ϕ̃Bh . We further decompose ϕ̃Ol

h into the deterministic part ϕ̃Oh and the
stochastic part ϕ̃ζ

h from the brownian motion, then in the iteration for the current minibatch, we can
express the flow evolution as:

Xlh = ϕ̃ABh ◦
(
ϕ̃Oh ◦ ϕ̃

ζ
h

)
◦ ϕ̃ABh (X(l−1)h)

= ϕ̃ABh

(
ϕ̃Oh
(
ϕ̃ABh (X(l−1)h)

)
+
√

2Dhζl

)
, (26)

where ζl is a n-dimensional independent Gaussian random variables.

From Assumption 1 we know that both ϕ̃Oh and ϕ̃ABh have bounded derivatives. To simplify the
representation, we denote X̃l , ϕ̃ABh

(
ϕ̃Oh
(
ϕ̃ABh (X(l−1)h)

))
. Now we can expanded Xlh from (26)

using Taylor expansion as:

Xlh = ϕ̃ABh

(
ϕ̃Oh
(
ϕ̃ABh (X(l−1)h)

)
+
√

2Dhζl

)
= X̃l +DX̃l

[√
2Dhζl

]
+

1

2
D2X̃l

[√
2Dhζl,

√
2Dhζl

]
+O(hζ2

l ) (27)

Using the relation (27), for the solution ψ of the Poisson equation (4) applied on Xlh, we can bow
expand it up to 3 orders from the Taylor theory:

ψ(Xlh) = ψ

(
ϕ̃ABh

(
ϕ̃Oh
(
ϕ̃ABh (X(l−1)h)

))
+DX̃l

[√
2Dhζl

]
+

1

2
D2X̃l

[√
2Dhζl,

√
2Dhζl

]
+O(hζ2

l )

)
=ψ

(
X̃l

)
+Dψ(X̃l)

[
DX̃l

[√
2Dhζl

]]
︸ ︷︷ ︸

M1

+
1

2
Dψ(X̃l)

[
D2X̃l

[√
2Dhζl,

√
2Dhζl

]]
︸ ︷︷ ︸

S1

+
1

2
D2ψ(X̃l)

[(
DX̃l

[√
2Dhζl

]
+

1

2
D2X̃l

[√
2Dhζl,

√
2Dhζi

])2
⊗]

︸ ︷︷ ︸
S2

(28)

+
1

2

∫ 1

0

s2D3ψ(sX(l−1)h +(1− s)X̃l)

[(
DX̃l

[√
2Dhζl

]
+

1

2
D2X̃l

[√
2Dhζl,

√
2Dhζl

])3
⊗]

︸ ︷︷ ︸
R

where [(X)N
⊗

] , [X, · · · ,X︸ ︷︷ ︸
N

].

Note that the vector fields inside the brackets in the above expression are all bounded due to As-
sumption 1. As a result, we can show that M1, S1, S2 and R are bounded by the boundedness
assumption on ψ and its derivatives. Specifically, in the following we will use a . b to represent
there is a C ≥ 0 such that a ≤ Cb. Let ϕ̃hl

(x) , ϕ̃OAh
(
ϕ̃Bh
(
ϕ̃OAh (Xlh +x)

))
, according to the

definition of directional derivative, we have

DX̃l

[√
2Dhζl

]
, lim
α→0

ϕ̃hl−1
(α
√

2Dhζl)− ϕ̃hl−1
(0)

α

= lim
α→0

α
√

2DhJ(0)ζl +O(α)

α
=
√

2DhJ(0)ζi ,

where J(x) is the Jacobian of ϕ̃hl−1
(x) and is bounded. Thus

EM2
1 . h sup

l
EV2p1

l . h . (29)

Similarly, for S1 and S2, using the assumptions in the theory, we have

ES2
1 . h2 sup

l
EV2p1

l . h2

ES2
2 . (

√
h+ h)2 sup

l
EV2p2

l . (
√
h+ h)2 .
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For R, using Assumption 1, we have

ER2 . (EV(X(l−1)h)2p3 + EV(X̃l)
2p3)

∥∥∥∥Dϕ̃OAhl−1

[√
2Dhζi

]
+

1

2
D2ϕ̃OAhl−1

[√
2Dhζl,

√
2Dhζl

]∥∥∥∥3

. h3 .

