
Supplementary Material for

“Efficient Learning of Continuous-Time Hidden

Markov Models for Disease Progression”,

in NIPS 2015

1 Additional Motivation for Using Continuous-
time Models

A question may arise as to why continuous time models are needed for disease
progression modeling. For example, why not simply discretize the time interval
and apply discrete time models? The answer is that the time horizon for state
changes in medical conditions can vary dramatically. In the early stages of a
disease, a state change might not occur for years, but in an acute phase they
could occur very frequently. For states with very short expected dwelling times,
the time step in a discrete model would needs to be sufficiently small. However,
this might be very inefficient for dealing with changes that occur over long
time intervals. On the other hand, if the discretization is too coarse, many
transitions could be collapsed into a single one, obscuring the real dynamics
in continuous-time. In contrast, CT model performs inference over arbitrary
timescales using a single matrix exponential. We believe CT is a better choice
than DT for modeling continuous-time processes such as disease progression and
clinical data.

2 Relationship to Sampling-Based Methods

Here we briefly discuss the relationship between our approach and that of [1].
In [1], CTMC trajectories are sampled from the posterior p(S|O) (S: a CTMC
trajectory, O: observations) using MCMC sampling based on uniformization[2]
ideas. Its time complexity is dependent on maxiqi, the fastest transition rate
in the system, which suffers from the same discretization issue discussed earlier
(which is also noted by the authors). The benefit of [1] over our Expm approach
is that the time complexity only has quadratic dependency on the state space
size, rather than cubic when matrix exponential operation is ever used. However,
this benefit could be offset by the number of samples required for an accurate
estimate, and the aforementioned discretization issue. While [1] does not address

1

parameter learning, their method could in principle be used as a step in our EM
algorithm for computing the required statistics. However, our Expm approach
computes those statistics directly and is more robust to varying transition rates.
The exact comparison of which method is better is dependent on the distribution
on the transition time, as well as the desired accuracy.

3 Additional Discussion of Methods for Com-
puting End-State Conditioned Statistics

3.1 The Uniformization Method

The uniformization method (Unif) is an efficient approximation method for
computing matrix exponential P (t) = eQt [3, 4], which gives an alternative
description of the CTMC process, and show how CTMC and DTMC is equiv-
alence subordinated to a Poisson process (see [2]). Define q̂ = maxi qi, and
matrix R = Q

q̂ + I, where I is the identify matrix. Then, eQt = eq̂(R−I)t =∑∞
m=0R

m (q̂t)m

m! e
−q̂t =

∑∞
m=0R

mPois(m; q̂t), where Pois(m; q̂t) is the proba-
bility of m occurrences from a Poisson distribution with mean q̂t. Then the ex-
pectations can be expressed by directly inserting the eQt series into the integral:
E[τi, s(t) = l|s(0) = k] =

∑∞
m=0

t
m+1 [

∑m
n=0(Rn)ki(R

m−n)il]Pois(m; q̂t) and

E[nij , s(t) = l|s(0) = k] = Rij
∑∞
m=1[

∑m
n=1(Rn−1)ki(R

m−n)jl]Pois(m; q̂t) [4].
The main difficulty in using Unif in practice is to determine a truncation point
of the infinite sum. However, for large values of q̂t, we have Pois(q̂t) ≈ N(q̂t, q̂t),
where N(µ, σ2) is the normal distribution and one can then bound the trunca-
tion error from the tail of Poisson by using cumulative normal distribution [5].
A truncation point at M = p4+6

√
q̂t+(q̂t)q is suggested [5] to have error bound

of 10−8 when approximate P (t), which we adopt in our learning algorithm 1.

3.2 The Eigendecomposition Method

To compute τ i,ik,l(t) and τ i,jk,l (t), it is observed in [6] that the calculation of τ i,jk,l (t)
can be done in closed-form if Q is diagonalizable and one can act eigendecompo-
sition on Q (Eigen method). Consider the eigendecomposition of Q = UDU−1,
where the matrix U consists of all eigenvectors to the corresponding eigenvalues
of Q in the diagonal matrix D = diag(λ1, ..., λn). Then we have eQt = UeDtU−1

and the integral can be written as: τ i,jk,l (t) =
∑n
p=1 UkpU

−1
pi

∑n
q=1 UjqU

−1
ql Ψpq(t)

,where the symmetric matrix Ψ(t) = [Ψpq(t)]p,q∈S is defined as: Ψpq(t) =

tetλp if λp = λq, and Ψpq(t) = etλp−etλq
λp−λq if λp 6= λq.

