Regularized EM: Supplemental Material

In this supplemental document, we present full proofs of the results in our main paper and provide
detailed discussions. The rest of this document is organized as follows. we give the proof of the
main result in Section [A] The proofs of the results showing specializations of example models are
given in Section [B] We collect several technical lemmas in Section

A Proof of Main Result

In this section, we provide the proof of Theorem|[T|that characterizes the computational and statistical
performance of the regularized EM algorithm with resampling. We first present a result which shows
that the population EM operator M : €2 — ) is contractive when 7 < 7.

Lemma 1. Suppose Q(-|-) satisfies all the corresponding conditions stated in Theorem Mapping
M is contractive over B(r; 3%), namely

IM(B) — B*| < guﬁ — B°||, ¥ B € B(r; 8°).

Proof. A similar result is proved in [[L]. The slight difference is that [1] shows Lemma with £o
norm. Extending ¢ norm to arbitrary norm is trivial, so we omit the details. O

Now we are ready to prove Theorem I}

Proof of Theorem[I} We first consider one iteration of Algorithm [I] and show the relationship be-
tween |3 — B*| and ||3¢~1) — 3*||. Recall that

BY = arg max Qm (8'18"7Y) = A - R(B)),

where m = n/T is the number of samples in each step. We assume 8¢~ € B(r; 3*). To simplify
the notation, we drop the superscripts of B(‘=1), )\7(72) and denote 3) as BT. From the optimality of

BT, we have

Qu(BT18) = A - R(BT) = Qun(B"18) — A - R(BY). (A1)
Equivalently,

/\m ' R(ﬁJr) - >\m : R(ﬁ*) < an(ﬁ+|ﬁ) - Qm(ﬁﬂﬁ) (A.2)
Using the fact that Q,,, (-|3) is a concave function, the right hand side of the above inequality can be
bounded as

Qm(BT1B) — Qm(B*18) < (VQm(B*B), 8" — B) < {VQm(B*|8).8T - B)|.  (A3)

A

A key ingredient of our proof is to bound the term A. Letting © := 3T — 3*, we have

(VQn(B"18),8" - B)| = (VQn(B"(8) - VQ(B|B) + VQ(B"I8),9)|
< [(VQm(8718) = VQ(B7I8),0)| + [(VQ(B7(8), )|

(a)
< |Qm(B*1B) = VQ(B*|B)|I=- - R(©) + || VQ(B*|B)

|, > llell
2 AR(6) +a||[Va(s"18)] o]
< AWR(O) +a||[VQ(B°18) - VRM(B)IB)|| x 18]
< ALRO) + ap|M(B) - 57| x O]
< ARO) + T3 | x |0 (A4)

v

where (a) follows from the Cauchy-Schwarz inequality, (b) follows from the statistical error Con-
dition [5|and the definition of «, (¢) follows from the fact that M(3) maximizes Q(-|3), (d) follows
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from the smoothness Condition 2] and (e) follows from Lemmal[l} For inequality (c), note that we
assume that B(r; 3*) C Q. From Lemma|l| we know that if 3 € B(r; 8*), under condition 7 < =,
we must have M(8) € B(r7/v;8*) C B(r; 3*). Therefore M(3) lies in the interior of €2 thus the
optimality condition corresponds to VQ(M(3)|8) = 0.

Plugging (A-4) back into (A-3)), we obtain

Qu(B*18) ~ Qu(8°18) < AuR(©) + =1% x e
Using the above result and (A.2)), we have
AaR(B" +0) = \uR(8') < AuR(O) + “L5 el (A5)

To ease notation, we use ug to denote the projection operator IIs(u) defined in (??). From the
decomposability of R, we have

R(B +6) ~ R(B") > R(B° + O5.) ~ R(O5) — R(6°)
= R(05.) ~ R(O3),

where the inequality is from the triangle inequality and the equality is from decomposability of R.
Plugging the above result back into (A.3)) yields that

A+ (R(O51) — R(O5)) < AmR(6) + a’”\ el.
By choosing A, so that it satisfies the following condition
A > 30, O"”> 18 - 81, (A.6)
we have that
RO5) - RO = 22R0)+ P < o) L u@)el.
Plugging R(©) < R(Og) + R(Oz.) into the above inequality, we obtain
2R(O51) < 4R(O3) +3¥(S) - || (A7)

Therefore, we have shown that © lies in the quasi cone C(S,S;R) defined in (#3). Recall that
Condition [4] states that for any fixed 3 € B(r; 3*), Q. (-|8) is strongly concave over the set

QN ({B*} +C(S,S;R)). Using this condition yields that
Qm(B" +0l8) — Qm(B"18) < (VQm(8"18),8) — h||@||2

cmT’

< AnR(©) + LB - 87| x 6l - ZHel?, (a8

where the second inequality follows from (A-4).
Now we turn back to optimality condition (A.2), following which we have
Qm(lg* + @|ﬁ) - Qm(ﬁ*‘ﬁ) 2 /\m : R(ﬁ* + @) - )\m : R(IB*) Z _)\mR(@g)- (A9)
Putting (A-8) and (A29) together gives us
TYm
5 18" < AnR(O5) + AnR(O) + ||5 Bl > llefl.

Using R(©) < R(O5:) + R(Og) < (9/2)‘1’ (S)|1©||, we further have
Im. QuT
5 161° < AT (SO + A v(S)el+— IIB gl <l

Canceling the term ||©|| on both sides of the above inequality ylelds that

Am | ¥(S)

— A
lel < 2w(8)~"> +

18- 8" ||)<5w< )22, (A10)

m

QuT

Y¥(S)

(980 +2

m

11



The last inequality follows from our assumption (A-6). Putting (A.6) and (A-T0) together, we reach
the conclusion that if 31 € B(r; 8*) and

AD > 3A,, + 2|8t — g7, (A1)
7U(S)
then we have
Y0
18D — B*|| < 5U(8) =" (A.12)
As in the statement of the theorem, let k* = 5‘;‘% and assume k* < 3/4. Then for any x €

[£*,3/4], A > 3A,,, we can set

11—kt m .
AD = 1_HA+#5;®HB<O> el (A13)

forall t € [T]. When t = 1, we have 3(°) € B(r; 3*) and one can check inequality (A1) holds by
setting ¢ = 1 in (A:13), thereby applying (A:12) yields that

. RSV 16 .
I80) - ) < 5(S)22 = 2L g0

Now we prove Theoremmby induction. Assume that for some ¢ > 1,

5¥(S) 1
1

ot
189 — 8" < T A+ R8O - 8 (A.14)

Under condition A < 3A, k < 3/4, we have
15%(3) 1 (3/4) 159(3) 1 (3/4
) _ g% < A+ (3/0)489 - g*|| < A
180 - g < PEELZ I R o0 — gy < BEEL_C T R
- G 5

where the first equality is from our definition of A. Consequently, we have 3(*) € B(r; 3*). Now
we check that by our choice of At:™", inequality (A1) holds. Note that

(3/4)"

S5aput 1 — Kt apt

auT « .
BAm + —L |80 — B*| < A+ A K8 — 8|
v ( ) YYm — kR y ( )
1-— o 1 — gtt+l 5
<A+ A 4ottt 0 _g*|=—_—" A 4ottt m o _ fl+1),
K 1— 5\1,(3) B8 || 11—~ K 75\1'(8) ||5 B H (

aput

where the first inequality is from (A.14) and the second inequality is from the fact & > r* = 524~

Therefore (A:1T) holds for ¢ + 1. Then applying (A:12) with ¢ + 1 implies that

T(S) 1 — Kt

T AT = Al
m

b
184+ — g7 <

Putting pieces together we prove that (A:T4) holds for all ¢ € [T'] when Conditions 4] and [5|hold in
every step. Applying probabilistic union bound, we reach the conclusion. O

B Applications to Example Models

We fill in the details for the example models discussed in Section [3]in the main body: Gaussian
mixture models, mixed linear regression (with sparse and low-rank regressors) and missing covariate
regression.
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B.1 Gaussian Mixture Model

Recall that we consider the isotropic, balanced Gaussian Mixture Model with two components where
sample y; is generated from either N'(8*, 021,) or N'(—3*, 0°1,,).

