Supervised Learning for Dynamical System Learning
(Supplementary)

A Spectral and HSE Dynamical System Learning as Regression

In this section we provide examples of mapping some of the successful dynamical system learning
algorithms to our framework.

A1l HMM

In this section we show that we can use instrumental regression framework to reproduce the spec-
tral learning algorithm for learning HMM [1]]. We consider 1-observable models but the argument
applies to k-observable models. In this case we use ¢; = ¢,, and & = e,,,., = €o, Dk €0, ;>
where ®;, denotes the kronecker product. Let P; ; = Ele,, ® e,,] be the joint probability table of

observations ¢ and j and let ]5” be its estimate from the data. We start with the (very restrictive)
case where P 7 is invertible. Given samples of hy = ¢e,,, V2 = €., and §2 = e,,_,, in S1 regression

we apply linear regression to learn two matrices W ; and Wa.3 ; such that:
E[yo|ho] = So,0, 55, ha = Py P hy = Waihy (A.1)
E[&2]ha] = Sos.50, 2;11h2 = P2:3,1Pffh2 = Was,1he, (A.2)

where Py.31 = Eleo, , @ €,,]

In S2 regression, we learn the matrix W that gives the least squares solution to the system of equa-
tions

E[§2|hg] = W2:3,1601 = W(Wzleol) = WE[1,/}2|}L2] , for given samples of ho

which gives
W = Was1Eleo, e, Wy, (Wz,lﬁ[eme;}wgl) B
= (P2:3,1151_,11152T,1> (152,116);111{);1)71
= B (Pn) (A3)

Having learned the matrix W we can estimate
P t = th

starting from a state ¢;. Since p; specifies a joint distribution over e,, , and e,, we can easily
condition on (or marginalize o;) to obtain g;+;. We will show that this is equivalent to learning and
applying observable operators as in [[1]]:

For a given value z of 09, define

. . -1
B, =ul W =u] Pas, (PQTJ) ’ (A4)



where u,, is an |O| x |(’)\2 matrix which selects a block of rows in ]52:371 corresponding to 02 = z.
Specifically, u, = &, @ 1oy [[]

qt+1 = E[eot+1 |01:t} X U(I,E[eot:t+1 |011t—1}

T T3
= uotE[€t|01:t71] = UOtWE[wt‘Olztfl] = B,,q;
with a normalization constant given by

1

A.S
lTBot ¢ ( )

Now we move to a more realistic setting, where we have rank(P2 1) = m < |O|. Therefore we
project the predictive state using a matrix U that preserves the dynamics, by requiring that U " O
(i.e. U is an independent set of columns spanning the range of the HMM observation matrix O).

It can be shown [1] that R(O) = R(Ps1) = R(P2,1P1_711). Therefore, we can use the leading m left

singular vectors of Wg)l , which corresponds to replacing the linear regression in S1A with a reduced
rank regression. However, for the sake of our discussion we will use the singular vectors of P ;. In
more detail, let [U, S, V] be the rank-m SVD decomposition of P, 1. We use ¢, = UTeot and & =
€0, @1 U €o,,,. S1 weights are then given by W34 = U Wa; and Wi | = (o) @k U )Wais 1
and S2 weights are given by

W = (Lo| @ UT)W2:3,1E[60163—JW21,—1U (UTWZlE[eOle;]W;,—lU)_l
= (Ijo) ® UT) P P VS (SVTP;fVS)_l
= (Tio) @k U ) Prg PV (\/Tﬁgfv)*1 51 (A.6)
In the limit of infinite data, V' spans range(O) = rowspace(Ps.3,1) and hence Po.31 = P2;371VVT.
Substituting in (A-6) gives
W' = (Iio| @k U ) Pag VS = (Io) @k U ) Pagy (U Pay) "

Similar to the full-rank case we define, for each observation x an m x |O|? selector matrix u, =
0, ® I, and an observation operator

B, = UIWTT — UTP;;@J (UTPQJ)Jr (A7)

This is exactly the observation operator obtained in [1]]. However, instead of using[A-6] they use[A7]
with P3 ;1 and P ; replaced by their empirical estimates.