2

4 Additional EMAlgorithms for CT-HMM Learn-
ing

4.1 Unif Based Algorithm

We used Unif method for computing end-state conditioned statistic for CTMC
in Algorithm 1. In line 6 and 10, Sk→l (and Lk→l) represents the intermediate
states (edges) that can be passed from state k to l. The state accessibility
table can be precomputed using Dijkastra’s shortest path algorithm in O(S2).
The main benefits of Unif in evaluating all expectations is that the R series

(R,R2, ..., RM̂), can be precomputed (line 2) and reused, so that no additional
matrix multiplications is needed. One main property of Unif is that it can
evaluate the expectations for only the two specified end-states, and it has O(M2)
complexity, which is not related to S (when given the precomputed R matrix
series). In hard EM the soft count table C(∆, k, l) (in line 5) becomes sparse
(≤ min(V, rS2) entries have positive values), and thus Unif in hard EM becomes
more time efficient than soft EM. One possible downside of Unif is that if q̂it
is very large, so is the truncation point M , then the computation can be very
time consuming. Thus, we find that Unif ’s running time performance highly
depends on the data and the underlying Q values. The time complexity analysis
is detailed in Algorithm 1 line 16.

Algorithm 1 Unif Algorithm

1: Set t̂ = max t∆; set q̂ = maxiqi.

2: LetR = Q/q̂+I. ComputeR,R2, ..., RM̂ , M̂ = p4+6
√
q̂t̂+(q̂t̂)q⇒ O(M̂S3)

3: for ∆ = 1 to r do
4: M = p4 + 6

√
q̂t∆ + (q̂t∆)q; set t = t∆

5: for each C(∆, k, l) 6= 0 do
6: for each state i in Sk→l do

7: E[τi|s(0) = k, s(t) = l, Q] =
∑M
m=0

t
m+1 [

∑m
n=0(Rn)ki(R

m−n)il]Pois(m;q̂t)

Pkl(t)

⇒ O(M2)
8: E[τi|O, T,Q]+ = C(∆, k, l)E[τi|s(0) = k, s(t) = l]
9: end for

10: for each edge (i, j) in Lk→l do
11: E[nij |s(0) = k, s(t) = l, Q] =

Rij
∑M
m=1[

∑m
n=1(Rn−1)ki(R

m−n)jl]Pois(m;q̂t)

Pkl(t)
⇒ O(M2)

12: E[nij |O, T,Q]+ = C(∆, k, l)E[nij |s(0) = k, s(t) = l]
13: end for
14: end for
15: end for
16: Soft: O(M̂S3 + rS3M2 + rS2LM2); Hard: O(M̂S3 + min(V, rS2)SM2 +

min(V, rS2)LM2)

3

4.2 Eigendecomposition-Based Algorithm

The algorithm with time complexity is listed in Algorithm 2 and Algorithm 3,
where the latter one can be more efficient for soft-EM learning. Eigen method
also has the flexibility in evaluating the expectations only for the specified end-
states, and thus it can be more efficient in hard than in soft EM. In soft EM
learning where we need to compute expectations for every possible end-state
pairs, one can compute the unknowns simultaneously via matrix multiplications
[7] to be more cost efficient than just compute for each unknown separately. In
more detail, define the matrix Di, where the (k, l) entry is E[τi|s(0) = k, s(t) =
l]. Let U−1

i represent the ith row of the matrix U−1, and Ui represent the i’s
column of U . Then [7] shows that Di = U [(U−1

i Ui) ∗ Ψ]U−1, where A ∗ B is
the entrywise product of the two matrices A and B. Using this relationship,
a total of O(S3) is achieved to compute E[τi|s(0) = k, s(t) = l] for all k, l for
a fixed i. Similarly, we can define the matrix Nij , where the (k, l) entry is
E[nij |s(0) = k, s(t) = l] and uses the equation Nij = qijU [(U−1

i Uj) ∗Ψ]U−1, to
compute the unknowns efficiently.

The main problem of Eigen is that it is not a stand-alone algorithm. When
Q is not diagonalizable in any iteration, one needs alternative methods for that
run. In addition, the eigendecomposition of non-symmetric matrices can be ill-
conditioned [7], and one needs reliable numerical solver to indicate this and uses
other approaches.