We focus on the high SNR regime where we assume SNR > p for some constant p. Note that the
work in [[11]] provides empirical and theoretical evidence that in the low SNR regime, where the
overlap density of two Gaussian clusters is small, the standard EM algorithm suffers from sublinear
convergence asymptotically. Therefore the high SNR condition is necessary for showing exponen-
tial/linear convergence of the EM algorithm and our high dimensional variant. In particular, we are
interested in quantizing estimation error using ¢ norm. We thus set the norm || - || in our frame-
work to be || - ||2 in this section. Recall that we set regularizer R to be the ¢; norm. For any
subset S C {1,...,p}, £1 norm is decomposable with respect to (S,S). For any B* € By(s;p),
by letting S = supp(3*),S = supp(3*), we have ¥(S) = /s and C(S,S;R) corresponds to

{lluse |l < 2||11$||1 +2¢/s[[ull2}.
According to the Q&M (.|.) introduced in (5.1), by taking its expectation, we have

QEMM (3'8) = —%E [w(V; )Y - B3+ (1 —w(;8)|Y +83]. B.1)

We now check that Conditions|1}[3|hold for Q™M (.|.). We begin with proving the following result.

Lemma 2 (Self consistency of GMM). Consider the Gaussian mixture model with QEM (.|.)
given in (BZI). For model parameter 3* we have

B" = arg max QMY (B]87).

Proof. In this example, we have

1
1+exp(—2(Z-B*+W,B%))

M) = 2B Lu(v:5)Y] = 26 | -5+ W)

where W ~ N(0,0?) and Z has Rademacher distribution over {—1,1}. Due to the rotation in-
variance of Gaussianity, without loss of generality, we assume 3* = Ae;. It is easy to check
supp(M(B*)) = {1}. Moreover, the first coordinate of M (3*) takes form

1
S
1 +exp(—=(AZ + Wy))

where the last equality follows by the substitution X = W;,Z = Z,v = 0,a = A in Lemma @
Therefore, M(8*) = 3.

(M(B") =

(AZ + Wl)] = A,

The above result shows that Q¢ (-|.) satisfies Condition|[1} It is easy to see V2QEMM (3'|8) =
—1I,,, which implies that Q¢ (.|.) satisfies Condition [2| with parameters (v, u,7) = (1,1,r) for
any r > 0. Next we present a result showing that Q¥ (.|.) satisfies Condition 3| with arbitrarily
small stability factor 7 when SNR is sufficiently large.

Lemma 3 (Gradient stability of GMM). Consider the Gaussian Mixture Model with Q%M (.|.)
given in (B.I). Suppose SNR, > p. Function QEMM (.|.) satisfies Condition 3| with parameters
(7,118*|l2/4), where T < exp(—Cp?) for some absolute constant C.

Proof. See the proof of Lemma 3 in [1]]. [

Now we turn to the conditions on Q&M (.|.),

Lemma 4 (RSC of GMM). Consider the Gaussian mixture model with any 3* € By(s;p) and
QGMML| ) given in (5.1). Foranyr > 0, we have QSMM (.|.) satisfies Condmonlwnhpammeters
(Yn, S, S, 1,0), where

Y =1,6=0,(8,8) = (supp(8*), supp(8*)).
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Proof. Although Condition[z_f] is a stochastic condition, for Gaussian mixture model in particular, it
is satisfied deterministically. Note that

QEMM(B18) =~ 3" [wlys: B)lyi — B3 + (L wlys: B)ly: + B3]

i=1

We have that for any 3', 3 € RP, V2QGMM(3'|3) = —I,,, which implies that Q5™ (3'|3) is
strongly concave with parameter 1. Consequently, Condition[d holds with ,, = 1. O

This above result indicates that the restricted strong concavity condition holds deterministically in
this example. The next lemma validates the statistical error condition and provides the corresponding
parameters.

Lemma 5 (Statistical error of GMM). Consider the Gaussian mixture model with QG™MM (-|.) and

QEMM (1) given in (5.1) and (B.1) respectively. For any r > 0, 6 € (0,1) and some absolute
constant C, Condition|3| holds with parameters (A,,,r, ) where

= (B + )y 2R o8 20)

n

Proof. Note that R* is || - || in this example. Following the specific formulations of QG (.|.)

and QGMM(.|.) in (3.1) and (B.I), we have
VQ§A4M(5*|/6) QGMIVI ﬁ |ﬁ 77—Zy7+ Z y“ :—QE[M(Y;ﬁ)Y}.
Therefore,

IVQSMM (8*8) — VQEMM (3*|8)| . < +

% > wlys; B)y: — 2E [w(Y; B)Y]
i=1

1 n

LV

L 0o
(a) (b)

Next we bound the two terms (a) and (b) respectively.

oo

Term (a). Let ¢ := 13" 'y, Lety; = (yi1,...,¥ip) foralli € [n]. Consider the j-th
coordinate ¢; of ¢, we have
-
Yy Yij-

Note that {y; ; }7-, are independent copies of random variable Y that is
Y;=2-8;+V, (B.2)

where Z is Rademacher random variable taking values in {—1, 1} and V' has distribution A(0, 02).
Since Z - 35 and V' are both sub-Gaussian random variables with norm ||Z - 55 ||, < |5} and

[IV|l4, S 6. Following the rotation invariance sub-Gaussian random variables (e.g., Lemma 5.9 in
[18]), we have that

Yilly, < \/IIZ BilE, + VIS, S VIB*IIE + o2

Following the standard sub-Gaussian concentration argument in Lemma|[I9] there exists some con-
stant C' such that for any j € [p] and all ¢ > 0,

Cnt?

Then by applying union bound, we have

Pr(sup [¢| >t]| < e < Cnt” >
r SUp il = = pe - exp T ase o 2 .
el 1815 + o2
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Setting the right hand side to be J, we have that, with probability at least 1 — 6/2,
lz": _ \/logp—I—log(Qe/é)
n Vi n '

Term (b). Now let  := % Yo w(yi B)y: —2E [w(Y'; B)Y]. We also consider the j-th coordinate
¢; of ¢, which takes form

S (187l +0)

(B.3)

2 n
G==> {w(yi;myi,j - E(w(Y;ﬂm)}-

i=1
Note that w(y;; 8)y; ; — E(w(Y;8)Y;),7 = 1,...,n are independent copies of random variable
w(Y;B)Y; — E(w(Y; B)Y;) where Y is given in (B.2). We have shown that Y is sub-Gaussian
random variable. Note that w(Y"; 3) is random variable taking values in [0, 1]. We thus always have

Pr(jw(Y;8)Y;| > t) < Pr(|Y;] > t) < exp(1 - C/|[Y;],)-

Using the equivalent properties of sub-Gaussian (see Lemma 5.5 in [18]) , we conclude
that w(Y;3)Y; is sub-Gaussian random variable with norm ||w(Y;8)Yjlly, < |Yjllw. S

~

VIIB*|%, + ¢2.  Following Lemma we have |w(Y;8)Y; — E[w(Y;8)Y;] |y, <
2||w(Y; B)Yjl|y,. Using the concentration result from Lemma [19] yields that for any j € [p] and
some constant C,

2 o C tQ
Pr(|¢;| = 1) = Pr {‘n ;w(yi;ﬂ)yi,j - E(w(Y;ﬂ)Y)‘ > t} <e-exp (—W) _

Applying union bound over p coordinates, we have

Cnt?
Pr | sup || >t ] <pe-exp (—) ,
(je[m ’ 18*[% + 02
which implies that, with probability at least 1 — §/2,

2 — . log p + log(2e/6
23 ulys By~ (Vi BY]| S (18 + o)LL) gy
i=1 o
Putting (B-3)) and (B.4) together completes the proof. O

Now we give the guarantees of Algorithm 2 for the Gaussian mixture model.