Note that for a state by = E[t¢)t|01.4—1], Babr = P(0t|01.t—1)E[tr41]01.t] = P(0t|01:4—1)bt41. To
get byy1, the normalization constant becomes 50—y = : where b b = 1 for any valid

b1 Byb,’
predictive state b. To estimate b, we solve the aforementioned condition for states estimated from
all possible values of history features h;. This gives,
T} TrrTH  p-1 T
booWQT,TlIKQ\ = booU P271P1,1I\0\ = 1\(’)\7
where the columns of ¢ represent all possible values of ;. This in turn gives
- .
bl = 1o PLa(UT Pp)™
=P (U Pa)",

the same estimator proposed in [[1]].

1Following the notation used in [[1]], u;rfjg:g,l = ]53,%71



A.2 Stationary Kalman Filter

A Kalman filter is given by
st = 0841 + 11
o =Tsy + ¢
vy ~ N(0,%5)
e ~N(0,%,)
We consider the case of a stationary filter where ¥; = E[s;s/ ] is independent of £. We choose our
statistics
hi = 0t—m:4—1
Pt = 0ty F -1
§t = Ottt F,
Where a window of observations is represented by stacking individual observations into a single
vector. It can be shown [2} 3] that
Else|hi] = Ss.n 5 e
and it follows that
Efp|he] = FEs,hE;}lht = Wihy

E[&i|h] = T4 Se 13, e = Wahy

where I is the extended observation operator

0] 0]
oT oT
I'= . ,F+ = .
OTF OT.FJrl

It follows that F' and H must be large enough to have rank(W) = n. Let U € R™"*" be the matrix
of left singular values of W, corresponding to non-zero singular values. Then U ' T is invertible and
we can write

Elpi|he] = UU TS, 155, he = Wihy

E[&i|hi] = T4 Xe 35 3, he = Wahy

Elilh] =T (UTT) 0T (UUTTS, 555
= WE[t| h¢]

which matches the instrumental regression framework. For the steady-state case (constant Kalman
gain), one can estimate X¢ given the data and the parameter W by solving Riccati equation as
described in [3]]. E[{;]o1.,—1] and 3¢ then specify a joint Gaussian distribution over the next F' + 1
observations where marginalization and conditioning can be easily performed.

We can also assume a Kalman filter that is not in the steady state (i.e. the Kalman gain is not
constant). In this case we need to maintain sufficient statistics for a predictive Gaussian distribution
(i.e. mean and covariance). Let vec denote the vectorization operation, which stacks the columns of
a matrix into a single vector. We can stack h; and vec(h¢h, ) to into a single vector that we refer to
as Ist+2nd moments vector. We do the same for future and extended future. We can, in principle,
perform linear regression on these 1st+2nd moment vectors but that requires an unnecessarily large
number of parameters. Instead, we can learn an S1A regression function of the form

E[¢|hi] = Wiy (A.8)
Bl |he] = Wiheh{ Wi + R (A.9)
(A.10)



Where R is simply the covariance of the residuals of the 1st moment regression (i.e. covariance of

= 1y — E[tp¢|h:]). This is still a linear model in terms of 1st+2nd moment vectors and hence
we can do the same for S1B and S2 regression models. This way, the extended belief vector p, (the
expectation of 1st+2nd moments of extended future) fully specifies a joint distribution over the next
F + 1 observations.

A.3 HSE-PSR

We define a class of non-parametric two-stage instrumental regression models. By using conditional
mean embedding [4] as S1 regression model, we recover a single-action variant of HSE-PSR [3].
Let X', ), Z denote three reproducing kernel Hilbert spaces with reproducing kernels kx, ky and
kz respectively. Assume ¢, € X and that & € ) is defined as the tuple (o; ® o, ¥:11 ® 04). Let
P c XoRN,Ec YRRYN and H € Z®RY be operators that represent training data. Specifically,
s, £, hs are the s* “columns” in ¥ and Z and H respectively. It is possible to implement S1
using a non-parametric regression method that takes the form of a linear smoother. In such case the
training data for S2 regression take the form

E[y | hi] = Zﬂws

gt ‘ ht Z’Yamffsv

where 5 and v, depend on h;. This produces the followmg training operators for S2 regression:
B
T,

where By, = (4, and T'sy = v,)p,,. With this data, S2 regression uses a Gram matrix formulation
to estimate the operator

[ &
Il
S

I
[1]

W =ET(B'Gx xB+ \y) 'BT¥* (A.11)

Note that we can use an arbitrary method to estimate B. Using conditional mean maps, the weight
matrix B is computed using kernel ridge regression

=(Gzz+MNN)'Gzz (A.12)

HSE-PSR learning is similar to this setting, with 1); being a conditional expectation operator of test
observations given test actions. For this reason, kernel ridge regression is replaced by application of
kernel Bayes rule [6].

