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1 Main Theorems
For convenience of presentation, we repeat the main results as follows. To begin with, the noiseless model,
the general additive noise model, and the Poisson noise model are given respectively as follows.

(noiseless:) yi = |〈ai,x〉|2 , i = 1, · · · ,m, (1)

(general noise:) yi = |〈ai,x〉|2 + ηi, i = 1, · · · ,m, (2)

(Poisson noise:) yi
ind.∼ Poisson

(
|〈ai,x〉|2

)
, i = 1, · · · ,m. (3)

Theorem 1 (Exact recovery). Consider the noiseless case (1) with an arbitrary signal x ∈ Rn. Suppose
that the step size µt is either taken to be a positive constant µt ≡ µ or chosen via a backtracking line search.
Then there exist some universal constants 0 < ρ, ν < 1 and µ0, c0, c1, c2 > 0 such that with probability
exceeding 1− c1 exp (−c2m), the truncated Wirtinger Flow estimates (Algorithm 1) obey

dist(z(t),x) ≤ ν(1− ρ)t‖x‖, ∀t ∈ N, (4)

provided that
m ≥ c0n and µ ≤ µ0.

Theorem 2 (Stability). Consider the noisy case (2). Suppose that the step size µt is either taken to be a
positive constant µt ≡ µ or chosen via a backtracking line search. If

m ≥ c0n, µ ≤ µ0, and ‖η‖∞ ≤ c1 ‖x‖
2
, (5)

then with probability at least 1−c2 exp (−c3m), the truncated Wirtinger Flow estimates (Algorithm 1) satisfy

dist(z(t),x) .
‖η‖√
m‖x‖ + (1− ρ)t‖x‖, ∀t ∈ N (6)

simultanesouly for all x ∈ Rn. Here, 0 < ρ < 1 and µ0, c0, c1, c2, c3 > 0 are some universal constants.

In particular, under the Poisson noise model, there exists an an event of probability at least 1 −
c2 exp(−c3m) on which

P
{

dist(z(t),x) . 1 + (1− ρ)t‖x‖, ∀t ∈ N
∣∣∣ {ai}1≤i≤m}→ 1. (7)

holds for all x ∈ Rn satisfying ‖x‖ ≥ log1.5m. In what follows, we prove the above two theorems for a
broader range of algorithmic parameters, as summarized in Table 1.

Encouragingly, this is already the best statistical guarantee any algorithm can achieve. We formalize this
claim by deriving a fundamental lower bound on the minimax estimation error.
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Table 1: Range of algorithmic parameters

(a) When a fixed step size µt ≡ µ is employed: (αlb
z , α

ub
z , αh, αy) obeys

ζ1 := max
{
E
[
ξ21{|ξ|≤√1.01αlb

z or |ξ|≥
√

0.99αub
z }
]
,P
(
|ξ| ≤

√
1.01αlb

z or |ξ| ≥
√

0.99αub
z

)}
ζ2 := E

[
ξ21{|ξ|>0.473αh}

]
,

2(ζ1 + ζ2) +
√

8/(9π)α−1
h < 1.99,

αy ≥ 3,

(8)

where ξ ∼ N (0, 1). By default, αlb
z = 0.3, αub

z = αh = 5, and αy = 3.

(b) When µt is chosen by a backtracking line search: (αlb
z , α

ub
z , αh, αy, αp) obeys

0 < αlb
z ≤ 0.1, αub

z ≥ 5, αh ≥ 6, αy ≥ 3, and αp ≥ 5. (9)

By default, αlb
z = 0.1, αub

z = 5, αh = 6, αy = 3, and αp = 5.

Theorem 3 (Lower bound on the minimax risk). Suppose that ai ∼ N (0, I), m = κn for some fixed
κ independent of n, and n is sufficiently large. For any K ≥ log1.5m, define1

Υ(K) := {x ∈ Rn | ‖x‖ ∈ (1± 0.1)K}.