The expectation of ψ(Xlh) can be similarly bounded. Collecting low order terms, we have

E (E (ψ(Xlh))− ψ(Xlh))
2

= Ch+O(h3/2) ,

for some C > 0. As a result, the expectation of the A2 term in (25) can be bounded using the above
derived bound on E (ψ(Xlh))− ψ(Xlh).

1

L2h2

∑
l

E (Eψ(Xlh)− ψ(Xlh))
2

=
C

Lh
+O(

1

L
√
h

) . (30)

Substitute (30) into (25) we can bound the MSE as:

E
(
φ̂− φ̄

)2

.
1
L

∑
l E∆V 2

l ψ(X(l−1)h)

L
+

K∑
k=2

h2(k−1)

2L2
E

(
L∑
l=1

L̃kl ψ(X(l−1)h)

)2

+
1

Lh
+

1

L2h2
+O(h2K)

=
1
L

∑
l E∆V 2

l ψ(X(l−1)h)

L
+

K∑
k=2

h2(k−1)

2L2

(
L∑
l=1

E
[
L̃kl ψ(X(l−1)h)

])2

︸ ︷︷ ︸
A1

+
1

Lh
+

1

L2h2

+

K∑
k=2

h2(k−1)

2L2
E

(
L∑
l=1

(
L̃kl ψ(X(l−1)h)− EL̃kl ψ(X(l−1)h)

))2

︸ ︷︷ ︸
A2

+O(h2K) (31)

≤C

(
1
L

∑
l E ‖∆Vl‖

2

L
+

1

Lh
+ h2K

)
(32)

for some C > 0, where (31) follows by using the fact that E[X2] = E[(X−EX)2] + (EX)2

for a random variable X. (32) follows by using the bounds in (24) on A1, which is bounded by
O( 1

L2h2 + h2K). For A2, because the terms
(
L̃kl ψ(X(l−1)h)− EL̃kl ψ(X(l−1)h)

)
are martingale,

we have:

A2 .
h2(k−1)

2L2

L∑
l=1

E
(
L̃kl ψ(X(l−1)h)− EL̃kl ψ(X(l−1)h)

)2

.
1

Lh

(
h2k−1

L

L∑
l=1

E(L̃kl ψ(X(l−1)h))2

)
+O

(
1

L2h2
+ h2K

)
= O

(
1

Lh
+ h2K

)
where we have used (24) and the fact that EL̃kl ψ(X(l−1)h) is bounded. Collecting low order terms
we get (32). This completes the proof.

F The Proof of Theorem 4

Proof. Because the splitting scheme is geometric ergodic, for a test function φ, from the ergodic
theorem we have ∫

X
φ(x)ρ̃h(dx) =

∫
X
Exφ(Xlh)ρ̃h(dx) (33)
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for ∀l ≥ 0,∀x ∈ X . Average over all the samples {Xlh} and let l approach to∞, we have∫
X
φ(x)ρ̃h(dx) = lim

L→∞

∫
X

1

L

L∑
l=1

Exφ(Xlh)ρ̃h(dx) .