For each ¢, S1 regression will produce a denoised prediction E[ft | h¢] as a linear combination of
training feature maps

Bl& | ] = Ea =Zatsgs

This corresponds to the covariance operators
N

211)t-¢-10t|hf, = Zat,swerl ® 05 = ‘I”diag(at)o*

s=1

Zotot|ht = Zat,sos ® Og = Odlag(at)O*

s=1

Where, W' is the shifted future training operator satisfying ¥’e; = 1,11 Given these two covariance
operators, we can use kernel Bayes rule [6] to condition on o, which gives

Ge+1 = E[e1 | he] = Spronine Soporne + A (A.13)



Replacing o in (A.T3) with its conditional expectation Ziv:l 505 corresponds to marginalizing
over o; (i.e. prediction). A stable Gram matrix formulation for (A.13) is given by [6]

qt+1
= ¥'diag(a)Go,0((diag(ar)Go,0)* + ANI) ™
diag(a;)O* 0441
=Wa, (A.14)
which is the state update equation in HSE-PSR. Given a;4; we perform S2 regression to estimate
Pt+1 = ]E[ft+1 | 01:t+1] =Bap1 = W‘I’ldt+17
where W is defined in (A.TT).

B Proofs

B.1 Proof of Main Theorem

In this section we provide a proof for theorem 2] We provide finite sample analysis of the effects
of S1 regression, covariance estimation and regularization. The asymptotic statement becomes a
natural consequence.

We will make use of matrix Bernstein’s inequality stated below:

Lemma B.1 (Matrix Bernstein’s Inequality [[7]). Let A be a random square symmetric matrix, and
r>0,v > 0andk > 0 be such that, almost surely,

E[A] =0, )‘max[A] <r,
Amax[E[A%]] <0, tr(E[A%]) <k,
If A1, As, ..., AN are independent copies of A, then for any t > 0,

N
1 vt rt
P [A [N 2 A > w]
kt
< (et —t—-1)"1 (B.1)
v

Ift > 2.6, thent(et —t — 1)1 < e /2,

Recall that, assuming .5t € R(Xzz), we have three sources of error: first, the error in S1 re-
gression causes the input to S2 regression procedure (Z, 3;) to be a perturbed version of the true
(Z¢, §t); second, the covariance operators are estimated from a finite sample of size N; and third,
there is the effect of regularization. In the proof, we characterize the effect of each source of error.
To do so, we define the following intermediate quantities:

Wy = Syz Sz + A" (B.2)
_ n R —1
Wi = Sga (Sas +AT) (B.3)

where
LN
Yz = Ntz::lgt & Tt

and 3, is defined similarly. Basically, W captures only the effect of regularization and W cap-
tures in addition the effect of finite sample estimate of the covariance. W) is the result of S2
regression if = and § were perfectly recovered by S1 regression. It is important to note that flfg and
S5z are not observable quantities since they depend on the true expectations Z and y. We will use
Azi and Ay, to denote the ith eigenvalue of Yzz and gy respectively in descending order and we
will use ||.|| to denote the operator norm.

Before we prove the main theorem, we define the quantities (% and ¢ % which we use to bound
the effect of covariance estimation from finite data, as stated in the following lemma:



Lemma B.2 (Covariance error bound). Let N be a positive integer and 6 € (0,1) and assume that
Izl [|7]] < ¢ < co almost surely. Let (5% be defined as:

55 2t 1t
oo B.4
=\ N T (B4)

t = max(2.6, 2log(4k/dv))
r=c+ ||Eg§cH
v =c®max(Ay1, Ap1) + || g
k= c*(tr(Szz) + tr(Syy))

In addition, let (3%, be defined as:

where

(B.5)

where
t" = max(2.6,2log(4k"/ov"))
=4+ A\
v = A + A2
K = tr(Xzz)
and define ng\, similarly for ¥gg.
It follows that, with probability at least 1 — 0/2,
135z — gzl < GG
||ia*c§: — Yzz|l < Ci?\/
||iyzj — gyl < ngzjv

Proof. We show that each statement holds with probability at least 1 — J/6. The claim then follows
directly from the union bound. We start with Cﬁv- By setting A; = Z; ® Z; — X3z then we would

like to obtain a high probability bound on || & SN | A, Lemma shows that, in order to satisfy
the bound with probability at least 1 — §/6, it suffices to set ¢ to max(2.6, 2k log(6/0v)). So, it
remains to find suitable values for r, v and k:

