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1 Sequential Monte Carlo

This section reviews the basic SMC algorithm, beginning by recapitulating the setup described in
the main text. Consider a probabilistic model comprising (possibly multi-dimensional) hidden and
observed states z1:T and x1:T respectively, whose joint distribution factorizes as p(z1:T ,x1:T ) =

p(z1)p(x1|z1)
∏T
t=2 p(zt|z1:t−1)p(xt|z1:t,x1:t−1). This general form subsumes common state-

space models, such as Hidden Markov Models (HMMs), as well as non-Markovian models for the
hidden state, such as Gaussian processes.

The goal of the sequential importance sampler is to approximate the posterior distribution over the
hidden state sequence, p(z1:T |x1:T ) ≈

∑N
n=1 w̃

(n)
t δ(z1:T − z

(n)
1:T ), through a weighted set of N

sampled trajectories drawn from a simpler proposal distribution {z(n)1:T }n=1:N ∼ q(z1:T |x1:T ).

More specifically, consider approximating expectations of a function φ(z1:T ) under the unnor-
malised posterior distribution, p(z1:T ,x1:T ) = Zp(z1:T |x1:T ), using importance sampling:∫

φ(z1:T )p(z1:T ,x1:T )dz1:T =

∫
φ(z1:T )

q(z1:T )

q(z1:T )
p(z1:T ,x1:T )dz1:T (1)

≈ 1

N

N∑
n=1

φ(z
(n)
1:T )

p(z
(n)
1:T ,x1:T )

q(z
(n)
1:T )

where z
(n)
1:T ∼ q(z

(n)
1:T ) (2)

The importance weights are w(z
(n)
1:T ) =

p(z
(n)
1:T ,x1:T )

q(z
(n)
1:T )

.

Any form of proposal distribution can be used in principle, but a particularly convenient one takes
the same factorisation as the true posterior q(z1:T |x1:T ) = q(z1|x1)

∏T
t=2 q(zt|z1:t−1,x1:t). Sub-

stituting this and model into the expression for the importance weights gives,

w(z
(n)
1:T ) =

p(z
(n)
1 )p(x1|z(n)

1 )
∏T
t=2 p(z

(n)
t |z

(n)
1:t−1)p(xt|z(n)

1:t ,x1:t−1)

q(z
(n)
1 |x1)

∏T
t=2 q(z

(n)
t |z

(n)
1:t−1,x1:t)

(3)

= w(z
(n)
1:T−1)

p(z
(n)
T |z

(n)
1:T−1)p(xT |z(n)

1:T ,x1:T−1)

q(z
(n)
T |z

(n)
1:T−1,x1:T )

(4)

The normalising constant Z can be approximated by substituting φ(z1:T ) = 1 into the above, which
yields Z ≈ 1

N

∑N
n=1 w(z

(n)
1:T ). Expectations with respect to the normalised density can therefore be

computed using importance weights

w(z
(n)
1:T )/Z = w(z

(n)
1:T )/

[
1

N

N∑
n=1

w(z
(n)
1:T )

]
= Nw̃(z

(n)
1:T ). (5)
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So that expectations wrt the posterior can be approximated using the normalised weights w̃(z
(n)
1:T ),∫

φ(z1:T )p(z1:T |x1:T )dz1:T ≈
∑N
n=1 φ(z

(n)
1:T )w̃(z

(n)
1:T ). This leads to the expressions in the main

paper:

w(z
(n)
1:T ) =

p(z
(n)
1:T ,x1:T )

q(z
(n)
1:T |x1:T )

, w̃(z
(n)
1:T ) =

w(z
(n)
1:T )∑

n w(z
(n)
1:T )

∝ w̃(z
(n)
1:T−1)

p(znT |z
(n)
1:T−1)p(xT |z(n)

1:T ,x1:T−1)

q(z
(n)
T |z

(n)
1:T−1,x1:T )

The SIS is elegant as the weights can be computed in sequential fashion using a single forward pass
along with the samples. However, such a naı̈ve application of SIS, the distribution of importance
weights often become more skewed as t increases, with many samples having very low weight.
To alleviate the problem, a resampling step is introduced [1] that resamples z

(n)
t at time t from

multinomial distribution given by w̃(z
(n)
1:t ). This replaces degenerated particles with the ones with

substantial importance weights, and leads to less skewed importance weight distributions.