Thus the distance between any invariant measure ρ̃h of a high-order integrator and ρ can be bounded
as:

d(ρ̃h, ρ) = sup
φ

∣∣∣∣∫
X
φ(x)ρ̃h(dx)−

∫
X
φ(x)ρ(dx)

∣∣∣∣
= sup

φ
lim
L→∞

∣∣∣∣∣
∫
X

[
1

L

L∑
l=1

Exφ(Xlh)− φ̄

]
ρ̃h(dx)

∣∣∣∣∣
≤ sup

φ
lim
L→∞

∫
X

∣∣∣∣∣ 1L
L∑
l=1

Exφ(Xlh)− φ̄

∣∣∣∣∣ ρ̃h(dx)

≤ sup
φ

lim
L→∞

(
C1

Lh
+ C2h

K

)
(34)

= ChK ,

where (34) follows by using the result from Theorem 2. This completes the proof.

G The Proof of Theorem 5

We separate the proof into proofs for the bias and MSE respectively in the following.

The proof for the bias:

Proof. Following Theorem 2, in the decreasing step size setting, (20) can be written as:

E (ψ(Xlh)) =
(
I + hlL̃l

)
ψ(X(l−1)h) +

K∑
k=2

hkl
k!
L̃2
l ψ(X(l−1)h) +O(hK+1

l ) .

Similarly, (21) can be simplified using the step size sequence (hl) as:

E
(
φ̃− φ̄

)
=

1

SL
(E (ψ(XLh))− ψ(X0))−

K∑
k=2

L∑
l=1

hkl
k!SL

L̃kl ψ(X(l−1)h) +O(

∑L
l=1 h

K+1
l

SL
) (35)

Similar to the derivation of (24), we can derive the following bounds k = (2, · · · ,K):

L∑
l=1

hkl EL̃kl ψ(X(l−1)h) = O

(
L∑
l=1

(
(hk−1
l − hk−1

l−1 )L̃k−1
l ψ(X(l−1)h) + hK+1

l

))

= O

(
1 +

L∑
l=1

hK+1
l

)
. (36)

Substitute (36) into (35) and collect low order terms, we have:

E
(
φ̃− φ̄

)
=

1

SL
(E (ψ(XLh))− ψ(X0)) +O(

∑L
l=1 h

K+1
l

SL
) . (37)
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As a result, the bias can be expressed as:∣∣∣Eφ̃− φ̄∣∣∣ ≤ ∣∣∣∣∣ 1

SL
(E [ψ(XLh)]− ψ(X0)) +O(

∑L
l=1 h

K+1
l

SL
)

∣∣∣∣∣
.

∣∣∣∣ 1

SL

∣∣∣∣+

∣∣∣∣∣
∑L
l=1 h

K+1
l

SL
)

∣∣∣∣∣
=O

(
1

SL
+

∑L
l=1 h

K+1
l

SL

)
.

Taking L→∞, both terms go to zero by assumption. This completes the proof.

The proof for the MSE:

Proof. Following similar derivations as in Theorem 3, we have that

L∑
l=1

E (ψ(Xlh)) =

L∑
l=1

ψ(X(l−1)h) +

L∑
l=1

hlLψ(X(l−1)h) +

L∑
l=1

hl∆Vlψ(X(l−1)h)

+

K∑
k=2

L∑
l=1

hkl
k!
L̃kl ψ(X(l−1)h) + C

L∑
l=1

hK+1
l .

Substitute the Poisson equation (4) into the above equation and divided both sides by SL, we have

φ̂− φ̄ =
Eψ(XLh)− ψ(x0)

SL
+

1

SL

L−1∑
l=1

(
Eψ(X(l−1)h) + ψ(X(l−1)h)

)
+

L∑
l=1

hl
SL

∆Vlψ(X(l−1)h)

+

K∑
k=2

L∑
l=1

hkl
k!SL

L̃kl ψ(X(l−1)h) + C

∑L
l=1 h

3
l

SL
.