)‘maX[A] < ||f||2 + ||Ei?|| < A+ Aer =1'
Amax[E[A%]] = Anax [B[|Z]|*(Z ® T) — (T ® 2)Tsz — Ta2(T @ T) + Taz”]
= Anax [E[|1Z]*(Z © ) — Bzz”]] < Aoy + A2 =0
tr[E[A%]] = tr[E[|z]*(z © 7) — T55”]] < t[E[|2]*(z © 2)]] < Ptr(Saa) = K

The case of ngv can be proven similarly. Now moving to C(‘;z]jv, we have B; = ¥y ® Ty — Xgz. Since
B4, is not square, we use the Hermitian dilation .##°( B) defined as follows[8]:

0 B
rerr=[ 8 8]
Note that
B . [ BB* 0
dmalA] =B, 4= | B0

therefore suffices to bound || & Zi\i 1 At|| using an argument similar to that used in (§%; case.  [J



To prove theorem 2] we write
||W>\=’Etcst — Wagest|ly < ||(WA — W) Ztest ||y
+ | (Wx = W) Zgest ||y
+ |(Wx = W) Zpest ||y (B.6)
We will now present bounds on each term. We consider the case where Ziest € R(Xzz). Extension
to R(Xzz) is aresult of the assumed boundedness of W, which implies the boundedness of WA —-W.

Lemma B.3 (Error due to S1 Regression). Assume that | Z||, ||7|| < ¢ < oo almost surely, and let
Ns,N be as defined in Deﬁnitionm The following holds with probability at least 1 — ¢

< = - (2¢ + 2
IV~ T < A+ Gl ot )
2

L Qensn + ns.N°)

A
log(1/9)
0 LI At o
775,]\] )\ )\%

The asymptotic statement assumes s,y — 0 as N — oo.

Proof. Write i;{;f = i?ﬁ + A, and igi = iggm + A,;. We know that, with probability at least
1 — /2, the following is satisfied for all unit vectors ¢, € X and ¢, € Y
N

1
<¢y7 Ayr¢x>y = N Z <¢y7 Qt>y<¢x7 i"t>2(

t=1
- <¢yvgt>y<¢$7i't>k‘
=+ <¢yv@t>y<¢:c7i't>)( - <¢ya gt>y<¢1; jt)X

= %Z (by, Ut + (¢ — gt)>y<¢ac7i‘t — Z4)
t

+ <¢y> Qt - gt>y<¢m7 jt>X
< 2cns,N + W§,N
Therefore,

[Ayell = sup (Dy, Ayz¢r>y < 2ens,N + 77?,1\/7
lpllx <1,ll¢ylly <1

and similarly
Al < 2¢nsn + 15,857,
with probability 1 — §/2. We can write
+ Aye(Baz + Ay + A1
Using the fact that B~1 — A=! = B=1(A — B)A~! for invertible operators A and B we get
+ Aye Bz + Ap + M)
~ A~ L ~ L
we then use the decomposition Yz = X2;VY.Z;, where V is a correlation operator satisfying
V|| < 1. This gives
Wy — Wy =
C B2 VS (S + AD) 7 (S + A2 AL (Sas + Ay + AI) 7!
+ Ay (Baz + Ay + AT



ALl A
Noting that ||$2, (355 + M)~ 2 || < 1, the rest of the proof follows from triangular inequality and
the fact that || AB|| < || A]||| B]|

Lemma B.4 (Error due to Covariance). Assuming that ||Z||x, ||7]ly < ¢ < oo almost surely, the
following holds with probability at least 1 — g

G
A

W — Wil < VAICERA2 +

, where (%, and C??V are as defined in Lemma

Proof. Write ﬁ?m =Yz + A, and ﬁ?gg—; = Yyz + Ay,. Then we get
Wi = Wi =S5 ((Baz+ As + M) = (Saz + AD Y 4+ Ao (Szz + Ap + A1)
Using the fact that B~ — A=! = B=1(A — B)A~! for invertible operators A and B we get
Wy =Wy = —%52(Szz + M)A (Zaz + Ap + XD+ Ay (Baz + Ay + M) 7H

we then use the decomposition 35z = Egg%VZH%, where V is a correlation operator satisfying
V|| < 1. This gives
Wy —W, =
- ZQQ%VEM%(EM + >\I)7% (Ezz + /\I)f%
DAy (Szz + Ay + A7
+ Ay Bz + A + A