With probability approaching one, the minimax risk under the Poisson model (3) obeys

inf
x̂

sup
x∈Υ(K)

E
[
dist (x̂,x)

∣∣ {ai}1≤i≤m] ≥ ε1√
κ
, (10)

where the infimum is over all estimator x̂. Here, ε1 > 0 is a numerical constant independent of n and m.

2 Exact recovery from noiseless data
This section proves the theoretical guarantees of TWF in the absence of noise (i.e. Theorem 1). We separate
the noiseless case mainly out of pedagogical reasons, as most of the steps carry over to the noisy case with
slight modification.

The analysis for the truncated spectral method follows similar argument as in [1, Section 7.8], which
we defer to Appendix C. In short, for any fixed δ > 0 and x ∈ Rn, the initial point z(0) returned by the
truncated spectral method obeys

dist(z(0),x) ≤ δ‖x‖
with high probability, provided that m/n exceeds some large constant.

The remaining section then boils down to establishing convergence for the gradient flow stage. To this
end, we recall a (local) regularity condition given in [1], which has been shown to be a fundamental criterion
that dictates rapid convergence of iterative procedures (including WF and other gradient descent schemes).
When specialized to TWF, we say that − 1

m∇`tr (·) satisfies the regularity condition, denoted by RC (µ, λ, ε),
if 〈

h,− 1

m
∇`tr(z)

〉
≥ µ

2

∥∥∥ 1

m
∇`tr (z)

∥∥∥2

+
λ

2
‖h‖2 (11)

holds for all z obeying ‖z − x‖ ≤ ε‖x‖, where 0 < ε < 1 is some constant. Such an ε-ball around x is
1Here, 0.1 can be replaced by any positive constant within (0, 1/2).
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sometimes referred to as a basin of attraction. Formally, under RC (µ, λ, ε), a little algebra gives

dist2
(
z +

µ

m
∇`tr (z) ,x

)
≤

∥∥∥z +
µ

m
∇`tr (z)− x

∥∥∥2

= ‖h‖2 +
∥∥∥ µ
m
∇`tr (z)

∥∥∥2

+ 2µ

〈
h,

1

m
∇`tr (z)

〉
≤ ‖h‖2 +

∥∥∥ µ
m
∇`tr (z)

∥∥∥2

− µ2

∥∥∥∥ 1

m
∇`tr (z)

∥∥∥∥2

− µλ ‖h‖2

= (1− µλ) dist2 (z,x) (12)

for any z with ‖z − x‖ ≤ ε. In words, the TWF update rule is locally contractive around the planted solution,
provided that RC (µ, λ, ε) holds for some nonzero µ and λ. This is stated in the following proposition.

Proposition 1 (Local error contraction). Consider the noiseless case (1). Under the condition (8),
there exist some universal constants 0 < ρ0 < 1 and c0, c1, c2 > 0 such that with probability exceeding
1− c1 exp (−c2m),

dist2
(
z +

µ

m
∇`tr (z) ,x

)
≤ (1− ρ0) dist2 (z,x) (13)

holds simultaneously for all x, z ∈ Rn obeying

dist (z,x)

‖z‖ ≤ min

{
1

11
,
αlb
z

3αh
,
αlb
z

6
,

5.7
(
αlb
z

)2
2αub

z + αlb
z

}
, (14)

provided that m ≥ c0n and that µ is some constant obeying 0 < µ ≤ µ0 :=
0.994−ζ1−ζ2−

√
2/(9π)α−1

h

2(1.02+0.665/αh) .

Proposition 1 reveals the monotonicity of the estimation error: once entering a neighborhood around x
of a reasonably small size, the iterative updates will remain within this neighborhood all the time and be
attracted towards x at a geometric rate.

As shown before, under the hypothesis RC (µ, λ, ε) one can conclude

dist2
(
z +

µ

m
∇`tr(z),x

)
≤ (1− µλ)dist2(z,x), ∀(z,x) with dist(z,x) ≤ ε. (15)

Thus, everything now boils down to showing RC (µ, λ, ε) for some constants µ, λ, ε > 0. This occupies the
rest of this section.