Proof of Corollary[l] This result follows from Theorem([I] First, recall that the minimum contractive

factor k* is K* = 5%. For the {5 norm, we have o« = 1. Following the fact that (v, 1) = (1, 1)

and Lemma we have k* < 20exp(—Cp?) for some constant C. We further have x* < %
when p is sufficiently large. Second, based on Lemma we set § = 1/p and choose A as A =

C(|B*||oc + 0)+/T logp/n with sufficiently large C' such that A > 3A,, /7. By the assumption
on n/T, we have that A < 3A where A = ||3*|2/(240+/5) in this example. Finally, we choose
)\io/)T = ||B© — B*||/(51/5) by following Theorem Packing up these ingredients and following

Theorem [1} we have that by choosing any x € [1/2,3/4], |[B®) — B*[2 < &'[|B©) — B*[|s +
5v/sA/(1 — k), which thus completes the proof. O

B.2 Mixed Linear Regression

Recall that for Mixed Linear Regression (MLR) model, we consider two sets of model parameters:
B* € By(s;p) and T* € RP1*P2 with rank(T'™*) = . For the two settings, the population level
analysis is identical under i.i.d. Gaussian covariate design. Without loss of generality, we begin
with treating the model parameter as a vector 3* € R? and validate Conditions for QMER(.].)
in this example. Given function QML (.|.) in (5.3), taking its expectation, yields

QYER(E18) = — 5B [w(Y, X; )Y — (X,8))” + (1~ w(¥, X: B)(¥ + (X, 8))?] . (B5)

For now, we set the norm || - || in our framework to || - ||2. We begin by checking the self consistency
condition.
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Lemma 6 (Self consistency of MLR). Consider mixed linear regression with model parameter
B* € R? and QMLE(.|.) given in (B.5). We have

,3* — arggle%é QJMLR(,B|ﬂ*)-

Proof. In this example, we have

1

M(B*) = 2E [w(Y, X; B")Y X] = 2E <z 8+ W)X] ,

1+ exp(— 2(¢

where X ~ N(0,I,),W ~ N(0,0?), Z has Rademacher distribution. Due to the rotation in-
variance of Gaussianity, without loss of generality, we can assume 3* = Ae;. It is easy to check
supp(M(B*)) = {1}. Moreover,

oy 1 2 _ 2y _
(MY = 28 | ey (A2 #2007 = B(AXE) = 4,

where the second inequality follows by the substitution X = W, Z = Z,~v = 0,a = AX; in Lemma
We thus have M (8*) = B*. O

It is easy to check V2QMLR(B'|8) = —1I,,. Therefore, Q*(.|-) satisfies Condition [2 with pa-
rameters (v, p,7) = (1,1,r) for any » > 0. Similar to the Gaussian mixture model, we introduce
the following SNR quantity to characterize the difficulty of the problem.

SNR = 8] /o

The work in [7] shows that there exists an unavoidable phase transition of statistical rate from high
SNR to low SNR. In detail, in low-dimensional setting, the obtainable statistical error is (1/p/n)
that matches the standard linear regression when SNR > p for some constant p. Meanwhile, the un-
avoidable rate becomes Q((p/n)'/*) when SNR, < p. We conjecture such transition phenomenon
still exists in high dimensional setting. For now we focus on the high SNR regime and show our
algorithm achieves statistical rate that matches the standard sparse linear regression and low rank
matrix recovery (up to logarithmic factor) in the end.

The following result shows Condition [3| holds with arbitrarily small stability factor 7 when SNR is
sufficiently large and the radius r of ball B(r; 3*) is sufficiently small.

Lemma 7 (Gradient Stability of MLR). Consider mixed linear regression model with function
QMEE(.|) given in (B.3). For any w € [0,1/4], let r = w||B*||2. Suppose SNR. > p for some
constant p. Then for any 3 € B(r; 3*), we have

IVQYEE(M(B)18) — VQMEF(M(B)B) 2 < 7118 — B7[l2
with

17
T=—+T7.3w.
P

Proof. Recall that we hope to find 7 such that for any 3 € B(r; 3*)
IVQMEE(M(B)|B) = VQMEE(M(B)B) 2 < 7IIB — B*l2-

In this example, we have
M(B) = 2E [w(Y, X; B)Y X],
and
VRYH(B'18) = 2E[w(Y, X; B)Y X] - 3.
Therefore,

VQMER(M(B)|8) - VQMER(M(8)|8")
— 2E [u(Y, X; B)Y X] — 2E [w(Y, X: B)Y X] = 2E [w(Y, X: B)Y X — B,
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where the last equality is from the self consistent property of @ Z%(.|.). Due to the rotation invari-
ance of Gaussianity, without loss of generality, we assume 3* = Aey, 3 = (1 + ¢1)Ae; + exAes,

where A = ||B*|2, |3 — B*||2 = A\/€? + €3. Let random vector T' be
1
T =wl,X;8)YX — 55*

Note that for any 8 € RP,

— 2
w(Y,X;8) = exp(— =720 _ 1
eXP(—W)-ﬁ-eXP(—W) 1—|—exp(—2yff%ﬁ>)
thereby
1 1
T = YX _ *,6*
1+ exp(—%) 2
1 1
- ZAX, + W)X — A
14+ eXp(_2(ZAX1+W)(AU(21+61)X1+52X2))( 1+ ) 5 e,

where Z is Rademacher random variable taking values in {—1, 1}, W is stochastic noise with dis-
tribution A(0, 02), X; and X are the first two coordinates of X. It is easy to note that E[T}] = 0
for ¢ = 3,...,p. We focus on characterizing the first two coordinates 77,75 of T'.

Coordinate 7.
First, we compute the expectation of 7}. Particularly we let v = €1 + €2 X5/ X;. Then we have

[E[Ty]| = |E )ilj)zv(LZ)AXl) Lax?
1+ exp(— 22 (W + ZAXy)) 2
W+ ZAX 1
<EJXf Q(AX1(1+’Y) ) _§AX1
W+ ZAX 1
=Ex, x, { |X1] Ew,z Q(AX ) 1) - -AX,
1+exp(— =25 (W + ZAXy)) 2
. 1 2(AX1)? — (AX,)? o
<Exix, |13l min { 541X o O 2R T anl] e

where the last inequality follows from Lemma [25| by replacing the parameters (X, Z, a,~) in the

statement with (W, Z, AX1,v). Let event £ be £ := {7? < 0.9}. Computing the expectation in

conditioning on £ and £° yields that

VA(AX1)? — (AXy)?
202

BT <E [ hlAX? exp )| ] -prce

ol Xy|
V2T

We bound the two terms on the right hand side of the above inequality respectively. For the first
term we have

+E[ + AX?

56] - Pr(£°). (B.7)

1 2 '72(AX1)2 - (AX1)2 1 ) —(AX1)2
- . |l —(AX,)? -
E {2|V|AX1 exp( 952 )| €] - Pr(&) <E | ShIAXT exp(—5 ) | €] - Pr(€)
1 —(AX1)2 1 1
<E [2|’Y|AX126XP(2002) <E §A (|61| CX2 4 \62X1X2|) exp(—%pQXf)
1 |51| 1 |62| 1 1

= A T A S S SA———— B.8
277 (14 0.1p2)3/2 * m 140.1p2 — 2 1—|—O.1p2(‘61‘ +leal), (B.8)

where the third inequality is from ||3*|2/o > p. For the second term in (B.7)), first note that
_ *
yed+eas< 16257 <y < 1a,
18*[|2
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thereby

V| < lea] + [ea] - [ Xo/Xa| < 1/4+ [ea] - | X/ X
We define event £’ := {X2/X? > (2.1¢2)71}. Note that £ = {72 > 0.9}, we thus have £¢ C &',
i.e., the occurrence of £¢ must lead to the occurrence of £’. For the second term in (B.7)), we have

0|X1| 2 :| {O—X1| /} /
E + AX7 | E°| -Pr(&°) <E +AX?2 €& -Pr(E
[ o 1 r(&°) < o 1 (&)
<E { | | 2. 162A|X1X2| 5] Pr(g ) (B.9)

2 214 _ V21 2\/
=2 01- +4/2.124° g < V2T A\ o3, (B.10)
T 1—|—2 162 w14 2.1€; T

where the equality is from Lemma 2 by setting C in the statement to be \/2.1¢3.
Putting (B-8) and (B.9) together, we have

1 1 v2.1lo 2v/2.
E[Ty]]| < A—— A 3 B.11
E) < 5argpatal+le) + el + . B
Coordinate 7T5.
Now we turn to the second coordinate 7. Using E [X; X5] = 0, we have
Xo(W+ ZAX 1
’E[TQ] | = |E 22A(X (1+7) 3 -5 AXIX
14 exp(—==L"2(W + ZAX,)) 2
W+ ZAX 1
<E||X,|- §AX = ) — —AX||.
1+exp(— =L (W + ZAX,)) 2

Similar to (B.6), using Lemma 23] leads to

. 1 ’)/2(AX1)2 - (AX1)2 g
BT <& | 1Xal-min { 54+ o] exp AL 2O 7 gy
1 2(AX1)% — (AX,)?
<& 3Ah1 - 1X el o AL ] prge)
g
0’|X2‘ :| .
+ E + Al X1 Xs| | E¢| - Pr(€°).
D2 x| preee)

We bound the two terms in the right hand side of the above inequality respectively. For the first term,
we have

1 2(AX1)? — (AX,)?