Noting that || I (S22 + M) 2| < 1, the rest of the proof follows from triangular inequality and
the fact that || AB|| < || A]||| Bl O

Lemma B.5 (Error due to Regularization on inputs within R(Xzz)). For any x € R(Xzz) s.t.
|z|lx < 1and ||E§,§f%x||;( < C. The following holds

1
[(Wx = W)zlly < 5\5\HW||HSC

SIS

Proof. Since z € R(Zzz) C R(Xzz2), we can write © = Eﬁ%v for some v € X s.t. |Jv||x < C.

Then
Wy =Wz =35((Zzz + )\I)fl — Eiiil)zi’iév
Let D = Y5:((Zzz + M)t — Eﬁ_l)Ei.j%. We will bound the Hilbert-Schmidt norm of D.

Let ¢,; € X, 1y € Y denote the eigenvector corresponding to A;; and Ay, respectively. Define
sij = |(Wy;5, E@wzi)yL Then we have

A
[(Wyj, Dipai)y| = |<1/’yj72yx Vai)

)\Sij Sij 1

T i F VA Va1

Sij 1 A 1\/>Sij
/= ==V
B V/\m' 2 )\xi 2 >\xi
1

= SV W5, Wbaidy,

Yy




where the inequality follows from the arithmetic-geometric-harmonic mean inequality. This gives
the following bound

1
IDIBrs = 3 (s, D)’y < 5VAIW s

Y]

and hence

[(Wx = W)zlly

IN

DIl < 1D asllvllx

1
SVAIW 12sC

IN

O

1
Note that the additional assumption that ||£zz~ 2| x < C is not required to obtain an asymptotic

O(\ﬂ) rate for a given z. This assumption, however, allows us to uniformly bound the constant.
Theorem 2]is simply the result of plugging the bounds in Lemmata[B.3] [B.4] and [B.3]into (B.6) and
using the union bound.

B.2 Proof of Lemma[3|

for t = 1: Let Z be an index set over training instances such that

1
stest .~ A
q1 - |I| qu

i€L

Then

stost  ~tes 1 . 1 R
1G5 — gt = i > i = aill < i > i = aillx < mo.v
€T €L

for t > 1: Let A denote a projection operator on R+ (;;)

it = Sl < LI = 5=y < LIATAGEly

1 (& 1Y o
<L N(;Api®Qi> (N;Qi®qz'+>\l>

i

5
1 . SN 1 ~
[l e < LIRNgtest |

\/XHQt \/X

N
1
< L||— Ap; @ Ap;
< N; pi ® Ap

where the second to last inequality follows from the decomposition similar to Xy x = XZVE

3
X
and the last inequality follows from the fact that || Ap; ||y < ||p; — il O

C Examples of S1 Regression Bounds

The following propositions provide concrete examples of S1 regression bounds 75 y for practical
regression models.

Proposition C.1. Assume X = R% R% R for some d, dy,d, < 0o and that T and yj are linear
vector functions of z where the parameters are estimated using ordinary least squares. Assume that
)2, 7lly < ¢ < co almost surely. Let ns n be as defined in Definition[I| Then

o = O (@ log((d, + dy>/<s>>



Proof. (sketch) This is based on results that bound parameter estimation error in linear regression
with univariate response (e.g. [9]). Note that if z;; = Uith for some U; € Z, then a bound on
the error norm ||U; — Uj|| implies a uniform bound of the same rate on #; — Z. The probability of
exceeding the bound is scaled by 1/(d,, + d) to correct for multiple regressions.

Variants of Proposition [C.1] can also be developed using bounds on non-linear regression models
(e.g., generalized linear models).

The next proposition addresses a scenario where X’ and ) are infinite dimensional.

Proposition C.2. Assume that x and y are kernel evaluation functionals, T and iy are linear vector
functions of z where the linear operator is estimated using conditional mean embedding [4|] with
regularization parameter Ao > 0 and that ||Z| x, ||7]ly < ¢ < oo almost surely. Let ns,n be as
defined in Definition[l} It follows that

log(N/é
AN

Proof. (sketch) This bound is based on [4]], which gives a bound on the error in estimating the condi-
tional mean embedding. The error probability is adjusted by /4N to accommodate the requirement
that the bound holds for all training data. O
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