2.1 Preliminary facts about {E i1} and {E i2}
Before proceeding, we gather a few properties of the events E i1 and E i2:

E i1(z) :=

{
αlb
z ≤

∣∣a>i z∣∣
‖z‖ ≤ α

ub
z

}
; (16)

E i2(z) :=

{
|yi − |a>i z|2| ≤

αh
m

∥∥y −A (zz>)∥∥
1

∣∣a>i z∣∣
‖z‖

}
, (17)

which will prove crucial in establishing RC (µ, λ, ε). To begin with, recall that the truncation level given
in E i2 depends on 1

m

∥∥A (xx> − zz>)∥∥
1
. Instead of working with this random variable directly, we use

deterministic quantities that are more amenable to analysis. Specifically, we claim that 1
m

∥∥A (xx> − zz>)∥∥
1

offers a uniform and orderwise tight estimate on ‖h‖ ‖z‖, which can be seen from the following two facts.

Lemma 1. Fix ζ ∈ (0, 1). If m > c0nζ
−2 log 1

ζ , then with probability at least 1− C exp(−c1ζ2m),

0.9 (1− ζ) ‖M‖F ≤
1

m
‖A (M)‖1 ≤ (1 + ζ)

√
2 ‖M‖F (18)

holds for all symmetric rank-2 matrices M ∈ Rn×n. Here, c0, c1, C > 0 are some universal constants.
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Figure 1: f(t)√
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as a function of t.

Proof. Since [2, Lemma 3.1] already establishes the upper bound, it suffices to prove the lower tail bound.
Consider all symmetric rank-2 matrices M with eigenvalues 1 and −t for some −1 ≤ t ≤ 1. When t ∈ [0, 1],
it has been shown in the proof of [2, Lemma 3.2] that with high probability,

1

m
‖A (M)‖1 ≥ (1− ζ) f (t) , (19)

for all such rank-2 matrices M , where f (t) := 2
π

{
2
√
t+ (1− t)

(
π/2− 2arc tan(

√
t)
)}

. The lower bound
in this case can then be justified by recognizing that f (t) /

√
1 + t2 ≥ 0.9 for all t ∈ [0, 1], as illustrated in

Fig. 1. The case where t ∈ [−1, 0] is an immediate consequence from [2, Lemma 3.1].

Lemma 2. Consider any x, z ∈ Rn obeying ‖z − x‖ ≤ δ ‖z‖ for some δ < 1
2 . Then one has

√
2− 4δ ‖z − x‖ ‖z‖ ≤

∥∥xx> − zz>∥∥
F
≤ (2 + δ) ‖z − x‖ ‖z‖ . (20)

Proof. Take h = z − x and write∥∥xx> − zz>∥∥2

F
=

∥∥− hz> − zh> + hh>
∥∥2

F

=
∥∥hz> + zh>

∥∥2

F
+ ‖h‖4 − 2〈hz> + zh>,hh>〉

= 2 ‖z‖2 ‖h‖2 + 2|h>z|2 + ‖h‖4 − 2‖h‖2(h>z + z>h).

When ‖h‖ < 1
2‖z‖, the Cauchy–Schwartz inequality gives

2 ‖z‖2 ‖h‖2 − 4 ‖z‖ ‖h‖3 ≤
∥∥xx> − zz>∥∥2

F
≤ 4 ‖z‖2 ‖h‖2 + 4 ‖h‖3 ‖z‖+ ‖h‖4 , (21)

⇒
√

(2 ‖z‖ − 4 ‖h‖) ‖z‖ · ‖h‖ ≤
∥∥xx> − zz>∥∥

F
≤ (2 ‖z‖+ ‖h‖) · ‖h‖ (22)

as claimed.