As a result, there exists some positive constant C, such that:

E
(
φ̂− φ̄

)2

≤ CE

 1

S2
L

(ψ(X0)− Eψ(XLh))
2︸ ︷︷ ︸

A1

+
1

S2
L

L∑
l=1

(
Eψ(X(l−1)h)− ψ(X(l−1)h)

)2
︸ ︷︷ ︸

A2

+

L∑
l=1

h2
l

S2
L

‖∆Vl‖2 +

K∑
k=2

(
L∑
l=1

hkl
k!SL

L̃kl ψ(X(l−1)h)

)2

︸ ︷︷ ︸
A3

+

(∑L
l=1 h

3
l

SL

)2

 (38)

A1 can be bounded by assumptions, and A2 is shown to be bounded by using the fact that
Eψ(X(l−1)h) − ψ(X(l−1)h) = O(

√
hl) from Theorem 3. Furthermore, similar to the proof of

Theorem 3, the expectation of A3 can also be bounded by using the formula E[X2] = (EX)2 +
E[(X−EX)2] and (36). It turns out that the resulting terms have order higher than those from the
other terms, thus can be ignored in the expression below. After some simplifications, (38) is bounded
by:

E
(
φ̂− φ̄

)2

.
∑
l

h2
l

S2
L

E ‖∆Vl‖2 +
1

SL
+

1

S2
L

+

(∑L
l=1 h

K+1
l

SL

)2

= C

(∑
l

h2
l

S2
L

E ‖∆Vl‖2 +
1

SL
+

(
∑L
l=1 h

K+1
l )2

S2
L

)
(39)
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for some C > 0, this completes the first part of the theorem. We can see that according to the
assumption, the last two terms in (39) approach to 0 when L→∞. If we further assume

∑∞
l=1 h

2
l

S2
L

=

0, then the first term in (39) approaches to 0 because:∑
l

h2
l

S2
L

E ‖∆Vl‖2 ≤
(

sup
l

E ‖∆Vl‖2
) ∑

l h
2
l

S2
L

→ 0 .

As a result, we have limL→∞ E
(
φ̂− φ̄

)2

= 0.

H The Proof of Corollary 6

Proof. We use the following inequalities to bound the term
∑L
l=1 l

−α:∫ L

1

x−αdx <

L∑
l=1

l−α < 1 +

∫ L−1

1

x−αdx .

This is easily seen to be true by noting that
∫ l+1

l
x−αdx < l−α × 1 = l−α <

∫ l
l−1

x−αdx. After
simplification, we have

1− L1−α

α− 1
<

L∑
l=1

l−α <
α− (L− 1)1−α

α− 1
. (40)

It is then easy to see that the condition for
∑∞
l=1 l

−α =∞ is α ≤ 1. Moreover, we notice that other
step size assumptions reduce to compare

∑∞
l=1 l

−α and
∑∞
l=1 l

−α1 for α < α1, which using (40)
has the following bound:

α− 1

α1 − 1

1− L1−α1

α− (L− 1)1−α <

∑L
l=1 l

−α1∑L
l=1 l

−α
<

α− 1

α1 − 1

α1 − (L− 1)1−α1

1− L1−α .

As long as 0 < α < 1 and α1 > α, the above lower and upper bound would approach to 0, thus all
the assumptions for the step size sequences are satisfied.

I On the Euler Integrator and Symmetric Splitting Integrator

I.1 Euler integrator

We first review the Euler scheme used in SGLD and SGHMC. In SGLD the update for Xlh (= θlh)
follows:

θlh = θ(l−1)h −∇θŨl(θ(l−1)h)h+
√

2hζl ,

where h is the step size, ζl is a vector of i.i.d. standard normal random variables. In SGHMC
(Xlh = (θlh, plh)), it becomes:

θlh = θ(l−1)h + p(l−1)h h, plh = (1−Dh)p(l−1)h−∇θŨl(θ(l−1)h)h+
√

2Dhζl ,

Based on the update equations, it is easily seen that the corresponding Kolmogorov operators P̃ lh are

P̃ lh = ehL1 , where L1 , −∇θŨl(θ(l−1)h) · ∇θ + 2I : ∇θ∇Tθ (41)

for SGLD, and

P̃ lh = ehL2 ◦ ehL3 , (42)

for SGHMC, where L2 , p ·∇θ and L3 , −D p(l−1)h ·∇p −∇θŨl(θ) · ∇p + 2DI : ∇p∇Tp .