IE:[QAM.|X1X2|exp(7 ( 1)2 2( ) )H - Pr(€)

1 0.1(AX) 1 —0.1(AX;)?
<E[3AR] XXl e~ AT ] - s>§E[2A|w|-|X1X2|exp<2< X7

g
1 |€1] 1 |ea]

< T Aan = .
E{ A (e X1 Xo| + |e2] X3) exp( OpX)} WA1+01 R NN ST (B.12)

For the second term, recall that event £’ is defined as { X2/ X? > (2.1€3) '}, we have

5'} - Pr(€")

0’|X2‘ :| |:‘7 2|
E + A X1 Xa| | €| -Pr(€°) <E + Al X1 X
(T2 ) ] pren) < | T2 A

V21 24 218 V21 424
lee 24 2l _v2lo 424, (B.13)
Jit2iad 7 1+216 -

where the equahty follows from Lemma . by setting C' in the statement to be /2.1¢3. Putting
and (B:13)) together, we have

g
s

2.1 42A
Em)) < talal el | V2o oy

1
— _+-A
- 1+0.1p2+2 V1+0.1p2 T T &-
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Now based on (B.TT) and (B.14), we conclude that

E(|T]] = E [\/Tf T Tg} <E[T1| + T3]

V210 0WII | . V21 424 ,

1 o
< A————(lea| + |e2]) + €2 + Alea|” + €2 + €
™ ™ ™ ™

Vv1+0.1p?

(lex] +leal) + leal /p + 1.83w|62|>

cal -t
V1+0.1p?
4.2 4.2
< A(ler] + e -(+1.83w> < 2A4/€? + € - <+1.83w>
(lex] + le2]) 5 veate- (-
4.2

Note that VQMLE(M(B)|8) — VQMEE(M(B)|B*) = 2T, thereby we conclude that for any
w < 1/4, QMER(.].) satisfies gradient stability condition over B(w||3*||2; 3*) with parameter

17
= — 4+ 7.3w.
p

O

In [T, it is proved that when r = 55 ||/6 |2, there exists 7 € [0,1/2] such that QM EE(.|.) satisfies
Condition [3| with parameter 7 when p is sufficiently large. Note that Lemma [7]recovers this result.
Moreover, Lemma [7] provides an explicit function to characterize the relationship between 7 and
p,w

Next we turn to validate the two technical conditions of QM £%(.|.) and establish the computational
and statistical guarantees of estimating mixed linear parameters in the high dimensional regime. We
consider two different structures of linear parameters: (1) model parameter 3* is a sparse vector;
(2) model parameter I'* is a low rank matrix. Note that we assume X is a fully random Gaussian
vector/matrix, thereby the population level conditions on Q* £%(.|.) hold in both settings.

Sparse Recovery. We assume model parameter 3* is s-sparse, i.e., 3* € By(s;p). Recall that,
in order to serve sparse structure, we choose R to be £; norm. Setting S = S = supp(B*),
set C(S,S;R) corresponds to {u : |usc|; < 2||us|li + 2v/s||ull2}. Restricted concavity of
QMLR(.].) is validated in the following result.

Lemma 8 (RSC of MLR with sparsity). Consider mixed linear regression with any model parameter
B* € Bo(s;p) and function QMLE(.|.) defined in (5.3). There exit absolute constants {C;}3_,
such that, if n > Cyslogp, then for any r > 0, QMLE(.|.) satisfies Conditionwith parameters
(Yn,S,S,r,6), where

Y = 5, (S,8) = (supp(B*), supp(B*)), 6 = C1 exp(—Can).

1
3 b
Proof. Recall that

n

1

QY(B'18) = ~5n w(yi xi3 8) (i — (xi, 8))* + (1 — w(ys, xi3 8)) (s + (xi,8))°] .
i=1

For any 3, 3’ € RP, we have

QLR 18)- QU (B718)~(VQ(B°18), 5—5) = —5(5'~5)T (i 2 xix; ) (B=F")-
i=1

(B.15)
Note that we want to find 7, such that the right hand side of (B.I53) is less than
—2||8" — B|)3 for any B’ — B* € C(S,S;R). In this example, we have C(S,S;R) =
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{ueR?: |jus:|1 <2||us|li + 2v/s|lull2}. It is sufficient to prove that the sample covariance
matrix has restricted eigenvalues over set C(S,S;R). The following statement is follows by the
substitution ¥ = I,, and X = X in Lemma|23} there exist constants {C; }7_, such that

1 & 1 ]
=3 w? > Sl - Co2 ulff, forall u € RY, (B.16)

with probability at least 1 — C exp(—Can). For any u € C(S,S; R), we have
lully = [[usll + [[us= [+ < 3[uslly +2vs[ull2 < 5v/s]|ull2.
Applying (B.16) yields that

—_

1 & 1
=Y (@iw)? > Sul3 — 250> ng||u\|2, for all u € C(S,S; R).
n __

Consequently, when n > Csslog p for sufficiently large C, 2 37" | (z;,u)? > 1/3]lu||3, which
implies v, = 1/3. O

Lemma states that using n = O(slog p) samples makes QM L%(.|.) be strongly concave over C

with high probability.

Lemma 9 (Statistical error of MLR with sparsity). Consider mixed linear regression model with any

B* € Bo(s;p) and functions QMLE(.|.), QMLE(.|.) defined in (5.3) and respectively. There
exist constants C' and C such that, for any r > 0 and § € (0,1), ifn > Cy(logp +1og(6/9)), then

V@R " (8(8) = VM (B%18) ]l < C(I8" |2 +6)

with probability at least 1 — 6.

—Ing +:L0g(6/5) Sforall B € B(r; 8%)

Proof. According to the formulations of QM X (-|-) and QM £ (-|-) in (5.3) and (B.3)), we have
Vo (B18) - VMR (8*18)
=8~ ( Zx X; ) B+ le yi Xii B)yixi — 2B [w (Y, X; B)Y X] - izlyx
(B.17)
So
VY (8%18) — VQ M (B"(8) |l

1 & 1 &
E;yﬂiv DO+ B8 (ngxixj>ﬁ

n

3\1\9

oo

Z yz,XuB YiX; *2E [w(YaXaﬁ)YX]

o

(a) (b) (c)
Next we bound the above three terms (a), (b) and (c) respectively.

Term (a). We let vector ¢ := 1 3" | y;x;. Consider jth coordinate of ¢. For any j € [p], we have

1 n
G = - Z;yz‘xi,j,
P

where x; ; is the jth coordinate of x;. Note that {yixij}?zl are independent copies of random
variables ((X,Z - B*) + W)X, where X ~ N(0,I,), W ~ N(0,0?) and Z has Rademacher
distribution. (X, Z-B*)+W is sub-Gaussian random variable that has norm || (X, Z-B*) +W||y, S
V|IB*]|3 + o2. Also X is sub-Gaussian random variable that has norm || X, ||y, < 1. Then based
on Lemrna. (X, Z - ﬁ ) + W)X is sub-exponential with norm || ((X, Z - ﬁ ) + W)Xy S
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13*||13 + 2. Following standard concentration result of sub-exponential random variables (e.g.,
Lemma [20), there exists some constant C' such that the following inequality

Pr(|¢;| > 1) < 2e (c tn )
, ol o tnr
=Y =P T B g o

holds for sufficiently small ¢ > 0. Therefore,

t2n
Pr| sup |(;| >t | <2pexp (—C’*> .
(jE[p] ’ 1813 + o2

Setting the right hand side to be §/3, we have that, when n is sufficiently large (i.e., n > C'(logp +
log(6/9)) for some constant C'), with probability at least 1 — §/3.