Taken together the above two facts demonstrate that with probability 1− exp (−Ω (m)),

1.15 ‖z − x‖ ‖z‖ ≤ 1

m

∥∥A (xx> − zz>)∥∥
1
≤ 3 ‖z − x‖ ‖z‖ (23)

holds simultaneously for all z and x satisfying ‖h‖ ≤ 1
11 ‖z‖. Conditional on (23), the inclusion

E i3 ⊆ E i2 ⊆ E i4 (24)

holds with respect to the following events

E i3 : =
{∣∣|a>i x|2 − |a>i z|2∣∣ ≤ 1.15αh ‖h‖ ·

∣∣a>i z∣∣} , (25)

E i4 : =
{∣∣|a>i x|2 − |a>i z|2∣∣ ≤ 3αh ‖h‖ ·

∣∣a>i z∣∣} . (26)
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The point of introducing these new events is that E i3’s (resp. E i4’s) are statistically independent for any fixed
x and z and are, therefore, easier to work with.

Note that each E i3 (resp. E i4) is specified by a quadratic inequality. A closer inspection reveals that in
order to satisfy these quadratic inequalities, the quantity a>i h must fall within two intervals centered around
0 and 2a>i z, respectively. One can thus facilitate analysis by decoupling each quadratic inequality of interest
into two simple linear inequalities, as stated in the following lemma.

Lemma 3. For any γ > 0, define

Diγ :=
{∣∣|a>i x|2 − |a>i z|2∣∣ ≤ γ ‖h‖ ∣∣a>i z∣∣} , (27)

Di,1γ :=

{ |a>i h|
‖h‖ ≤ γ

}
, (28)

and Di,2γ :=

{∣∣∣∣a>i h‖h‖ − 2a>i z

‖h‖

∣∣∣∣ ≤ γ} . (29)

Thus, Di,1γ and Di,2γ represent the two intervals on a>i h centered around 0 and 2a>i z. If
‖h‖
‖z‖ ≤

αlb
z

γ , then the
following inclusion holds(

Di,1γ
1+
√

2

∩ E i1
)
∪
(
Di,2γ

1+
√

2

∩ E i1
)
⊆ Diγ ∩ E i1 ⊆

(
Di,1γ ∩ E i1

)
∪
(
Di,2γ ∩ E i1

)
. (30)

2.2 Proof of the regularity condition
By definition, one step towards proving the regularity condition (11) is to control the norm of the truncated
gradient. In fact, a crude argument already reveals that ‖ 1

m∇`tr(z)‖ . ‖h‖. To see this, introduce v =

[vi]1≤i≤m with vi := 2
|a>i x|2−|a>i z|2

a>i z
1Ei1∩Ei2 . It comes from the truncation rule E i1 as well as the inclusion

property (24) that∣∣a>i z∣∣ & ‖z‖ and
∣∣∣yi − ∣∣a>i z∣∣2∣∣∣ . 1

m
‖A(xx> − zz>)‖1 � ‖h‖ ‖z‖ ,

implying |vi| . ‖h‖ and hence ‖v‖ . √m‖h‖. The Marchenko–Pastur law gives ‖A‖ . √m, whence

1

m
‖∇`tr(z)‖ =

1

m
‖A>v‖ ≤ 1

m
‖A‖ · ‖v‖ . ‖h‖. (31)

A more refined estimate will be provided in Lemma 7.
The above argument essentially tells us that to establish RC, it suffices to verify a uniform lower bound

of the form
−
〈
h,

1

m
∇`tr (z)

〉
& ‖h‖2 , (32)

as formally derived in the following proposition.

Proposition 2. Consider the noise-free measurements yi = |a>i x|2 and any fixed constant ε > 0. Under
the condition (8), if m > c1n, then with probability exceeding 1− C exp (−c0m),

−
〈
h,

1

m
∇`tr (z)

〉
≥ 2

{
1.99− 2 (ζ1 + ζ2)−

√
8/(9π)α−1

h − ε
}
‖h‖2 (33)

holds uniformly over all x, z ∈ Rn obeying

‖h‖
‖z‖ ≤ min

{
1

11
,
αlb
z

3αh
,
αlb
z

6
,

5.7
(
αlb
z

)2
2αub

z + αlb
z

}
. (34)