We show in the following Lemma that the Euler integrator is a 1st-order local integrator.
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Lemma 12. The Euler integrator is a 1st-order local integrator, i.e.,

P̃ lh = ehL̃l +O(h2) . (43)

Proof. For the SGLD, according to the Kolmogorov’s backward equation (14), for the SGLD, we
have

E[f(θ(l−1)h+t)] = etL̃lf(θ(l−1)h), 0 ≤ t ≤ h , (44)

where L̃1 , −∇θŨl(θ) · ∇θ + 2I : ∇θ∇Tθ . Note Ũl(θ) can be expanded by Taylor’s expansion to
the 1st-order such that (based on θlh = θ(l−1)h +O(h)):

L̃1 = −∇θŨl(θ(l−1)h) · ∇θ + 2I : ∇θ∇Tθ +O(h)

= L1 +O(h) .

Substituting the above into (44) and use the definition (41), we have

P̃ lh = ehL̃l +O(h2) .

For the SGHMC, following similar derivations, we have:

L2 = L̃2 → ehL2 = ehL̃2 +O(h2) ,

ehL3 = ehL̃3 +O(h2) ,

where L̃2 , p ·∇θ and L̃3 , −D ph · ∇p − ∇θŨl(θ) · ∇p + 2DI : ∇p∇Tp are the splitting for
the true generator L̃l.
Now using the Baker–Campbell–Hausdorff (BCH) formula, we have

ehL2 ◦ ehL3 = ehL̃2 ◦
(
ehL̃3 +O(h2)

)
= eh(L̃2+L̃3)+O(h2) +O(h2) = ehL̃l +O(h2)

As a result, P̃ lh = ehL̃l +O(h2) for SGHMC.

I.2 Symmetric splitting integrator

In symmetric splitting scheme, the generator L̃l is split into a couple of sub-generators which can
be solved analytically. For example, in SGHMC, it is split into: L̃l = LA + LB + LOl

, where

A , LA = p ·∇θ, B , LB = −D p ·∇p, Ol , LOl
= −∇θŨl(θ) · ∇p + 2D : ∇p∇Tp .

These sub-generators correspond to the following analytically solvable SDEs:

A :

{
dθ = pdt
dp = 0

, B :

{
dθ = 0
dp = −D pdt

, O :

{
dθ = 0

dp = −∇θŨl(θ)dt+
√

2DdW

Based on the splitting, the Kolmogorov operator P̃ lh can be seen to be:

P̃ lh , e
h
2LA ◦ eh

2LB ◦ ehLOl ◦ eh
2LB ◦ eh

2LA ,

We show that the corresponding integrator is a 2nd-order local integrator below.
Lemma 13. The symmetric splitting integrator is a 2nd-order local integrator, i.e.,

P̃ lh = ehL̃l +O(h3) . (45)

Proof. This follows from direct calculation using the BCH formula. Specifically,

e
h
2Ae

h
2B = e

h
2A+ h

2B+ h2

8 [A,B]+ 1
96 ([A,[A,B]]+[B,[B,A]])+··· (46)

= e
h
2A+ h

2B+ h2

8 [A,B] +O(h3) , (47)
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where [X,Y ] , XY − Y X is the commutator of X and Y , (46) follows from the BCH formula,
and (47) follows from Assumption 1 such that the remainder high order terms are bounded [24], so
the error term O(h3) can be taken out from the exponential map using Taylor expansion. Similarly,
for the other composition, we have

ehOle
h
2Ae

h
2B = ehOl

(
e

h
2A+ h

2B+ h2

8 [A,B] +O(h3)
)