1 n
- Z YiXi
=

Term (b). Now we let { = 8* — %xixiﬁ*. For any j € [p],

1 log(6/6
S (1872 + o) %Og(/). (B.18)

o0

1 n
G = EZ@* — @ j(xi, B7).
i=1

Note that {3} —z; j(x;, 3") }}_, are independent copies of random variable 37 — X; (X, 3*). Using
similar analysis in bounding term (a), we claim that 37 — X; (X, 8%) is centered sub-exponential
random variable with norm ||35 — X;(X, 8*)[[¢, < ||8"||2- Therefore, for sufficiently small ¢ and
some constant C,

t2n
P ; 2 —C———= .
rlGl=1) < “p( Wﬂ@)

Using union bound implies that

t’n
Pr(sup |G| >t | <2p-exp|—-Cizs |-
JElp] 1813

Setting the right hand side to be §/3, we have that, when n is sufficiently large,

g - (;gx@) 8"

holds with probability at least 1 — §/3.

log p + log(6/4)

S 1872 (B.19)

oo

Term (c). The analysis of this term is similar to the previous two terms. We let

n

¢ = % > w(yi,xi; B)yix; — E[w(Y, X; B)Y X].
1=1
For any j € [p],
G = % > wlyi,xi; B)yizs,; — Elw(Y, X; 8)Y X].
=1

Note that {w(y;, x;; B)y;x: ; i, are independent copies of random variable w(Y, X; 8)Y X;. We
know that Y is sub-Gaussian with norm [|Y||4, < v/118*]13 + 02. Since w(Y, X; 3) is bounded,
w(Y, X; B)Y is also sub-Gaussian. Consequently, w(Y, X; 3)Y X is sub-exponential. By standard
concentration result, for some constant C' and sufficiently small ¢,

Pr(|¢;] >t) < 2e ( C i’ )
i xp| —Crimr—— ) -
=8 =SSP T B 1 o2

Therefore,

nt?
Pr(sup |(;| > t) < 2exp (—C).
Gap et =1 1518+

J€lp]
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Setting the right hand side to be §/3, we have that, when n is sufficiently large,

1 log(6/6
< 19+ 0y B2 RO

n

% Zw(yi,xi;ﬁ)yixi —2E [w(Y, X; 8)Y X]

i=1

with probability at least 1 — §/3.
Putting (B.18)), (B.19) and (B.20) together completes the proof. O

Lemma@implies Conditionhold with parameters A, = O ((||,@* l2 +6) \/logp/n) ,anyr >0

and 6 = 1/p. Putting all the ingredients together leads to the following guarantee about sparse
recovery in mixed linear regression using regularized EM algorithm.

Proof of Corollary[2] The result follows from Theorem[I} First, we note that the minimum contrac-
tive factor k* = 5% = 157 in this example since o = 1,4 = v = 1 and 7,7 = 1/3 wh.p

when n 2 slog p (see Lemmal[8). Following Lemmal7] x* < 1/2 when w < 1/240 and p is suffi-
ciently large. Second, by choosing n/T" 2 slogp, we have A, )7 < (||B* |2 +6)4/ % w.h.p., as

proved in Lemma@ Lastly, we have A < 3A by assuming n/T > [(||8*|l2 + 0)/]|8%|2]" s log p.
Putting these ingredients together and plugging the established parameters into (#.6) complete the
proof. O

Low Rank Recovery. In the sequel, we assume model parameter I'* € RP1*P2 is a low rank matrix
that has rank(I'™*) = 6 < min{py,p2}. We focus on measuring the estimation error in Frobenius
norm thus set || - || in our framework to be || - || r. Note that by treating T'* as a vector, Frobenius
norm is equivalent to {5 norm, thereby we still have Lemma [6}{7) in this setting. Moreover, SNR is
similarly defined as
SNR := |[T*|| ¢ /0.
In order to serve the low rank structure, we choose R to be nuclear norm || - ||... For any matrix M,
we let row(M) denote the subspace spanned by the rows of M and col(M) denote the subspace
spanned by the columns of M. Moreover, for subspace represented by the columns of matrix U, we
denote the subspace orthogonal to U as U~. For I'* with singular value decomposition U*XV* T,
we thus let
S = {M € RP**?2 : col(M) C U*, row(M) C V*} (B.21)

and

T = {M € RP P2 ; col (M) € U™ row(M) C V*+} . (B.22)
So S contains all matrices with rows (and columns) living in the row (and column) space of

I'*. Subspace S contains all matrices with rows (and columns) orthogonal to the row (and col-
umn) space of I'*. Nuclear norm is decomposable with respect to (S,S). We have U(S) =
SUPp ez (o3 Ml+/[IM|[F < /20 since matrix in S has rank at most 26. Similar to Lemma
and E]for sparse structure, we have the following two results for low rank structure.

Lemma 10 (RSC of MLR with low rank structure). Consider mixed linear regression with model
parameter T* € RP1*P2 that has rank(T*) = 6. There exists constants {C;}2_, such that, if
n > Cof max{p1, p2}, then for any 0 € (0, min{p1, p2}), QMEE(.|) satisfies Conditionwith
parameters (v, S,S,r,0), where (S,S) are given in (B:21) and (B.22),

1

’Yn:%a

0 = Cy exp(—Can).
Proof. Similarly to (B.13), we have that for any I/, T" € RP1*P2,
1 n
Note that I/ — T* € C(S,S; || - ||+). Let © := I — I'*, we thus have
1Oz« <2 [Og]« +2- V20[|O]| .

We make use of the following result.
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Lemma 11. Let {X;}? | be n independent samples of random matrix X € RPL*P2 where the
entries are i.i.d. Gaussian random variable with distribution N'(0, 1). There exits constants C1, Co
such that

with probability at least 1 — Cy exp(—Can).
Proof. See Proposition 1 in [13]] for detailed proof. O

Then for our ©, using the above result yields that

p b2
> g0l — 12 (/2 4 /2) (jegl. + 105:1.)

> 110l —12 (/2 +/2) (slegl. + 2vrlelr)
> [i — 60v20 (\/i’?+ \/fﬂ 10/

So whenn > C6 max{pl,pg} for sufficient large C, we have \}\/ " (X;,0)2 > 8] F/Vv20.
Plugging this result back into (B.23)) gives us 7y, = 1/20 thus completes the proof. O

Lemma 12 (Statistical error of MLR with low rank structure). Consider the mixed linear regression
with any I'* € RP1*P2_ There exists constants C' and Cy such that, for any fixed I' € RP**P2 gnd
6 €(0,1),ifn > Ci(p1 + p2 +10g(6/9)), then

p1 + p2 +1og(6/0)
n

IVQMEH(I*|T) — V@R M (T D)l < C(I= |7 + 0)\/

with probability at least 1 — 0.

Proof. Parallel to (B.T7), we have
v, () - VMR (TH|T)

n

=T = =D (X TP+ =3 Sw(ys X DyiXs — 2B [w(Y, X, T)YX] = =3 0iX;

i=1 i=1 i=1

The dual norm of nuclear norm is spectral norm. So we are interested in bounding the following
term for fixed I':

||VQ£4LR(I‘* |F) o VQ]VILR(I\*|F) H2

- ZyX - Z(XZ-J" )Xl +||~ Zw(yi7Xi, )y X; — 2K [w(Y, X;T)Y X]
=1 2 i=1 2 i=1 2
Uy Us Us

Next we bound the three terms U, Us and Us respectively.
Term U;. We first note that
U= sup Z yi(uv ', X,)
uesri—1 1
v e sp2—!
In particular, we let

Z(a,b) =  sup nZyl uv ', X,).

u € aSP1—
v € bsp2~!
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We thus have Z(a,b) = abZ(1,1). We construct 1/4-covering sets of SP~1 and SP2~1, which we
denote as J\/l and N, respectively. Therefore, for any u € SP~!,v € SP2~!, we can always find
u’ € Np,v' € N3 such thatﬂu - u’HQ v — Vv'||2 < 1/4. Moreover, we have the following
decomposition uv’ = u'v'T + (u—u)v'T n u'(v—v)T 4+ (u—u)(v—v)T. Therefore, we
have

Z(1,1) < o Zy uv' X))+ Z(1/4,1) + Z(1/4,1) + Z(1/4,1/4),

which implies that

16
200, s g L X

For any fixed u and v, {y;(uv ", X;)}™_; are n independent copies of random variable Y (uv ', X)
where Y is sub-Gaussian with norm [|Y |y, < +/T*[%Z +02, (uv',X) is zero mean

~

Gaussian with variance 1. Following Lemma Y(uv', X) is sub-exponential with norm
Y (uv ", X))y, < /IIT*||% + o2. Using concentration result in Lemma we have

1« T Ct?n
r||— av X)) | >t <2exp| ————5——
(@“ : ) (e

for sufficiently small ¢ > 0. Note that |A7| < 971 |N3| < 9P2. By applying union bounds over A}
and N5, we have

Ct*n
P =y VX)) >t ] <2.9Ftr2) — e ]
r <u€N1,VEN2 ;y UV > ) P ”I‘*H%‘ +0?

By setting the right hand side to be /3, we have that if n > C(py + p2 + log(6/6)) for sufficiently

large C, then
. + po + log(6/0

with probability at least 1 — 6/3.

