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5 Related Work

In the context of two parties, privacy-accuracy tradeoffs have been studied in [31, 22] where a single function
is computed by a “third-party” observing the transcript of the interactive protocol. [31] constructs natural func-
tions that can only be computed very coarsely (using a natural notion of accuracy) as compared to a client-server
model (which is essentially the single party setting). [22] shows that every non-trivial boolean functionality al-
ways incurs some loss of accuracy for any non-trivial privacy setting. Further, focusing on the specific scenario
where each of the two parties has a single bit of information, [22] characterizes the exact accuracy-privacy
tradeoff for AND and XOR functionalities; the corresponding optimal protocol turns out to be non-interactive.
However, this result was derived under some assumptions: only two parties are involved, only the central ob-
server computes an approximation of a function, the function has to be either XOR or AND, symmetric privacy
conditions were used for both of the parties, and accuracy was measured only as worst-case over the four pos-
sible inputs. Further, their analysis technique does not generalize to the case when we have more than two
parties. To this end, we provide a new analysis technique of transforming the rank constrained optimization
problem into a linear program, and give the exact optimal protocols for any number of parties, any function
of interest, heterogeneous privacy requirements, and both average and worst-case accuracy measures. Among
other things, this fully recovers the main results of [22] and does it with a more efficient protocol as discussed
in Section 7.

While there is a vast literature on differential privacy in a variety of contexts, exact optimality results are very
few. In an early result, [20] shows that adding discrete Laplacian noise to scalar count queries (which are a
special case of integer functionalities with sensitivity one) is universally optimal in terms of maximizing the
average accuracy for any cost metric that is monotonic in the error. While such universal mechanisms do not
exist in terms of maximizing average accuracy [6], recent work by [18] and [19] construct a class of mechanisms
(termed as “staircase” mechanisms) that are universally optimal in terms of maximizing worst-case accuracy
for any cost metric that is monotonic in the error. Demonstrating a fundamental equivalence between binary
hypothesis testing and differential privacy, [34] derives data processing inequalities for differential privacy that
are used to derive optimal composition theorems (characterization of how privacy degrades due to interactive
querying). These techniques are also useful in the results derived in this paper.

The study of accuracy-privacy tradeoffs in the MPC context was first initiated by [2] (addressed in a more
general context earlier by [17]) who studied a specific paradigm where differential privacy and SFE co-exist:
the function to compute is decided from differentially private analyses and the method to compute it is decided
from SFE theory. Specific functions such as SUM were studied in this setting, but no exact optimality results are
available. Exact optimality of non-interactive communication is demonstrated for two-party AND and XOR
function computations in [22]. A curious fact in the context of AND computation is that [22] requires the
randomization of the bit to be in an output space of three letters (as opposed to the binary alphabet in standard
randomized response). At a first glance, this appears to be in contradiction to the claim in this paper. A closer
look reveals that randomized response also achieves the same performance (worst-case accuracy over the four
inputs) when combined with a different (and randomized) decision function. Indeed, the techniques from [34]
allow one to foresee this from an abstract point of view: every differentially private mechanism of a bit can be
simulated from the output of randomized response with the same level of privacy. In other words, if b is the
bit, and X is the (random) output of randomized response and Y is the (random) output of some differentially
private mechanism operating on b, then there exists a joint distribution on (X,Y ) such that the Markov chain
b−X − Y holds. This is discussed in detail in a later discussion section.

Function approximation has been widely studied in differential privacy literature under a centralized model
where there is a single trusted entity owning a statistical database over a large number of individuals. Under
this centralized setting, statistical learning has also been widely studied in differential privacy, e.g. classification
[28, 10], k-means clustering [5], principal component analysis [8, 9, 24, 27]. In particular, it has been shown in
[28] that under the centralized setting there exists a class of concepts that is efficiently learnable by interactive
algorithms whereas a non-interactive algorithm requires exponential number of samples. An algorithm is called
interactive in the centralized model, if it involves multiple rounds of communications between the server and
the client. In contrast, we consider a multi-party setting where privacy barrier is on each individual owning
his/her own data. All communication happens in multiple rounds in multi-party computation, and a protocol is
called interactive in the multi-party setting if one party’s message depends on other party’s previous messages.
In this sense, the notion of interaction in multi-party computation is significantly different from what has been
previously studied under centralized client-server settings.