= ehOl+
h
2A+ h

2B+ h2

8 [A,B]+ 1
2 [hOl,

h
2A+ h

2B+ h2

8 [A,B]] +O(h3)

= ehOl+
h
2A+ h

2B+ h2

8 [A,B]+ h2

4 [Ol,A]+ h2

4 [Ol,B] +O(h3)

e
h
2AehOle

h
2Ae

h
2B = e

h
2A
(
ehOl+

h
2A+ h

2B+ h2

8 [A,B]+ h2

4 [Ol,A]+ h2

4 [Ol,B] +O(h3)
)

= ehOl+hA+ h
2B+ h2

4 [A,B]+ h2

2 [Ol,B] +O(h3)

P̃ lh , e
h
2Be

h
2AehZe

h
2Ae

h
2B = e

h
2B
(
ehOl+hA+ h

2B+ h2

4 [A,B]+ h2

2 [Ol,B] +O(h3)
)

= ehOl+hA+hB+ h2

4 [A,B]+ h2

2 [Ol,B]+ h2

4 [B,A]+ h2

4 [B,Ol]+
h2

8 [B,B] +O(h3)

= eh(B+A+Ol) +O(h3)

= eh(L+∆Vl) +O(h3) = ehL̃l +O(h3) .

This completes the proof.

J Mean Flow Error Analysis

In addition to the finite time ergodic error studied previously, we study the mean flow error in
this section. To this end, we first define the exact mean flow to be the solution operator of the
Kolmogorov’s backward equation E[f(XT )] = eTLf(X0) over time T = Lh, i.e., ϕT , eTL. With
our splitting method with stochastic gradients for each minibatch, the mean flow operator consists
of a composition of L local mean flows, i.e., ϕ̃hT , ehLL ◦ · · · ◦ehL1 , ◦Ll=1e

hLl , each coming from
a minibatch. Our goal in this section is to compare ϕT with ϕ̃hT . When the underlying equations
of motion are PDEs, i.e., no Brownian motion like the Hamiltonian PDE, ϕT (X0) corresponds to
the exact solution trajectory of the PDE, whereas ϕ̃hT is the trajectory of splitting methods with
stochastic gradients. [7] shows that in this case ϕT (X0) is not close to ϕ̃hT in general. In the section
we extend this result by showing that the conclusion also holds in the SDE case. We comment that
this result is not as surprising as pointed out in [7] because as pointed out in the introduction, such
sample wise convergence is not interesting in most real applications.
Theorem 14. In SGHMC with the symmetric splitting integrator, the difference between the stochas-
tic mean flow operator ϕ̃hT and the exact flow operator ϕT depends on the running time T and
stochastic gradients in each minibatch, and is given by the following formula,

∥∥ϕ̃hT − ϕT∥∥ = C

∥∥∥∥∥ 1

L

L∑
l=1

∆Vl + h ([L,∆V1] + [L,∆VL])

∥∥∥∥∥T +O(h2) ,

for some positive constant C.

We can see from Theorem 14 that ϕ̃hT is not close to ϕT because of the uncontrollable terms ∆Vl
with stochastic gradients, thus SG-MCMCs are not sample-wise convergence.

Proof. First, applying Kolmogorov’s backward equation on the original SDE (1) with generator L,
the true mean flow ϕT (X0) can be expressed as:

ϕT (X0) = eTL(X0) . (48)

Now we want to compute the mean flow of the splitting scheme: ◦Ll=1ϕ̂lh(X0). We will split the SDE
into several parts, with the Brownian motion term going with the stochastic gradient term. To shown
the proof on a different SG-MCMC algorithm, we use the SGHMC with Riemannian information
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geometry (SGRHMC) defined below. Other stochastic gradient MCMC follows similarly. For the
SGRHMC, we have

d

[
θ
p

]
=

[
0

−
(
∇θU(θ) + 1

2∇θ log detG(θ)
)

dt+
√

2DdW

]
︸ ︷︷ ︸

B

+

[
0

−DG(θ)−1 p

]
dt︸ ︷︷ ︸

A

+

[
G(θ)−1 p
ν(θ,p)

]
dt︸ ︷︷ ︸

O

(49)

The splitting scheme we consider is the BAOAB scheme. Denote

B = LB = −
(
∇θU(θ) +

1

2
∇θ log detG(θ)

)
· ∇p + 2D4p

A = LA = −DG−1 p ·∇p

O = LO = G−1 p ·∇θ + ν · ∇p .