Term U,. Parallel to the analysis of term U1, we have
1 n
Uy= sup (uv',T*)—— Z(Xi,l"*) (uv ', X;).
u e s =

v e g2t

We construct 1/4-nets A7, Ny of SP*—1 and SP2~1 respectively. Then

16 1
U. — I‘*
2 < & pax (uv

3

i X;, T - (uv’, X;).

For any fixed u,v, note that {(X;, T*) - (uv',X;)}?™_, are n independent samples of random
variable (X, T*)-(uv ", X) where (X, T*) ~ (O7 ||I‘*HF) and (uv ', X) ~ N(0,1). So (X,T*)-
(uv', X) is sub-exponential with norm O(||T"*|| ). Using the centering argument (Lemma and

concentration result (Lemma[20), we have
2
Pr >t| <2-exp (—C*n2>
1Tl

for sufficiently small ¢. Using the union bound over sets A1, N3, we conclude that when n >
C(p1 + p2 + log(6/9)) for sufficiently large C, we have

. + p2 + log(6/0
U, ST ||F\/p1 b2 b 8(6/9) (B.25)

(uv ', T — 1 § (X, T*) - (uv ', X;)
n
=1

with probability at least 1 — §/3.
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Term Ujs. We first have

n
Us= sup -— Zw cyi(uv ' X;) — 2K [w - Y(uvT,X>] .
uesr1—t 1 i=1
vesp2 !

Similar to the analysis of the first two terms, by constructing N7, N, we have

16 2 o T T
Us < T eeax ;w cyi(uv’ X)) = 2E [w-Y(uv', 6 X)].
Note that {wy; (uv ", X;)}"; are n independent samples of random variable wY (uv ", X) where
(uv', X) ~ N(0,1) and wY is sub-Gaussian with norm [|wY ||, < +/[|[T*[|% + o2 since |w| < 1.
We thus have wY (uv', X) is sub-exponential with norm [[wY (uv ', X) |y, < V/[IT*[% + o2
Then following the similar steps in analyzing the first two terms, we reach the conclusion that

p1 + p2 +1og(6/0)

Uy 5 (I8 + o)

(B.26)
n

with probability at least 1 — /3 when n = p; + pa + log(6/4).

Putting (B.24), (B.23) and (B.26) together completes the proof. O

Setting 6 = 6exp(—(p1 + p2)) in Lemma [12] suggests that Condition [5| holds with parameters

(A, 7, 0) where A, < (|IT*||F+9)+/ (p1 + p2)/n, § = exp(—(p1+p2)) and r can be any positive
number. Putting these pieces together leads to the following guarantee about low rank recovery.

Proof of Corollary[3] This result is parallel to Corollary [2] for sparse recovery thus can be proved
similarly. We omit the details. O

B.3 Missing Covariate Regression

We now turn to missing covariate regression. We first reveal function QM F(.|.) and QMCE(.|.).
To ease notation, we introduce vector z; € {0, 1}? to indicate the positions of missing entries, i.e.,
z;,; = 1if x; ; is missing. In this example, the E step involves computing the distribution of missing
entries given current parameter guess 8. Under Gaussian design X ~ N(0,L,),W ~ N(0,0?),
given observed covariate entries (1 — z;) ® x; and y;, the conditional mean vector of X; has form

yi —(B,(1 —2;) ©x;)

ir Zis Xi) = B[X;|B,vi, (1—2;) Ox;] = (1—2;)Ox;+ z; 08, (B.27
a7, %) = B[R] B, (1-2) 0] = (1-2) g B, B2
and the conditional correlation matrix of X; has form
Eﬁ(y“ Zivxi,) =E |:§1i;r|ﬁayz7 (1 - Zi) © XZ}
1
T . T
— ppp) + diag(z —() 2:08)z08). (B.28)
Consequently, @, (+|-) corresponds to
1 & 1
Qr]L\/ICR(ﬂllﬂ) = ﬁ Z<yiu,@(yi7ziaxi)7ﬂl> - 53T2,6(yu Zi>xi)/6' (B29)
i=1
We thus have that Q% (.|-) takes form
1
QU(BN8) = (E[Y up(Y, 2, X)],B) - 5 (E[Zp(Y, 2, X)], 887 ) . (B.30)

In particular, we let X5 := E[X5(Y, Z, X)]. We first present a key result that characterizes the
spectral property of 3.
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Lemma 13. For X, we have the following decomposition
Yg=€l, + 3 — 3o,
where

S=E{(1-2)0X+vZ0f (1-2)0X+vZog]},

1 T _Y_</87(1_Z)®X>
e oonzen | =R

Let ¢ := (1 + w)p, we have

3o =

/\min(zl) >1—e— 2C2\/E7 (B.31)
Amaz (B2) < (e, (B.32)
Amaz(Zp) <1+ 2C3Ve+ (1 + ¢ (B.33)

In particular, let 3 = 3*, we have T g = 1,,.

Proof. The decomposition follows by taking expectation of (B.28). For 3;, expanding the bracket
leads to

1= (1-0L+E{r[(1-2)0X](ZoB) +v(ZeB)|1-2) o X]" }+E[2(ZeB)(Z0B)"].

M N
For term M, consider its spectral norm. Since it is symmetric, we have

M|y = sup Z2EMZop - {(1-2)0 X u)

1 *
—2 s E[anm«l—zm(a —,8)7U>~<Z®,6,u>”
<91~ 2)0 (8" - B2 0 Bla] < 25BN~ 2) 0 (8~ B)I- 12 © B

<2 L AT - Bl < 2071 AT <20

where the second equality follows by taking expectation of X and Gaussian noise W, the last in-
equality follows from the definitions of w, p given in Section|[B.3] Note that N = 0. Then the lower
bound of \,,;, (X1) follows by using Ay,in(X1) > 1 — € — || M]|2. For X5, we have

1 1 .
3 =E m(z ©B)(Z ﬁ)T} = -2 ((e — €)diag(B © B) + 62:3,3T) ‘

Therefore, Apaz(2) < (2e. Note that

N2 LE[Y (8.0~ 2)0 X)AZ0p)(Z08)]
— LE[(0* 418" - (1~ 2) 0 BIH(Z e AZ0H)]

< (0 183+ 18— B°1B) (¢ — @)ding(B© ) + BT

We thus have Apqaz (N) < 2 (0? + [|8%[13 + 18 — B8 113)el|B]3 < (1 + ¢?)(?e. The corresponding
bound for Ay,4. (X ) then follows from Aaz (28) < 14 Mgz (M) 4+ Mgz (N).

When 8 = 3*, we have

Ex w(v?) = Exw [(X,8)+W - (X,(1-2)©p6))°] _ 1
o (02 +11Z © B*[3)? 02 +11Z © B3
and
E|[({(X, B* W —(X X
Exw((l-2)0X)= (ot a§+ﬁZ®ﬁ)®§ﬂ S
A -2)0zopr
2+ |ZopE
Therefore, M = 0 and N = X5. We thus have 5. = €I, + (1 — €)1, = I,,. O
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We now turn to check technical conditions about Q™ (.|.). First, M(-) is self consistent as stated
below.

Lemma 14 (Self-consistency of MCR). Consider missing covariate regression with parameter 3* €
R? and QMR (.|) given in (B:30). We have

B" = arg max QY (B]8").

Proof. In this example
M(BY) = (E[Sp- (Y. Z,X))) " E[Y pp- (Y. 2. X))
Following Lemma we have 3g- (Y, Z, X) = I,. Meanwhile, we have

E[Y g (Y, 2, X)] = E [((,6*,X> ) ((1 ~Z) e X+ <fQi‘ﬁ;)®(>ﬁt|gz ® ,@*ﬂ
=E[Q1-2)0p" +Z0p"]=p4"
Thus M(8*) = B*. O

For our analysis, we define p := ||3*||2/c to be the signal to noise ratio and w := r/||3*||2 to be
the relative contractivity radius. Let

C:=(1+w)p.
Recall that € is the missing probability of every entry. The next result characterizes the smoothness
and concavity of QMEE(.|.).

Lemma 15 (Smoothness and concavity of MCR). Consider missing covariate regression with pa-
rameter 3* € R? and QML (.|.) given in (B30). For any w > 0, we have that QM T (.|.) satisfies
Condition 2 with parameters (v, j1,w||8*||2), where

=1, p=1+2CVe+ (14 %)%

Proof. Following Lemma we have X = I,. Therefore, QM F(.|3*) is 1-strongly concave.
For any B € B(w||3*|; 3*), following (B.33), we have that QM“F(.|3) is y-smooth with 1 =
L+2¢%/e+ (14 %)% O

We revisit the following result about the gradient stability from [[1].
Lemma 16 (Gradient stability of MCR). Consider the missing covariate regression with 3* € RP
and QMCR(.|.) given in (B30). For any w > 0,p > 0, QYCE(.|.) satisfies Condition with
parameter (T,w||B*||2) where

_ @ +2e(1+¢%)?