6 Proof of Theorem 3.1

We first focus on the scenario where a central observer wants to compute a function f over k bits distributed
across k parties. We will show in Section 6.1 that ACCave(P,w, f, f̂) is maximized when randomized re-
sponse protocol is used with the optimal decision rule of (5). Subsequently in Section 6.2, we show that
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ACCwc(P,w, f, f̂) is maximized when again randomized response protocol is used with the optimal decision
rule of (6). Theorem 3.1 directly follows from these two results, since the i-th party can compute the optimal
decision and achieve the maximum accuracy for each instance of xi ∈ {0, 1}.

6.1 Proof for the average case

Theorem 6.1 For a central observer who wants to compute f with accuracy measure w, randomized response
with the optimal decision rule of (5) maximizes the average accuracy ACCave(P,w, f, f̂) among all {λi}-
differentially private protocols and all decision rules.

In this section, we provide a proof of this theorem. We want to solve the rank-constrained optimization problem
of (11). The sketch of the proof is as follows. First, we introduce a novel change of variables to transform the
optimization into an infinite dimensional linear program. Next, we show that if the optimal solution to this
LP has non-zero probability only for ‘extremal’ transcripts (see Definition 6.1), then there is only one possible
protocol which is the randomized response in (9). Finally, we finish the proof by using dual LP to prove that
the optimal solution can only have non-zero probability at the ‘extremal’ transcripts.

LP formulation. We want to maximize the average accuracy over P and Q, where the average accuracy is (up
to a scaling by 1/2k)
∑

x

EP [w(f(x), f̂(τ))] =
∑

x

∑

y∈Y
w(f(x), y)︸ ︷︷ ︸

,W (y)
x

∑

τ∈T
Px,τ P(f̂(τ) = y)︸ ︷︷ ︸

,Qτ,y

=
∑

y

〈
W (y),

∑

τ

PτQτ,y
〉
,

where 〈, 〉 denote the standard inner product such that
〈
W (y), PτQτ,y

〉
=
∑
x

(
W

(y)
x Px,τQτ,y

)
, and Pτ is

the column of the matrix P corresponding to τ . The 2k × |T |-dimensional matrix P represents the conditional
distribution of the transcripts τ given the original data x, such that Px,τ = P(τ |x). The |T | × |Y|-dimensional
matrix Q represents the decision rule, possibly randomized. For example, if we consider two-party XOR
computation with the same level of privacy λ, a solution (which turns out to be optimal) is randomized response
with decision rule according to the XOR of the received bits. In particular, τ ∈ {00, 01, 10, 11} and y = f̂(τ)
is the XOR of the two bits in τ . This can be written as

P =
1

(1 + λ)2




λ2 λ λ 1
λ λ2 1 λ
λ 1 λ2 λ
1 λ λ λ2


 , and Q =




1 0
0 1
0 1
1 0


 . (13)

Notice that the labeling of τ is arbitrary and applying the same permutation to the columns of P and the rows
of Q does not change the feasibility or the accuracy of the solution. The columns of P are still rank one when
written in an appropriate tensor form, and also satisfy the differential privacy constraints. Another important
point is that we cannot restrict the number of transcripts a priori, and when solving (11), we need to consider
infinite dimensional (but countable) T = Z. The objective and the constraints depend on

[P(y, f̂(τ) = y|x)]x,τ,y = [Px,τQτ,y]x,τ,y ,

for x ∈ {0, 1}k, τ ∈ Z, and y ∈ Y where how we label or index the transcript τ is arbitrary. Since the rank
constraints on the tensorized version of the columns of P are difficult to handle, we exploit the fact that the
problem is invariant in renaming of the transcript index τ , and introduce a new indexing of the transcripts and
new representation of the effective decision variable [P(y, f̂(τ) = y|x)]x,τ,y .