Algorithm 2 Eigen Algorithm (Soft/Hard EM)

1: Perform eigendecomposition: Q = UDU−1 ⇒ O(S3)
2: for ∆ = 1 to r do
3: Compute matrix Ψ with t = t∆ ⇒ O(S2)
4: for each C(∆, k, l) 6= 0 do
5: for each state i in Sk→l do

6: E[τi|s(0) = k, s(t) = l, Q] =
∑|S|
p=1 UkpU

−1
pi

∑|S|
q=1 UiqU

−1
ql Ψpq(t)

Pkl(t)
⇒ O(S2)

7: E[τi|O, T,Q]+ = C(∆, k, l)E[τi|s(0) = k, s(t) = l]
8: end for
9: for each link (i, j) in Lk→l do

10: E[nij |s(0) = k, s(t) = l, Q] = qij

∑|S|
p=1 UkpU

−1
pi

∑|S|
q=1 UjqU

−1
ql Ψpq(t)

Pkl(t)
⇒

O(S2)
11: E[nij |O, T,Q]+ = C(∆, k, l)E[nij |s(0) = k, s(t) = l]
12: end for
13: end for
14: end for
15: Soft: O(rS5 + rLS4); Hard: O(min(rS2, V)S3 +min(rS2, V)LS2)

4

Algorithm 3 Eigen Algorithm (Soft-EM)

1: Perform eigendecomposition: Q = UDU−1 ⇒ O(S3)
2: for ∆ = 1 to r do
3: Compute matrix Ψ with t = t∆ ⇒ O(S2)
4: for each state i in S do
5: Di = U [(U−1

i Ui) ∗Ψ]U−1 ⇒ O(S3)
6: E[τi|O, T,Q] + =

∑
(k,l)∈L C(∆, k, l)(Di)k,l

7: end for
8: for each edge (i, j) in L do
9: Nij = qijU [(U−1

i Uj) ∗Ψ]U−1 ⇒ O(S3)
10: E[nij |O, T,Q] + =

∑
(k,l)∈L C(∆, k, l)(Nij)k,l

11: end for
12: end for
13: Soft: O(rS4 + rLS3)

5 Time Complexity Comparison between Expm
and Other Methods

Table 1: Time complexity comparison of all methods in evaluating all required ex-
pectations under Soft/Hard EM (r: number of distinct time interval, S: number of
states, L: number of edges, V : number of visits, M : the largest truncation point of the

infinite sum for Unif, set as p4 + 6
√

q̂t̂ + (q̂t̂)q, where q̂ = maxi qi, and t̂ = max∆t∆).

complexity Expm Unif Eigen

Soft EM O(rS4 + rLS3) O(MS3 + rS3M2 + rS2LM2) O(rS4 + rLS3)

Hard EM O(rS4 + rLS3)
O(MS3 + min(rS2, V)SM2

+ min(rS2, V)LM2)
O(min(rS2, V)S3

+ min(rS2, V)LS2

See Table 1 for a comparison of time complexities among the three meth-
ods. The time complexity of Expm is less sensitive to maxi qit∆ than Unif
method (log versus quadratic dependency). It is because when Expm is evalu-
ated using the scaling and squaring method [8], the number of matrix multipli-
cations depends on the number of doing matrix scaling and squaring, which is
plog2(||Qt∆||1/θ13)q, where θ13 = 5.4 (the Pade approximant with degree 13),
if scaling of Q is required [8]. Then we have log2(||Qt∆||1) ≤ log2(Smaxi qit∆).
Thus, the running time of Unif will change according to max qit more dramat-
ically than Expm method.

When comparing Soft EM methods, we find that S(Expm) and S(Eigen)
have same order of time complexity. However, Eigen is not a stand-alone
algorithm. When Q is not diagonalizable or the eigendecomposition of non-
symmetric matrices is ill-conditioned in any iteration [7], one needs alternative
methods. The time complexity comparison between Expm and Unif depends on
the relative scale between state space S and M2, where M = p4+6

√
maxi qit∆+

(maxi qit∆)q. The time complexity of Expm is less sensitive to maxi qit∆ than

5

Unif method (log versus quadratic dependency).