Here, c0, c1, C > 0 are some universal constants, and ζ1 and ζ2 are defined in (8).
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The basic starting point is the observation that (a>i z)− (a>i x)2 = (a>i h)(2a>i z − a>i h) and hence

− 1

2m
∇`tr (z) =

1

m

m∑
i=1

(a>i z)2 − (a>i x)2

a>i z
ai1Ei1∩Ei2

=
1

m

m∑
i=1

2(a>i h)ai1Ei1∩Ei2 −
1

m

m∑
i=1

(a>i h)2

a>i z
ai1Ei1∩Ei2 . (35)

One would expect the contribution of the second term of (35) (which is a second-order quantity) to be small
as ‖h‖ / ‖z‖ decreases.

To facilitate analysis, we rewrite (35) in terms of the more convenient events Di,1γ and Di,2γ . Specifically,
the inclusion property (24) together with Lemma 3 reveals that

Di,1γ3 ∩ E i1 ⊆ E i3 ∩ E i1 ⊆ E i2 ∩ E i1 ⊆ E i4 ∩ E i1 ⊆
(
Di,1γ4 ∪ Di,2γ4

)
∩ E i1, (36)

where the parameters γ3, γ4 are given by

γ3 := 0.476αh, and γ4 := 3αh. (37)

This taken collectively with the identity (35) leads to a lower estimate

−
〈 1

2m
∇`tr(z),h

〉
≥ 2

m

m∑
i=1

(
a>i h

)2
1Ei1∩D

i,1
γ3
− 1

m

m∑
i=1

∣∣a>i h∣∣3∣∣a>i z∣∣ 1Ei1∩Di,1γ4 − 1

m

m∑
i=1

∣∣a>i h∣∣3∣∣a>i z∣∣ 1Ei1∩Di,2γ4 , (38)

leaving us with three quantities in the right-hand side to deal with. We pause here to explain and compare
the influences of these three terms.

To begin with, as long as the truncation step does not discard too many samples, the first term should
be close to 2

m

∑
i |a>i h|2, which approximately gives 2‖h‖2 from the law of large numbers. This term turns

out to be dominant in the right-hand side of (38) as long as ‖h‖/‖z‖ is reasonably small. To see this,
please recognize that the second term in the right-hand side is O(‖h‖3/‖z‖), simply because both a>i h and
a>i z are absolutely controlled on Di,1γ4 ∩ E i1. However, Di,2γ4 does not share such a desired feature. By the
very definition of Di,2γ4 , each nonzero summand of the last term of (38) must obey

∣∣a>i h∣∣ ≈ 2
∣∣a>i z∣∣ and,

therefore, |a
>
i h|3
|a>i z| 1Ei1∩Di,2γ4 is roughly of the order of ‖z‖2; this could be much larger than our target level

‖h‖2. Fortunately, Di,2γ4 is a rare event, thus precluding a noticable influence upon the descent direction.
All of this is made rigorous in Lemma 4 (first term), Lemma 5 (second term) and Lemma 6 (third term)
together with subsequent analysis.

Lemma 4. Fix γ > 0, and let E i1 and Di,1γ be defined in (16) and (28), respectively. Set

ζ1 := 1−min
{
E
[
ξ21{√1.01αlb

z ≤|ξ|≤
√

0.99αub
z }
]
,E
[
1{√1.01αlb

z ≤|ξ|≤
√

0.99αub
z }
]}

(39)

and ζ2 := E
[
ξ21{|ξ|>√0.99γ}

]
, (40)

where ξ ∼ N (0, 1). For any ε > 0, if m > c1nε
−2 log ε−1, then with probability at least 1− C exp(−c0ε2m),

1

m

m∑
i=1

∣∣a>i h∣∣2 1Ei1∩Di,1γ ≥ (1− ζ1 − ζ2 − ε) ‖h‖2 (41)

holds for all non-zero vectors h, z ∈ Rn. Here, c0, c1, C > 0 are some universal constants.