Define a signature vector as a vector S(s1,...,sk) ∈ R2k indexed by (s1, . . . , sk) ∈ [λ−1
1 , λ1]×· · ·× [λ−1

k , λk].
A signature vector Ss1,...,sk is a vectorized version of a rank-one tensor [1 , s1] ⊗ · · · ⊗ [1 , sk] (to ensure
that the rank constraint is satisfied) with λ−1

i ≤ si ≤ λi for all i ∈ [k] (to ensure that the differential privacy
constraint is satisfied). The index (s1, . . . , sk) effectively replaces the indexing of the transcript τ . Consider
an infinite dimensional matrix S, where the number of rows is 2k and the number of columns is uncountably
infinite. The signature matrix S contains as its columns all possible choices of the signature vector S(s1,...,sk)

indexed by (s1, . . . , sk). Given this definition S, the space of all possible feasible protocols and all possible
corresponding decision rules can be represented as

[P(y, f̂(τ) = y|x)]x,τ,y = [Sx,(s1,...,sk)θ
(y)

(s1,...,sk)
]x,(s1,...,sk),y , (14)

where the equality is up to a appropriate mapping of indexes in τ and (s1, . . . , sk) and merg-
ing/splitting/dropping of appropriate columns. As a concrete example, the conditional distribution of outputting
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y = 0 in (13) is

[P(τ, f̂(τ) = y|x)]x,τ,y=0 = P diag(Q(0)) =
1

(1 + λ)2



λ2 0 0 1
λ 0 0 λ
λ 0 0 λ
1 0 0 λ2


 , (15)

which can be represented (up to a reindexing of the columns) using the signature matrix as

S diag(θ(0)) =




1 · · · 1 · · ·
λ−1 · · · λ · · ·
λ−1 · · · λ · · ·
λ−2 · · · λ2 · · ·







λ2

(1+λ)2

0
. . .

0
1

(1+λ)2

0
. . .




(16)

For all practical purposes, these two matrices represent the same protocol and the same decision rule. Since S
is a fixed matrix for given problem parameters k and λi’s, the new decision variable is just the set of scaling
vectors {θ(y)}y∈Y . By optimizing over θ(y)’s, we are effectively selecting a subset of signatures to include
in our transcript, and choosing the randomized outputs of those selected transcripts. We want to maximize
the average accuracy, conditioned on the fact that conditional probabilities sum to one and probabilities are
non-negative.

maximize
θ(1),...,θ(|Y|)

∑

y∈Y
〈W (y), Sθ(y)〉 =

∑

y∈Y,(s1,...,sk)
(STW (y))(s1,...,sk)θ

(y)

(s1,...,sk)

subject to
∑

y∈Y

∑

(s1,...,sk)

S(s1,...,sk)θ
(y)

(s1,...,sk)
= 1

θ(y) ≥ 0.

(17)

This is a linear program in θ(y)’s and once we have the optimal solution we can translate it to the original
variables using (14). However, numerically solving the above problem is infeasible since the dimension of each
variable θ(y) is now uncountably infinite. We first claim that the solution of this problem is simple and can be
represented in a closed form, and then prove this claim using the dual LP.

Definition A 2k-dimensional column vector S(s1,...,sk) is extremal if the k-th order tensorization of S(s1,...,sk)

is a rank-one tensor of the form [1 , s1]⊗ · · · ⊗ [1 , sk] with factors si ∈ {λ−1
i , λi} for all i ∈ [k]. There are

2k such extremal columns of S.