6 Details in the Glaucoma and Alzheimer’s Ex-
periments

6.1 The Glaucoma Experiment

Our glaucoma dataset contains 101 glaucomatous eyes from 74 patients followed
for an average of 11.7±4.5 years, and each eye has at least 5 visits (average
7.1±3.1 visits). 63 distinct time intervals are found. The state space is created
so that most states have at least 5 raw measurements mapped to it. The states
which are in the straight path in between two successive raw data are instan-
tiated, resulting in 105 states 1 . The data emission model is set as a normal
distribution with µ set to the center of the data band, and σ set to 0.25 of
the band width. Ten-fold cross validation is used and Soft(Expm) is adopted
in learning. Testing proceeds by decoding the first 4 visits using the learned
CT-HMM model and then predicting future states and observations.

6.2 The Alzheimers Dataset

In this experiment, we analyze the temporal interaction among the three kinds
of markers: amyloid beta (Aβ) level in cerebral spinal fluid (CSF) (bio-chemical
marker), hippocampus volume (structural marker), and ADAS cognition score
(functional marker) over the course of the disease. We obtained the ADNI (The
Alzheimer’s Disease Neuroimaging Initiative) dataset from the website [9]2 The
mild cognition impairment (MCI) and AD patients who have at least two visits
of all three indicated markers are included for our analysis, which results in
206 subjects of 2.38 ± 0.66 visits traced in 1.56 ± 0.86 years. Only 3 distinct
time intervals in month resolution are found. A 3D gridded state space with
forwarding links is defined such that for each marker, we have 14 bands that
span its value range. The procedure for constructing the state space and the
definition of data emission model is the same as in the Glaucoma experiment.
277 states are instantiated and the model is then trained using Soft(Expm). The
running time using Soft(Expm) is about 17 minutes per iteration on a 2.67 GHz
machine (for comparison, Soft(Unif) spends more than 48 minutes per iteration;
Hard(Unif) spends around 2 minutes and Eigen fails in this model).

1 The grid [100.5 99.5 98 96 93 90 85 80 : (−10) : 20] is used for Visual Field Index (the
functional marker), and the grid [130 : (−5) : 80 70 : (−10) : 30] is used for the Retinal Nerve
Fiber Layer thickness (the structural marker) for the glaucoma prediction task.

2Data were obtained from the ADNI database (adni.loni.usc.edu). The ADNI was
launched in 2003 as a public-private partnership, led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic resonance
imaging (MRI), positron emission tomography (PET), other biological markers, and clinical
and neuropsychological assessment can be combined to measure the progression of mild cog-
nitive impairment (MCI) and early Alzheimers disease (AD). For up-to-date information, see
http://www.adni-info.org

6

adni.loni.usc.edu
http://www.adni-info.org

References

[1] V. Rao and Y. W. Teh, “Fast MCMC sampling for markov jump processes
and extensions,” Journal of Machine Learning Research, vol. 14, 2013.

[2] S. M. Ross, Stochastic Processes. New York: John Wiley, 1983.

[3] A. Jensen, “Markoff chains as an aid in the study of markoff processes,”
Skand. Aktuarietidskr, vol. 36, pp. 87–91, 1953.

[4] A. Hobolth and J. L. Jensen, “Summary statistics for endpoint-conditioned
continuous-time markov chains,” Journal of Applied Probability, vol. 48,
no. 4, pp. 911–924, 2011.

[5] P. Tataru and A. Hobolth, “Comparison of methods for calculating con-
ditional expectations of sufficient statistics for continuous time markov
chains,” BMC Bioinformatics, vol. 12, no. 465, 2011.

[6] P. Metzner, I. Horenko, and C. Schtte, “Generator estimation of markov
jump processes based on incomplete observations nonequidistant in time,”
Physical Review E, vol. 76, no. 066702, 2007.

[7] P. Metzner, I. Horenko, and C. Schtte, “Generator estimation of markov
jump processes,” Journal of Computational Physics, vol. 227, p. 353375,
2007.

[8] N. Higham, Functions of Matrices: Theory and Computation. SIAM, 2008.

[9] The Alzheimers Disease Neuroimaging Initiative, “http://adni.loni.usc.
edu,”

7

http://adni.loni.usc.edu
http://adni.loni.usc.edu

	Additional Motivation for Using Continuous-time Models
	Relationship to Sampling-Based Methods
	Additional Discussion of Methods for Computing End-State Conditioned Statistics
	The Uniformization Method
	The Eigendecomposition Method

	Additional EM Algorithms for CT-HMM Learning
	Unif Based Algorithm
	Eigendecomposition-Based Algorithm

	Time Complexity Comparison between Expm and Other Methods
	Details in the Glaucoma and Alzheimer's Experiments
	The Glaucoma Experiment
	The Alzheimers Dataset