Note that L = A+B+O. In the stochastic gradient case, we are using the stochastic gradient from
the l-th minibatch in the splitting scheme, thus we need to modify the operator B as:

Bl , LBl
= −

(
∇θŨl(θ) +

1

2
∇θ log detG(θ)

)
· ∇p + 2D4p ,

where ∇θŨl is evaluated on a subset of data. We emphasis the notation that ∆Vl , Bl − B =(
∇θŨl −∇θU

)
· ∇p, it can be shown that ∆Vl commutes with each other, e.g., ∆Vi∆Vj =

∆Vj∆Vi.

We know from Section I.2 that using the symmetric splitting integrator, the mean flow ϕ̃lh is close
to eh(L+∆Vl) with a O(h3) error, i.e.,

ϕlh = eh(L+∆Vl) +O(h3) .

Similar to the proof of the symmetric splitting error, we can calculate the composition of the mean
flows for two mini-batches i and j using the BCH formula as:

ϕ̃jh ◦ ϕ̃
i
h = eh(B+A+O)+h∆Vi ◦ eh(B+A+Z)+h∆Vj +O(h3)

= e2hL+h(∆Vi+∆Vj)+ h2

2 [L+∆Vj ,L+∆Vi] +O(h3)

= e2hL+h(∆Vi+∆Vj)+ h2

2 ([L,∆Vi]+[∆Vj ,L]) +O(h3) ,

where we have used the fact that {∆Vi} commutes with each other to cancel out the [∆Vi,∆Vj ]
term in the BCH formula. Similarly, for the first three mini-batches i, j, k, we have

ϕ̃kh ◦ ϕ̃
j
h ◦ ϕ̃

i
h = eh(B+A+O)+h∆Vi ◦ eh(B+A+O)+h∆Vj +O(h3)

= e3hL+h(∆Vi+∆Vj+∆Vk)+h2([L,∆Vi]+[L,∆Vk]) +O(h3) .

Similarly, we can do the composition for the entire trajectory, resulting in after simplification:

◦Ll=1ϕ̃
l
h = e(Lh)L+(Lh) 1

L

∑L
l=1 ∆Vl+(Lh)h([L,∆V1]+[L,∆VL]) + (Lh)O(h2)

= eTL+T 1
L

∑L
l=1 ∆Vl+Th([L,∆V1]+[L,∆VL]) +O(h2) (50)

This completes the first part of the theorem. From Assumption 1, we can expand and bound (50)
with the step size h for finite time T as:

ϕ̃T (X0) =

(
TL+ T

1

L

L∑
l=1

∆Vl + Th ([L,∆V1] + [L,∆VL])

)
(X0) +O(h2) .
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Figure 5: Bias and MSE for SGHMC with different step size rates.

Similarly, for the true mean flow ϕT (X0), it is easy to get

ϕT (X0) = ehL ◦ ehL ◦ · · · ◦ ehL︸ ︷︷ ︸
L

= TL(X0) +O(h2) .

As a result:

‖ϕT (X0)− ϕ̃T (X0)‖ =

∥∥∥∥∥
(
T

1

L

L∑
l=1

∆Vl + Th ([L,∆V1] + [L,∆VL])

)
(X0) +O(h2)

∥∥∥∥∥
=

∥∥∥∥∥
(

L∑
l=1

∆Vl + T ([L,∆V1] + [L,∆VL])

)
(X0)

∥∥∥∥∥h+O(h2)

= C

∥∥∥∥∥ 1

L

L∑
l=1

∆Vl + h ([L,∆V1] + [L,∆VL])

∥∥∥∥∥T +O(h2)

This completes the proof.

