Appendix

4.1 Proofof Lemma 2.2

Proof. First note that g(x) being convex quadratic implies that its second order Taylor expansion
is tight
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Using this fact we can estimate f(z("+)) — f(z*) by the following series of inequalities
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where in (i) we have used the optimality condition of the subproblem (9) (i.e., (11)); in the last
equality we have defined a lower triangular matrix D1

1 0 0 0 0
110 --- 0 0
11 1 1 1

Notice that the following is true
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where “©” denotes the Hadamard product; D5 is a lower triangular matrix similarly as defined in
(35), but of dimension K N x K N. Combining this identity and (34), we have
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where (i) uses the Cauchy-Schwartz inequality and the fact that P @ Iy = A A; (iii) is true for
all KN > 3. Inequality (ii) is true due to a result on the spectral norm of the triangular truncation
operator; see [1, Theorem 1]. In particular, Define

Z ® D
Yirn(D2) = max{% 1 Z € RENXKN 74 O} .
Then we have the following estimate
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The proof'is completed. Q.E.D.

4.2 Proof of Theorem 2.1

Proof. For notational simplicity, let us define

C := Rolog(2NK) (L/\/%+ Pmax) ‘

Taking a square of the cost-to-go estimate (14) and the sufficient descent estimate (12), we obtain

/ 2

(ACTD)2 < 2 {[((r+D) m(r))(ﬁl ? ® In)

K
=03 At )P
k=1

<20%(AM — AU,

Utilizing a result from [2, Lemma 3.5], the above inequality implies that
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When P, = L for all &, the bound reduces to
1
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When the problem is smooth and unconstrained, we have
AO < (V@) 2@ —z) = (Vf(2?) = fa*),2@ —a*) < L[|z — 2|2
This completes the proof. Q.E.D.
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