The SMC is given by Algorithm 1. γ(·|w) represents a multinomial distribution given by w, z(i)
1:t =

{zA
(i)
t−1

1:t−1, z
(i)
t }, z

A
(i)
t

1:t = {za
(i)
1

1 , ...,z
a
(i)
t
t }, and w(i)

t = w(z
(i)
1:t).

Algorithm 1 Sequential Monte Carlo

Require: proposal: q(z1:T |x1:T ), observation: x1:T , number of particles: N
for i = 1 : N do
z
(i)
1 ∼ q(z1|x1), w

(i)
1 = p(z1)

q(z1|x1)

end for
w̃

(i)
1 =

w
(i)
1∑

i w
(i)
1

for t = 2 : T do
for i = 1 : N do

a
(i)
t−1,t−1 ∼ γ(·|w̃(i)

t−1), z
(i)
t ∼ q(zt|z

A
(i)
t−1

1:t−1,x1:t), w
(i)
t =

p(z
(i)
t |z

A
(i)
t−1

1:t−1 )p(xt|z(i)
1:t,x1:t−1)

q(z
(i)
t |z

A
(i)
t−1

1:t−1 ,x1:t)

end for
w̃

(i)
t =

w
(i)
t∑

i w
(i)
t

end for

2 Adapting Proposals by Descending the Inclusive KL Divergence

This section presents the gradient derivation for learning the proposal distribution. The first ap-
proximation replaces the smoothing distribution by the filtering distribution and the second replaces
analytic integration by the SMC approximation. The gradients can be computed efficiently using
back-propagation through particles.

− ∂

∂φ
KL[pθ(z1:T |x1:T )||qφ(z1:T |x1:T )] =

∫
pθ(z1:T |x1:T )

∂

∂φ
log qφ(z1:T |x1:T )dz1:T

≈
∑
t

∫
pθ(z1:t|x1:t)

∂

∂φ
log qφ(zt|x1:t, z1:t−1)dz1:t

≈
∑
t

∑
i

w̃
(i)
t

∂

∂φ
log qφ(z

(i)
t |x1:t, z

A
(i)
t−1

1:t−1)

(6)
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Figure 1: Long Short-Term Memory cell [2]

3 Maximum likelihood learning of parameters in latent dynamical systems

This section presents the full derivation of the parameter learning equations. Consider computing
the gradient of the log-likelihood of the parameters,

∂

∂θ
log[pθ(x1:T )] =

∂

∂θ
log

∫
pθ(z1:T ,x1:T )dz1:T =

1

pθ(x1:T )

∫
∂

∂θ
pθ(z1:T ,x1:T )dz1:T

=
1

pθ(x1:T )

∫
∂

∂θ
exp(log pθ(z1:T ,x1:T ))dz1:T

=
1

pθ(x1:T )

∫
pθ(z1:T ,x1:T )

∂

∂θ
log pθ(z1:T ,x1:T )dz1:T

=

∫
pθ(z1:T |x1:T )

∂

∂θ

∑
t

log pθ(xt, zt|x1:t−1, z1:t−1)dz1:T

≈
∑
t

∫
pθ(z1:t|x1:t)

∂

∂θ
log pθ(xt, zt|x1:t−1, z1:t−1)dz1:t

≈
∑
t

∑
i

w̃
(i)
t

∂

∂θ
log pθ(xt, z

(i)
t |x1:t−1, z

A
(i)
t−1

1:t−1)

4 Flexible and Trainable Proposal Distributions Using Neural Networks

In this section, we describe details on the network architectures used in our experiments.

4.1 Long Short-Term Memory

Long Short-Term Memory (LSTM) is a specific parametrization of a Recurrent Neural Network
(RNN) [3, 2]. As shown in Figure 1, LSTM has an internal memory cell with separate write, read,
and forget controls that are context dependent. The formulation is given by Eq. 7, where ut, ht, ct
are input, output, and cell state of a LSTM layer at time t, F (·), G(·) are activation functions, σ(·) is
sigmoid activation. W∗, B∗ are weight matrices and bias vectors. Tanh activation is used for F,G in
our experiments. ot in Eq. 7 is slightly different from the standard formulation in [2], but improves
computational efficiency.