K Additional Experiments

K.1 Synthetic data

We plot the traces of bias and MSE with step size h ∝ Lα for different rates α in Figure 5. We can
see that when the rates are smaller than the theoretically optimal bias rates α = −1/3 and MSE rate
α = −1/5, the bias and MSE tend to decrease faster than the optimal rates at the beginning, but
eventually they slow down and are surpassed by the optimal rates. This on the other hand suggests
if only a small number of iterations were available in the SG-MCMCs, setting a larger step size than
the theoretically optimal one might be beneficial in practice.

In addition, Figure 6 shows a comparison of the bias and MSE for SGHMC and SGLD. The step
sizes are set to h = CL−α, with α choosing according to the theory for SGLD and SGHMC
respectively. To be fair, the constants C are selected via a grid search from 1e-3 to 0.5 with an
interval of 2e-3 for L = 200, it is then fixed during other L values. The parameter D in SGHMC is
selected within (10, 20, 30) as well. As indicated by both our theorems and experiments, SGHMC
endows a much faster convergence speed than SGHMC on both the bias and MSE.

Figure 7 plots the traces of bias and MSE with decreasing step sizes h ∝ lα for different rates α in
the same Gaussian model. Again we can see that the optimal decreasing rates agree with the theory.
Figure 8 shows a comparison of bias and MSE for SGHMC and SGLD with decreasing step sizes
h ∝ l−α on the same Gaussian model. We follow the same procedure as in Section 3.1 to select
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Figure 6: Comparisons of bias and MSE for SGHMC and SGLD on a simple Gaussian model.
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Figure 7: Bias and MSE for decreasing step size SGHMC with different step size rates.

parameters for SGLD and SGHMC. Specifically, the decreasing rate parameter α is set to 1/2 and
1/3 in SGLD and SGHMC for the bias, 1/3 and 1/5 for the MSE. We can see that SGHMC still
obtain a faster convergence speed, though the benefit is not as large as using fix step size.

K.2 LDA & SBN

We first the list quantitative results of the LDA and SBN models in Table 1. It is clear that in
both models the SGHMC is much better than the SGLD due to the introduction of momentum
variables in the dynamics (similar to the SGD with momemtum [1] in the optimization literature);
and the splitting integrator also works better than the Euler integrator due to the higher order errors
in splitting integrators. For a fair comparison, we did not consider a better version of the SGLD with
Riemannian information geometry of posterior distributions on probabilistic simplexes [19].

Table 1: Comparisons for different algorithms. K in LDA means #topics, J in SBN means #hidden
units; suffix ‘S’ means the symmetric splitting integrator, ‘E’ means the Euler integrator.

LDA (Test perplexity) SBN (Test neg-log-likelihood)
K SGHMC-S SGHMC-E SGLD-E J SGHMC-S SGHMC-E SGLD-E

200 1168 1180 2496 100 103 105 126
500 1157 1187 2511 200 98 100 110
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Figure 8: Comparisons of Bias and MSE for SGHMC and SGLD with decreasing step sizes on a
simple Gaussian model.

Next a plot of the test perplexities decreasing with the number of documents processed for the
whole dataset is given in Figure 9 (top), for a comparison of the Euler integrator and the proposed
symmetric splitting integrator. We can see that the symmetric splitting integrator decreases faster
than the Euler integrator. Furthermore, the dictionary learned by the SGHMC with the symmetric
splitting integrator is also given in Figure 9 (bottom).
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Figure 9: Top: comparisons of Splitting and Euler methods in LDA. Bottom: Dictionary learned by
SGHMC in SBN.
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