This notion of extremal transcript is consistent with a similar notion of extremal privatization mechanisms
defined in [26] as a set of mechanisms whose conditional distributions are at the extreme points of differential
privacy constraints. When k = 2 there are four extremal columns of S:




1
λ1

λ2

λ1λ2


 ,




1
λ1

λ−1
2

λ1λ
−1
2


 ,




1
λ−1
1

λ2

λ−1
1 λ2


 ,




1
λ−1
1

λ−1
2

λ−1
1 λ−1

2


 .

We make the following claim.

Remark The optimal solution to the LP in (17) only has strictly positive θ(y)(s1,...,sk)
for (s1, . . . , sk) corre-

sponding to extremal columns of S and all the non-extremal columns are set to zero.

Suppose for now that this claim is true, then we can make following observations.

• There is an optimal solution of the LP that requires no randomized decision. Suppose the set
{θ(y)}y∈Y is an optimal solution, and there is an extremal transcript (s1, . . . , sk) such that both
θ
(y1)

(s1,...,sk)
and θ(y2)(s1,...,sk)

are non-zero for some y1, y2 ∈ Y . Then, we can construct a new optimal

solution by setting θ̃(y1)(s1,...,sk)
= θ

(y1)

(s1,...,sk)
+ θ

(y2)

(s1,...,sk)
and θ̃(y2)(s1,...,sk)

= 0. Continuing in this
fashion, we can construct an optimal solution with no randomization.
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• Since the 2k×2k sub matrix of S corresponding to the extremal columns is now an invertible matrix,
θ =

∑
y∈Y θ

(y) is easily computed by the equality constraint. Once the optimal θ is fixed, we can

identify the optimal decision rule for each transcript separately. Among θ(y)(s1,...,sk)
’s for y ∈ Y ,

put all the mass on the y that maximizes (STW (y))(s1,...,sk). The optimal protocol S diag(θ) is
uniquely determined, and finding the optimal decision rule (i.e. θ(y)) is also simple once we have the
protocol. This gives the precise optimal decision rule described in Equation (2).

• This uniquely determined optimal protocol is the randomized response defined in Equation (9) for all
possible choices of the problem parameters, and it is a non-interactive protocol.

Proof of the remark 6.1 using the geometry of the manifold of rank one tensors. Now, we are left to prove
the claim that the optimal solution only contains the extremal signatures. Consider a k-dimensional manifold
in 2k-dimensional space:

M{λi} = {T : T = [1, t1]⊗ · · · ⊗ [1, tk] and λ−1
i ≤ ti ≤ λi for all i ∈ [k]} ,

P{λi} = conv(M{λi}) ,
where conv(·) is the convex hull of a set. The following result characterizes the polytope P{λi}, the proof of
which is moved to Section A.2.

Lemma 6.1 The convex hull P{λi} is a polytope with 2k faces and 2k corner points corresponding to the 2k

extremal columns of S. Further, the intersection of the manifold M{λi} and the boundary of P{λi} is only
the set of those corner points. Hence, any point in the manifold is represented as a convex combination of the
corner points, and it requires all the corner points to represent any point in the manifold that is not already one
of the corner points.

This implies that any column of S can be represented as a convex combination of the extremal columns of S.
We can write the dual of the primal LP in Equation (17) as:

minimize
µ∈R2k

∑

x∈{0,1}k
µx subject to

〈S(s1,...,sk), µ〉 ≥ 〈S(s1,...,sk) , W
(y)〉 , for all y ∈ Y, (s1, . . . , sk) ∈ [λ−1

1 , λ1]× · · · × [λ−1
k , λk].
(18)

Consider an optimal dual solution µ∗. We now prove that for any dual optimal solution, the constraints in
Equation (18) can be met with equality only for the indices (s1, . . . , sk) corresponding to corner points of
P{λi}. By complementary slackness of LP, this implies that the primal variable θ(y)(s1,...,sk)

can only be strictly
positive for the extremal transcripts, and all non-extremal transcripts must be zero.