ct = it · F (Wu · ut +Wh · ht−1 +B) + ft · ct−1
ht = ot ·G(ct)

it = σ(Wiu · ut +Wih · ht−1 +Wic · ct−1 +Bi)

ft = σ(Wfu · ut +Wfh · ht−1 +Wfc · ct−1 +Bf )

ot = σ(Wou · ut +Woh · ht−1 +Woc · ct−1 +Bo)

(7)

4.2 Latent Variable Recurrent Neural Network and Recurrent Proposal Network

A latent variable recurrent neural network (LV-RNN) is given by pθ(z1:T ,x1:T ) =∏T
t=1 pθ(zt|z1:t−1)pθ(xt|z1:t,x1:t−1), where multi-layer perceptions (MLPs) are used to learn

complex non-linear mappings that parametrize conditional distrbutions. We let pθ(zt|·) = p(zt) =
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Figure 2: Left: A realization of LV-RNN, pθ(z1:T ,x1:T ) =
∏T
t=1 pθ(zt)pθ(xt|z1:t,x1:t−1). Right:

A recurrent proposal model, qφ(z1:T |x1:T ) =
∏T
t=1 qφ(zt|z1:t−1,x1:t).

N (zt|0, I) 1 and pθ(xt|z1:t,x1:t−1) be appropriate parametrization for the data . A recurrent pro-
posal model is similarly given by qφ(z1:T |x1:T ) =

∏T
t=1 qφ(zt|z1:t−1,x1:t). Figure 2 shows exam-

ples of a LV-RNN and a recurrent proposal model that are used in the experiment later. The output
layer in q paramtrizes a Gaussian {µ,Σ}, or a mixture of Gaussians {pi, µi,Σi}i=1:M , where pi de-
notes the mixture proportion of i-th Gaussian. Discrete latent variables, i.e. as in recurrent Sigmoid
Belief Nets (SBN), are not explored in this paper, since the focus of the paper is on the adaptive SMC
method; however, unlike [6, 7, 5], our method directly admits the learning of discrete LV-RNNs and
their inference networks.

4.3 Mixture Density Network

The true posterior pθ(zt|z1:t−1,x1:t) is generally non-Gaussian and multi-modal, and therefore
standard Gaussian parametrization [6, 7, 8] is less than ideal. One main advantage of our method
over the SGVB is that the gradient for φ does not involve taking derivatives over the entropy of
qφ(z1:T |x1:T ). Besides reducing the variance of gradient estimates, this also enables qφ(z1:T |x1:T )
to employ more complex distribution parametrization, such as mixture or heavy-tail distributions
that can better approximate non-Gaussian distributions.

Mixture density network [9] parametrizes a mixture of diagonal Gaussians. Samples and log like-
lihood can be efficiently computed as in Eq. 8, where M,D represent number of mixtures and
dimension of each Gaussian, and µ(m)

t , σ
(m)
t denote m-th Gaussian mean and variance. Assuming

diagonal Gaussians, the dimension for ht is M +M ∗ 2 ∗D. lt is the log likelihood of a sample vt.

ht = W · ut +B

{µ(m)
t , log(σ

(m)
t )2, p̃t} = h

(m)
t

pt = softmax(p̃t)

mt ∼ multinomial(·|pt)

vt ∼ N (·|µ(mt)
t , (σ

(mt)
t )2)

lt = log

M−1∑
m=0

p
(m)
t p(vt|µ(m)

t , (σ
(m)
t )2)

(8)

1Note that our algorithm applies to more complex LV-RNN models, such as the ones in [4]; these are simply
design choices for particular datasets explored in our experiments and making the results comparable to [5]
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5 Full experimental details

5.1 Inference in non-linear state space model

For the non-recurrent neural network (-NN-), the context window of 5 is used, i.e. the network
parametrizes qφ(zt|xt−4:t, zt−5:t−1), or qφ(vt|xt−4:t, zt−5:t−1, f(zt−1, t)) for (-f-) models. When
using qφ(vt|·) (-f-), f(zt−1) is treated as an additional input at time t, just as xt, with separate
edge weights. Mixture density networks (-MD-) have 3 mixture components. Edges weights are
initialized from zero-mean Gaussians, and biases are initialized with 0, except that the biases for the
units that parametrize the variance of the output distribution (Gaussian and Mixture Density Layer)
are set to 5 to ensure the initial proposal distribution to have sufficient tails. 100 particles are used
to estimate the gradients. x1:1000 is generated from the prior, and is regenerated after each pass of a
sequence. Gradients are computed over 100 time steps, and the hidden states are carried over within
each x1:1000 sequence. Adam [10] with α = 0.003 and default values for other hyperparameters is
used as the optimizer.