= e

Proof. See the proof of Corollary 6 in [[1]]. [

Unlike the previous two models, we require an upper bound on the signal to noise ratio. This unusual
constraint is in fact unavoidable, as pointed out in [10]].

We now turn to validate the conditions on finite sample function Q£ (.|.). In particular, we have
the following two guarantees.

Lemma 17 (RSC of MCR). Consider missing covariate regression with any fixed parameter
B* € Bo(s;p) and QMCE(.|.) given in (B:29). There exist constants {C;};_, such that if
e < Comin{1,{"*} and n > C1(1 + ¢)®slogp, then we have QM (.|.) satisfies Condition
with parameters (v, S,S,w||B* |2, ), where

1

— (S,8) = (supp(B*), supp(B*)), § = Cyexp(—Csn(1+¢)7%).

’77129
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Proof. In order to show QM (.|3) is 7, -strongly concave over C(S,S; R), since QMCE(.|3) is
quadratic, it is then equivalent to show

1 n
- > uT Sy, 7, x)u > v, [ull3
i=1
forall u € C(S,S, R). Expanding X5 gives us

n n

J R 1 , 1 < 1 > )
- > u Xg(¥yi, zi, X)u > — iy Ziy Xi), W)~ — — | {z; ® B,u)°.
n; sy ) n;wm/ ),u) n; e oanE) % O8w

L1 L2

We choose to bound each term using restricted eigenvalue argument in Lemma[23] To ease notation,
yi—((1-2z:i)OB,x:)

we let v := 220832

Term L. Note that pg(y;, z;, x;) are samples of ug(Y, Z, a which is zero mean sub-Gaussian
random vector with covariance matrix 3; given in Lemma Moreover, we have Ay (21) >
1 — € — 2¢?/e. By restricting ¢ < 1/4 and assuming ¢ < C'(~* for sufficiently small C, we have
Amin(21) = 5. Moreover

(Y, Z, X)lly, S N1 =2) © Xy, +[[vZ © Blly, ST+ [vZ O Blly,-

Note that [[v 28], = supyego-1 [[1(ZOB, W) |y, < [1Bll27[[[VI]],,, < o 2[1B]l2[||W+(X, 8"~
(1-2)0B)l[|,, S (1 +w)p+ (1 +w)2p* As (= (1+w)p. We thus have [|pg (Y, Z, X)||y, S
(14 ¢)?. Using Lemma 23| with the substitution & = X and X = pg(Y, Z, X), we claim that
there exist constants C; such that

glogp

[ul|3 for all u € R?. (B.34)
n

1
Ly > 7lul - o1 +¢)

with probability at least 1 — C exp(—Can(1 + ¢)™%).
Term Lo. We now turn to term Lo. We introduce n i.i.d. samples {p;}"; of Rademacher random
variable P with Pr(P = 1) = Pr(P = —1) = 1/2. Equivalently, we have

n

1 1
Lo = — —_—_— izi® ,u2.
2= A m o pE P O

Note that \/(02 + ||Z ® B]|2) "1 PZ ® 3 is zero mean sub-Gaussian random vector with covariance
matrix 3o given in Lemma Moreover, we have \4.(22) < (%e < 1/12, where the last
inequality follows by letting ¢ < C'¢ =2 for sufficiently small C.. Also note that

SoNZ 6By, S¢

[ +izosr) Pz os
P2

Using Lemmawith substitution ¥ = ¥y and X = /(02 + || Z © B|3)"1PZ ® B, we claim
there exists constants C; such that

log p

|ul|?, forall u € R?. (B.35)
n

1
Ly < gl + Cmax{¢*, 1)

with probability at least 1 — C exp(—Chnmin{¢~%,1}).
Now we put and together. So we obtain

log p
lul|3 — (Co + Cp)(1 + C)STHUH?

O =

1 n
— E uTEﬁ(yi,zi,xi)uZ
n

i=1

For any u € C(S,S; R), we have |lul|; < 5/5|lul2. Consequently, when n > C(1+ ¢)8slog p for
sufficiently large C, we have that, with high probability, QM F(.|3) is ~,-strongly concave over C
with 7, = 1/9. O
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Lemma 18 (Statistical error of MCR). Consider missing covariate regression with any fixed pa-
rameter 3* € By(s;p) and QMCE(.|-) given in (B.29). There exist constants Cy, Cy such that if
n > Cyllog p +1og(24/0)), then for any § € (0, 1) and any fixed 3 € B(w||B*|2, B*), we have that
for

logp + log(24/96)
n

IV QUCT(5|8) — QU (BB < €31+ (P
with probability at least 1 — 0.

Proof. In this example,

IVQMCE(B*|8) — VMR (B*|8)||r-

1o I
n > vins(yi 2 %) —E[Yug(Y, Z,X)] - Zzﬁ(yiazivxi)ﬁ* -E[Xa(Y, 2, X)] 87

i=1

o0

Ul U2

yi—((1—2:)OB,%:)

To ease notation, we let v := PERRPNCTCIE:

. Next we bound the term U; and Us respectively.

Term U;. Consider one coordinate of vector V := Y ug(Y, Z, X). For any j € [p], we have
Vi = YI(1 = Z;)X; +vZ;B].
So Vj is sub-exponential random variable since Y and ( 1—-Z;)X,; +vZ;j3; are both sub-Gaussians.
Moreover, we have HYllqu < o4 872 and (1~ Z)X; + 028w S 10— Z)X; s +
1V Z; 85w, f, 1+ 07%(0 + V1 + w?||B*]]2)||8l|2- The last inequality follows from the fact that v
is sub-Gaussian with [, < 0=2(0+v/T + w23 [l2). We have [[Vill, < V]l (1—Z,) X, +
vZ;Billy, S (14¢)30, where ¢ := (1 +w)p. By concentration result of sub-exponentials (Lemma
and applying union bound, we have that there exists constant C' such that for ¢ < (1 + ()30
Cnt? )

(140"
Setting the right hand side to be 6/2 implies that for n 2 log p + log(2e/0),

U <(1+ C)So_\/logp + 1:;@:(26/5) (B.36)

Pr(Uy > 1) < pe - exp(—

with probability at least 1 — 6/2.
Term U,. Term U, can be further decomposed into several terms as follows

Uz < [[aulloo + azlloc + llaslloo + llasllsc + 0~ 2||as]loc + [laslo

where
a; = ii«l—zi)GXi,,@*>(1—zi)®Xi—E[<(1—Z)®X,ﬂ*>(1—Z)®X],
azzié@zZ@,@ 81 -2)ox —E[(vZ0 8,01 - 2) o X],
az = ;i((lzi)®xi,ﬁ*>yzi®ﬁE[<(1Z)@X,,B*>yZ®ﬁ],
as = ;i Xz 08,82, 0 B-EV(Z0B,69Z00],
ag,:%i@z@ﬁﬂ>zi®ﬂ—E[<Z®,6,ﬁ>Z®,6' Zdlag g

I
-

K2

The key idea to bound the infinite norm of each term a; is the same: showing that each coordinate is
finite summation of independent sub-Gaussian (or sub-exponential) random variables and applying

29



concentration result and probabilistic union bound. For each term a;,i = 1,2,...,6, we have that
forany j € [p],

(1= 2)0X,8)(1 - Zj) © Xjllp, SIB7ll2, [(vZ © B8 )(1~Zj) © Xjllyy S o(1+)C?,
(1= 2) 0 X, B )Z;Billu, S o1+ Q)¢ [WHZ B, B)Z;Bjlly, S o1+ C*)C,
02 (Z © B.B")Z; © Bjllvs S ¢, 1685 llv, S €llBlloo

respectively. For simplicity, we treat coordinates of every a; as finite sum of sub-exponentials with
1 norm O(o (1 + ¢)®). Consequently, by concentration result in Lemma there exists constant
C such that )

Cnt
for t < o(1 + ¢)°. By setting the right hand side to be 6/2 in the above inequality, we have that
when n 2 logp + log(24/4),

1 log(24/9
Us So(l+ 4)5\/ ks sg( 19, (B.37)
with probability at least 1 — §/2.
Finally, putting (B236) and (B:37) together completes the proof. O

By setting § = 1/p in Lemmal18|immediately implies that Q" satisfies Condition 5 with param-
eters A,, = O ((1 + C)E’m/logp/n), r = w||3*||2 and § = 1/p.