If 〈T, µ∗〉 =
∑
xW

(y)
x Tx for some T ∈M{λi} which is not an extremal point, then it follows from Lemma

6.1 that T can be represented as a convex combination of the extremal points. Unless all the constraints for µ∗

are satisfied with equalities (which can only happen if W (y) are all same for all y ∈ Y and all protocols and
decision rules achieve the same accuracy), there exists at least one extremal signature S(s1,...,sk) such that the
inequality in (18) is violated. Hence, it contradicts the assumption that µ∗ is a feasible dual solution.

6.2 Proof for the worst-case accuracy

Theorem 6.2 For a central observer who wants to compute f with accuracy measure w, randomized response
with the optimal decision rule of (6) maximizes the worst-case accuracy ACCwc(P,w, f, f̂) among all {λi}-
differentially private protocols and all decision rules.

In this section, we provide a proof of this theorem. Consider the worst case accuracy of the form

min
x∈{0,1}k

Ef̂(τ)[w(f(x), f̂(τ))] = min
x

∑

y∈Y
w(f(x), y)︸ ︷︷ ︸

W
(y)
x

∑

τ∈T
Px,τ P(f̂(τ) = y)︸ ︷︷ ︸

Qτ,y

.

Using the signature matrix S, we can write this as maximizing a concave function (minimum over a set of linear
functions is a concave function):

maximize
θ(1),...,θ(|Y|)

min
x∈{0,1}k

{∑

y∈Y
W (y)
x

(
Sθ(y)

)
x

}

subject to S
∑

y∈Y
θ(y) = 1

θ(y) ≥ 0.

(19)
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This can be formulated as the following primal LP:

maximize
ξ,θ(1),...,θ(|Y|)

ξ

subject to ξ ≤
{∑

y∈Y
W (y)
x

(
Sθ(y)

)
x

}
, for all x ∈ {0, 1}k

S
∑

y∈Y
θ(y) = 1

θ(y) ≥ 0.

(20)

Define dual variables ν ∈ R2k corresponding to the first set of constraints and µ ∈ R2k to the second. Then
the dual LP is

minimize
ν,µ

∑

x

µx

subject to 〈S(s1,...,sk), µ〉 ≥
∑

x

W (y)
x Sx,(s1,...,sk)νx , for all y ∈ Y, (s1, . . . , sk) ∈ [λ−1

1 , λ1]× · · · × [λ−1
k , λk]

1
T ν = 1

ν ≥ 0.
(21)

Consider an optimal solution (ν∗, µ∗). This defines a polytope for the each column of S put in a tensor form
in R2k :

Pν∗,µ∗ = {T : 〈T, µ∗〉 ≥
∑

x

W (y)
x Txν

∗
x, for all y ∈ Y}.

Now, (ν∗, µ∗) is feasible if and only if P{λi} ⊆ Pν∗,µ∗ , since the condition must be met by all λ-DP protocol-
compatible transcripts.

Since both Pν∗,µ∗ and P{λi} are convex polytopes, and P{λi} ⊆ Pν∗,µ∗ for our choice of optimal solutions,
then the constraints in Eq. (21) can only be met with equality for signatures corresponding to the intersection of
M{λi} and the boundary of Pν∗,µ∗ . From Lemma 6.1, we know that such intersection can only happen at the
extremal points. By complementary slackness of LP, this implies that the primal variable θ(y)(s1,...,sk)

can only
be strictly positive for the extremal transcripts, and all non-extremal transcripts must have zero value. However,
in this case, one might need to resort to randomized decisions depending on the accuracy weights W .