5.2 Particle Marginal Metropolis-Hasting sampler

This section describes adaptive version of Particle Marginal Metropolis-Hasting sampler, used in
Bayesian learning in a Nonlinear SSM experiment.

In Bayesian framework, we would like to sample from the posterior of model parameters θ along
with the latent state trajectories. The Particle Markov Chain Monte Carlo framework (PMCMC)
of [11] uses SMC as a complex, high-dimensional proposal for Metropolis-Hastings. Crucially, the
algorithm will leave the target distribution invariant (we refer the reader to [11] for further technical
details). The Particle Marginal Metropolis-Hasting (PMMH) sampler jointly samples θ and z1:T
targeting p(θ,z1:T ) using MH steps. This is more advantageous than Particle Gibbs (PG) when θ and
z1:T are highly correlated. Given p(θ,z1:T ,x1:T ) = p(θ)p(z1:T ,x1:T |θ) = p(θ)pθ(z1:T ,x1:T ),
PMMH assumes the proposal factorizes as q(θ∗, z∗1:T |θ,z1:T ) = q(θ∗|θ)pθ∗(z∗1:T |x1:T ). When it is
used as an inner loop of another algorithm, the robustness of SMC is even more crucial, and adaptive
approaches seem equally well-suited in this context. Using SMC to sample from pθ∗(z∗1:T |x1:T ),
the adaptive PMMH is given in Algorithm 2.

Algorithm 2 APMMH

Require: proposals: qφ(z1:T |x1:T ), q(θ∗|θ), initial θ: θ(0)
Require: observation: x1:T , number of particles: N
Require: number of iterations: Ni, number of adaptation steps per iteration Na
{z(i)

1:t, w
(i)
t , w̃

(i)
t }i=1:N,t=1:T ← SMC(θ(0), φ,N,x1:T )

γ(0) =
∏
t

1
N

∑
i w

(i)
t , Z(0) = {z(i)

1:T }i=1:N

for k=1:Ni do
for l=1:Na do

z∗1:T ,x
∗
1:T ∼ pθ(k−1)(z1:T ,x1:T )

{z(i)
1:t, w

(i)
t , w̃

(i)
t }i=1:N,t=1:T ← SMC(θ(k − 1), φ,N,x∗1:T )

4φ =
∑
t

∑
i w̃

(i)
t

∂
∂φ log qφ(z

(i)
t |x∗1:t, z

A
(i)
t−1

1:t−1)

φ← Optimize(φ,4φ)
end for
θ∗ ∼ q(θ∗|θ(k − 1))

{z(i)
1:t, w

(i)
t , w̃

(i)
t }i=1:N,t=1:T ← SMC(θ∗, φ,N,x1:T )

γ∗ =
∏
t

1
N

∑
i w

(i)
t

with probability min[1, p(θ∗)γ∗q(θ(k−1)|θ∗)
p(θ(k−1))γ(k−1)q(θ∗|θ(k−1)) ],

set θ(k) = θ∗, γ(k) = γ∗, Z(k) = {z(i)
1:T }i=1:N ,

otherwise θ(k) = θ(k − 1), γ(k) = γ(k − 1), Z(k) = Z(k − 1)
end for
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The elegance of the PMMH sampler is that it separates SMC from MH/MCMC steps. SMC is merely
used to sample the latent states and evaluate the marginal likelihood given fixed model parameters.
As long as the proposal distribution has sufficient support, this means that the adapting proposals
do not influence the theoretical validity of the PMMH sampler. Empirically, given limited number
of particles, well-adapted proposals simply lead to larger effective sample sizes, lower variance
of marginal likelihood estimates, and better mixing of the global parameters. Also, given enough
representational power in the proposal model, and approximate learning rate scheduling, in the limit
of APMMH steps, the proposal model converges approximately to the true marginalized posterior,∫
p(θ,z1:T |x1:T )dθ.
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