Putting together all the pieces leads to the following guarantee about resampling version of regular-
ized EM on missing covariate regression.

apfr

Proof of Corollary[ Following Theorem L we have k* = 5 . For ¢35 norm, o = 1. Based on

Lemma we have ,, = 1/9. Following Lemma [15|and |1 we have v = 1 and can always find
sufﬁ01ently small constants Cy, Cy such that p < 10/9 and 7 < 1/100. We thus obtain x* < 1/2.
From Lemma one can check A > 3A,, /7 under suitable C. We choose n/T 2 o (wp)’ls logp

to make sure A < 3A. With these conditions in hand, direct applying Theorem |I| completes the
proof.

C Supporting Lemmas

Lemma 19. Suppose X1, Xo, ..., X,, are n i.i.d. centered sub-Gaussian random variables with
Orlicz norm || X1 ||y, < K. Then for every t > 0, we have

1 — Cnt?
P — il =t <e- —— |,
r(‘ni—l >eeXp< K2>

where C'is an absolute constant.
Proof. See the proof of Proposition 5.10 in [18]]. O

Lemma 20. Suppose X1, Xo, ..., X, are n i.i.d. centered sub-exponential random variables with
Orlicz norm || X1 ||y, < K. Then for every t > 0, we have

Pr ! >t <2-e —C min ﬁi n
1| - Xp K27K b)

n
Proof. See the proof of Corollary 5.7 in [[18]. [

n

i=1

where C'is an absolute constant.
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Lemma 21. Let X be sub-Gaussian random variable and Y be sub-exponential random variable.
Then X — E[X] is also sub-Gaussian; Y — E[Y] is also sub-exponential. Moreover, we have

X = E[XT[lpy < 2 XI5 Y = EY gy < 20V o,

Proof. See Remark 5.18 in [18]]. O

Lemma 22. Let X,Y be two sub-Gaussian random variables. Then Z = X -Y is sub-exponential
random variable. Moreover;, there exits constant C such that

1211wy < CIX gy - 1Y [faps -

Proof. 1t follows from the basic properties. We omit the details. O

Lemma 23. Let matrix X be an n-by-p random matrix with i.i.d. rows drawn from X, which
is zero mean sub-Gaussian random vector with || X |y, < K and covariance matrix 3. We let
A= Anin (), Ap = Apaa (2).

(1) There exist constants C; such that
K4

N

1 A
Lyxul2 > 2 ul2 - con max{
n 2 1

1
,1} ng||u||1, forallu € RP,

with probability at least 1 — C exp (—an min {?(—i, 1})

(2) In Parallel, there exist constants C{ such that

1 3\ K* 1
IXulls < ZEfulls + CoX, max{ 22 71} P \u|2, forallu € R?,
n n

2
with probability at least 1 — C exp <fC’§n min {%, 1})

Proof. 1t follows by putting Lemma 12 and Lemma 15 in [9] together. O

Lemma 24. Let X; and X5 be independent random variables with distribution N'(0,1). For any
positive constant C > 0, let event £ := {C' - | X3| > | X1|}. Then we have

(a)
E[1X:] | €] - Pr(e) = ill—@.
(b)
E[|Xo| | €] -Pr(€ \[m
(c)
E[1X: X | €] - Pr(€) = W(ffc)
Proof. (a)
E[1X,]| €] Pr(€) = 4- / / _ —v2)exp(—u22)vdudu:\/2[1_\/CT+l .
(b)

2 2 C
X Pr(€) =4- L eoxp(—L02) exp(— L yudud _\/7.
[| 2||5 r( / //C2Wexp v)exp( 2)uuv T Ao
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(©)

w2 2
E[|X1Xo| | €] -Pr(E) =4- / / — exp f—)exp(f%)uvdudv

/C 21
C?+1
= 7/ exp(— + —— —v}vdv =
0

™ 2 7r(1 +CQ)

O

Lemma 25. Let X ~ N(0,02) and Z be Rademacher random variable taking values in {—1,1}.
Moreover, X and Z are independent. Function f(x, z; a,y) is defined as

x4+ az

1+ exp(fwa(m +az)) .

f($7Z;CL,’Y) =

Then for any a € R,y € R, we have

a . 1 v2a? — a? o
E[f(szaa'a’Y)]_§‘ Smln{2|a7exp( 202 )a \/%+|a| :

In the special case v = 0, we have E [f(X, Z; a,7)] = a/2.

Proof. First note that

X X —
E[f(X, Zia,y)] = & s + o
1+exp(—=z"a(X +a)) 1+exp(—=z"a(X —a))
B 1 X _|_ a + —X —Qa
27 |1t ep(- 2 a(X +a) 1+ oxp(- 2 a(-X —a)) |

where the first equality is from taking expectation of Z, the second equality is from the fact that the
distribution of X is symmetric around 0. Let X’ = X + a, then we have

1 X’ -X'
Elf(X,Z;a,7)] = -E +
e ) 2 1+exp(—waX’) 1+ exp(? WrwaX’)]
_ 1 [ p e HE X)X
2 1+exp(f@a)(’)

Using E [X’] = a, we have

E[f(X7Z;a77)]_a/2:E

exp(—ﬂszaX’)X’
1+ exp(—waX')

z—a)® S z?+a? ax
_ oo eXp(_(-QUQ) ) —exp(— 2(1 +’Y)agj)x :/ exp(— 2;F2 JE —exp(— 7 ) =
- 2n0 1+ exp(— 2 ax) —o0 210 exp(UHEUE) + eXp(M)
o] _1:2+a2 yazx yazx
_ / oxp(—*587) exgi )) exp(— (1+)) i o
0 2mo eXP(aa#)-l-eXp(T”)

When ay > 0, we have E [f (X, Z; a,v)] — a/2 > 0. Under this setting, (C.I) yields that

o5} _12+a2
B Ziam) - a/2 < [ BB ap(040) — exp(- 1) o

1 v2a? —a?, [ 1 (x — ~va)? (x4 ~va)?
=3 exp(7202 ) /0 T exp |~ g ) mexp | o g xdx

1 va? —a® [ 1 (r — ~va)? 1 v2a? —a?®
== L= = ) pde = = re %
exp( . )[ ro exp 572 zdx 5 exp( 572 )ya,
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GMM MLR((sparse) MLR(low rank) MCR

A | 0118 oo + )/ 52 | 0.1(18"[12 +0)y/ 1252 | 0.01(IT* |5 + 0)y/2EE22 | 0.20 /182

Table 1: Choice of parameter A in Algorithm|T]

where the first inequality follows from the fact that = + 1/x > 2 for any = > 0, the second equality

is from ) o )
- (z +7a) (x —a)
—/0 exp (—%‘2 rdx = N exp gz rdx.

When avy < 0, using similar proof, we have %exp(”zgigaz e < E[f(X,Z;a,v)] —a/2 < 0.
Combining the two cases, we prove that

1 2q
[EI/(X. Z:0.9)] - a/2] < Jlar]exp(*

In the special case when v = 0, we thus have E(f(X, Z;a,v)) = a/2.
Note that when a~y > 0, (C.I)) also implies that

o) _12+a2 yaxr e’} _(x+a)2
O e =T
0 V2no exp( (:7)) 0 2o
)a

z+a 2 :1:+a
:/OoeXp((%Q) )(I”)dx—/ooeXp( - dr < —— +a].
0 V2To 0 27rJ V21
Similarly, when ay < 0, we have
2 2
®© g 7ac+ r —e ’yam 0 o _ (z—a) z
]E[f(X,Z;a,fy)]—a/22/ <P ) xp(l ) dxz—/ oxp(= oz )T dz
0 2770 exp(M) 0 V2o
Joe) z—a)? o) (z ‘1)
= —/ exp(_( 262) )(x _ a) dr — / EXp(_;Qg? )adl' Z - 2 - |a/‘
0 V2mo 0 2ro V2T
Therefore, we have that o
E[f(X, Z;a, —a/2| < —— +|al. C3
Ef(X.Ziay)] ~a/2) < =+ ©3
Putting (C.2) and (C.3) together completes the proof. O

D Additional Experiment Setting

In our simulations, parameter A for each model is set according to Table[I]
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