The optimality of the extremal protocols can also be also explained perhaps more intuitively as follows. Con-
sider the primal LP formulation. Let Θ = {θ(1), . . . , θ(|Y|)} be an optimal solution that has at least one value
that is non-extremal. Without loss of generality, let θ(1)i be the positive value corresponding to a non-extremal

transcript Si. Then, by the lemma, we know that we can represent Si =
∑2k

j=1 αjSj , where S1 . . . , S2k are
the extremal transcripts. Then, we can construct another feasible solution Θ̃ = {θ̃(1), . . . , θ̃(|Y|)} from Θ, by
taking the value of θ(1)i and add it to the extremal ones according to θ̃(1)j = θ

(1)
j +αjθ

(1)
i , and setting θ̃(1)i = 0.

The new solution preserves the summation Sθ̃(y) = Sθ(y). Since the new solution has one less non-extremal
value, we can continue in this fashion until we are left with only extremal transcripts.

7 Two-party function computation

In this section, we show that randomized response always dominates over any other non-interactive schemes.
Precisely, we will show the following claim: for any non-interactive protocol and a decision rule, there exists
a randomized response and a decision rule for the randomized response that achieves the same accuracy, for
any privacy level, any function, and any measure of accuracy.

The statement is generally true, but for concreteness we focus on a specific example in the two-party setting,
which captures all the main ideas. In this setting, there are essentially only two functions of interest, AND and
XOR, and it is only interesting to consider the scenario where the central observer is trying to compute these
functions over two bits distributed across two parties. Private AND function computation under the worst-case
accuracy measure was studied in [22]. [22] proposed a non-interactive scheme and showed that it achieves the
optimal accuracy of λ(λ2 + λ+ 2)/(1 + λ)3 when both parties satisfy λ-differential privacy.
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We will show by example how to construct a randomized response that dominates any non-interactive scheme.
The protocol proposed in [22] outputs a privatized version of each bit according to the following rule

M(0) =





0 w.p. λ
1+λ

1 w.p. λ
(1+λ)2

2 w.p. 1
(1+λ)2

, and M(1) =





0 w.p. 1
1+λ

1 w.p. λ2

(1+λ)2

2 w.p. λ
(1+λ)2

,

which satisfies λ-differential privacy. Such a non-interactive protocol of revealing the privatized data is referred
to as a privacy mechanism. Upon receiving this data, the central observer makes a decision according to

f̂(M(x1),M(x2)) =

{
1 if M(x1) = 2 or M(x2) = 2

M(x1) ∧M(x2) otherwise .

Now consider the randomized response mechanisms:

MRR(xi) =

{
xi with probability λ

1+λ
,

x̄i with probability 1
1+λ

.

The dominance of this randomized response follows from a more general result proved in [34] which introduces
a new operational interpretation of differential privacy mechanisms that provides strong analytical tools to
compare privacy mechanisms.

This crucially relies on the following representation of the privacy guarantees of a mechanism. Given a mech-
anism, consider a binary hypothesis test on whether the original bit was a zero or a one based on the output
of the mechanism. Then, the two types of errors (false alarm and missed detection) on this binary hypothesis
testing problem defines a two-dimensional region where one axis is PFA and the other is PMD. For a rejection
set S for rejecting the null hypothesis, PFA = P(M(x) ∈ S) and PMD = P(M(x) /∈ S). The convex hull
of the set of all pairs (PMD, PFA) for all rejection sets, define the hypothesis testing region. For example, the
mechanismM corresponds to regionRM and the randomized response corresponds to regionRMRR in Figure
1, which happens to be identical.

 0

 0.5

 1

 0  0.5  1

PMD

PFA

Figure 1: Three regionsRM ,RMRR , andRλ are identical (ε = 1.5).

Differential privacy conditions can be interpreted as imposing a condition on this region:

PFA + λPMD ≥ 1 , and λPFA + PMD ≥ 1 ,

which defines a triangular region denoted byRλ and shown in Figure 1.

Theorem 7.1 ([34, Theorem 2.3]) A mechanism is λ-differentially private if and only if the corresponding
hypothesis testing region is included insideRλ.

This is a special case of the original theorem which proves a more general theorem for (ε, δ)-differential privacy.
We can immediately check that both M and MRR are λ-differentially private.

It is no coincidence that the regions RM , RMRR , and Rλ are identical. It follows from the next theorem on
the operational interpretation of differential privacy. We say a mechanism M1 dominates a mechanism M2 if
M2(x) is conditionally independent of x conditioned onM1(x). In other words, we can construct the following
Markov chain: x−M1(x)−M2(x). This is again equivalent to saying that there is another mechanism T such
that M2(x) = T (M1(x)). Such an operational interpretation of differential privacy brings both the natural
data processing inequality (DPI) and the strong converse to the data processing inequality, which follows from
a celebrated result of Blackwell on comparing two stochastic experiments [4]. These inequalities, while simple
by themselves, lead to surprisingly strong technical results, and there is a long line of such a tradition in the
information theory literature: Chapter 17 of [12] enumerates a detailed list.
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Theorem 7.2 (DPI for differential privacy [34, Theorem 2.4]) If a mechanismM1 dominates another mech-
anism M2, then

RM2 ⊆ RM1 .

Theorem 7.3 (A strong converse to the DPI [34, Theorem 2.5]) For two mechanisms M1 and M2, there ex-
ists a coupling of the two mechanisms such that M1 dominates M2, if

RM2 ⊆ RM1 .

Among other things, this implies that among all λ-differentially private mechanisms, the randomized response
dominates all of them. It follows that, for an arbitrary mechanism M , there is another mechanism T such that
M(x) = T (MRR(x)).

In the two-party setting, this implies the desired claim that there is no point in doing anything other than the
randomized response, and that for the AND example, even though the protocol in [22] uses an alphabet of three
letters for each party, it is still able to achieve maximum accuracy, because there is no reduction in the hypothesis
testing region. The final decision is made as per f̂(M(x1),M(x2)). Without doing any calculations, one
could have guessed that this is achievable with randomized response which uses only the minimal two letters
by simply simulating M(xi) upon receiving MRR(xi), namely, by computing f̂RR(MRR(x1),MRR(x2)) =

f̂(T (M(x1)), T (M(x2))). The new decision rule for randomized response is:

f̂RR(MRR(x1),MRR(x2)) =





0 if (MRR(x1),MRR(x2)) = (0, 0)
1 if (MRR(x1),MRR(x2)) = (1, 1)
0 if (MRR(x1),MRR(x2)) = (0, 1) or (1, 0), then with probability λ

1+λ

1 if (MRR(x1),MRR(x2)) = (0, 1) or (1, 0), then with probability 1
1+λ

.

8 Generalization to Multiple Bits

As an example, consider the first party with one bit x and the second party has two bits y1 and y2. Each bit
needs to be protected as per ε-differential privacy. A central observer wishes to compute the following function:

f(x, y1, y2) =

{
y1 ⊕ y2 if x = 0 ,
y1 ∧ y2 if x = 1 .

Randomized response would publish privatized versions of x, y1, and y2 according to (9). In an interactive
scheme, looking at x̃, the second party publishes (the privatized version of) either y1⊕ y2 (if x̃ = 0) or y1 ∧ y2
(if x̃ = 1). Upon receiving the privatized data, the central observer makes optimal decisions in each case.
Figure 2 illustrates how these two protocols compare in terms of average accuracy, where the accuracy is one
if the approximation is correct and zero if the approximation is incorrect. For ε = 0, both protocols cannot do
better than the best random guess of zero, which achieves average accuracy of 5/8 = 0.625. For large ε, both
protocols achieve the best accuracy of one.
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Figure 2: Interactive protocols can improve over the randomized response, when each party owns
multiple bits, for computing XOR or AND (left) and computing the Hamming distance (right).

Another example of multiple bit multi-party computation is studied in [31]. There are two parties each owning
two bits of data x ∈ {0, 1}2 and y ∈ {0, 1}2, and a third party wants to compute the Hamming distance
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dH(x, y) =
∑2
i=1 |xi − yi|. Assuming each bit needs to be protected, the randomized response would reveal

each bit via Equation 9. On the other hand, we can design an interactive scheme where one party reveals
its two bits via the randomized response, and the other party then outputs its best estimate of the Hamming
distance obeying differential privacy guarantees. Figure 2 illustrates how these two protocols compare in terms
of average accuracy, where the accuracy is 2 − |dH(x, y) − d̂| where d̂ is the optimal decision made by the
third party; the Hamming distance dH is one if the approximation is correct and zero if the approximation is
incorrect. For ε = 0, both protocols cannot do better than the best random guess of zero. which achieves
average accuracy of 5/8 = 0.625. For large ε, both protocols achieve the best accuracy of one.

A Appendix

A.1 Proof of Corollary 3.1

Let X̃ denote the random output of the randomized response, and let f(X̃) denote the XOR of all k bits. Notice
that P (X, X̃) = (λk−dh(X,X̃))/(1 + λ)k where dh(·, ·) denotes the Hamming distance. For a given X̃ the
decision is either f(X̃) or the complement of it. We will first show that f(X̃) is the optimal decision rule.

It is sufficient to show that E[w(f(X), f(X̃))|X̃] ≥ E[w(f(X), f̄(X̃))|X̃]. Since, E[w(f(X), f(X̃))|X̃] =∑
i even

(
k
i

)
λk−i/(1 + λ)k and E[w(f(X), f̄(X̃))|X̃] =

∑
i odd

(
k
i

)
λk−i/(1 + λ)k, it follows that

E[w(f(X), f(X̃))|X̃]− E[w(f(X), f̄(X̃))|X̃] = (λ− 1)k/(1 + λ)k ≥ 0 ,

since λ ≥ 1. By symmetry, the decision rule is the same for all X̃ , and also for the worst case accuracy. This
finishes the desired characterization of the optimal accuracy.

To get the asymptotic analysis of the accuracy, notice that E[w(f(X), f(X̃))] + E[w(f(X), f̄(X̃))] = 1

and E[w(f(X), f(X̃))] + E[w(f(X), f̄(X̃))] = (λ − 1)k/(1 + λ)k = (eε − 1)k/(2 + (eε − 1))k =

(1/2)kεk +O(εk+1). It follows that E[w(f(X), f(X̃))] = 1/2 + (1/2)k+1εk +O(εk+1).

A.2 Proof of Lemma 6.1

Consider the following half space for R2k . For an a ∈ {−1,+1}k, the half space Ha is defined as the set of
T ∈ R2k satisfying

(−1)k
( ∏

j∈[k]
aj
) ∑

x∈{0,1}k

(
Tx
∏

i∈[k]
(−λi)ai xi

)
≥ 0 . (22)

We claim that

P{λi} =



T ∈

⋂

a∈{−1,+1}k
Ha

∣∣∣ T0...0 = 1



 .

It is straightforward to see that M{λi} is inside the intersection of all 2k half-spaces: all tensors in M{λi}
satisfy

(−1)k
( ∏

j∈[k]
aj
) ∏

i∈[k]

(
1− λaiti

)
≥ 0 ,

for all a ∈ {−1,+1}k. This immediately implies that the tensors satisfy (22). To show that it is indeed the
convex hull, we need to show thatM{λi} intersects with the boundary of P{λi} at every corner point. P{λi}
as defined above is 2k − 1 dimensional polytope in 2k dimensional space, with at most 2k faces and 2k corner
points. Each corner point is an intersection of 2k− 1 half spaces and the one hyperplane defined by T0...0 = 1.

Consider a corner point ofM{λi} represented by a ∈ {−1,+1}k as

T (a) = [1 , λa11 ]⊗ · · · ⊗ [1 , λ
ak
k ] .

It follows that T (a) is an intersection of 2k − 1 half spaces Hb for b 6= a. Hence, every corner point of P{λi}
intersects withM{λi}. This finishes the proof.
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