We now move on to the second term in the right-hand side of (38). For any fixed γ > 0, the definition of
E i1 gives rise to an upper estimate

1

m

m∑
i=1

∣∣a>i h∣∣3∣∣a>i z∣∣ 1Ei1∩Di,1γ ≤ 1

αlb
z ‖z‖

· 1

m

m∑
i=1

∣∣a>i h∣∣3 1Di,1γ ≤ (1 + ε)
√

8/π ‖h‖3
αlb
z ‖z‖

, (42)
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where
√

8/π ‖h‖3 is exactly the untruncated moment E[|a>i h|3]. The second inequality is a consequence of
the lemma below, which arises by observing that the summands |a>i h|31Di,1γ are independent sub-Gaussian
random variables.

Lemma 5. For any constant γ > 0, if m/n ≥ c0 · ε−2 log ε−1, then

1

m

m∑
i=1

∣∣a>i h∣∣3 1Di,1γ ≤ (1 + ε)
√

8/π ‖h‖3 , ∀h ∈ Rn (43)

with probability at least 1− C exp(−c1ε2m) for some universal constants c0, c1, C > 0.

It remains to control the last term of (38). As mentioned above, the influence of this term is small since
the set of ai’s satisfying Di,2γ accounts for a small fraction of measurements. Put formally, the number of
equations satisfying

∣∣a>i h∣∣ ≥ γ ‖h‖ decays rapidly for large γ (at least at a quadratic rate), as stated below.

Lemma 6. For any 0 < ε < 1, there exist some universal constants c0, c1, C > 0 such that

1

m

m∑
i=1

1{|a>i h|≥ γ‖h‖} ≤
1

0.49γ
exp

(
−0.485γ2

)
+

ε

γ2
, ∀h ∈ Rn\{0} and γ ≥ 2 (44)

with probability at least 1− C exp
(
−c0ε2m

)
. This holds with the proviso m/n ≥ c1 · ε−2 log ε−1.

To connect this lemma with the last term of (38), we recognize that when γ ≤ αlb
z ‖z‖
‖h‖ , one has

1Ei1∩D
i,2
γ
≤ 1{|a>i h|≥αlb

z ‖z‖}. (45)

The constraint
∣∣∣a>i h‖h‖ − 2a>i z

‖h‖

∣∣∣ ≤ γ of Di,2γ necessarily requires∣∣a>i h∣∣
‖h‖ ≥

2
∣∣a>i z∣∣
‖h‖ − γ ≥ 2αlb

z ‖z‖
‖h‖ − γ ≥ αlb

z ‖z‖
‖h‖ , (46)

where the last inequality comes from our assumption on γ. With Lemma 6 in place, (45) immediately gives

m∑
i=1

1Ei1∩D
i,2
γ
≤ ‖h‖

0.49αlb
z ‖z‖

exp

(
−0.485

(
αlb
z ‖z‖
‖h‖

)2
)

+
ε ‖h‖2

(αlb
z )

2 ‖z‖2

≤ 1

9800

( ‖h‖
αlb
z ‖z‖

)4

+
ε

(αlb
z )

2

(‖h‖
‖z‖

)2

(47)

as long as ‖h‖‖z‖ ≤
αlb
z

6 , where the last inequality uses the majorization 1
20000x4 ≥ 1

x exp
(
−0.485x2

)
holding for

any x ≥ 6.
In addition, on E i1 ∩ Di,2γ , the amplitude of each summand can be bounded in such a way that∣∣a>i h∣∣3∣∣a>i z∣∣ ≤

∣∣2a>i z∣∣+ γ ‖h‖∣∣a>i z∣∣ (
2αub

z ‖z‖+ γ ‖h‖
)2

(48)

≤
(

2 +
γ

αlb
z

‖h‖
‖z‖

)(
2αub

z + γ
‖h‖
‖z‖

)2

‖z‖2 , (49)

where both inequalities are immediate consequences from the definitions of Di,2γ and E i1 (see (29) and (16)).
Taking this together with the cardinality bound (47) and picking ε appropriately, we get

1

m

m∑
i=1

∣∣a>i h∣∣3∣∣a>i z∣∣ 1Ei1∩Di,2γ ≤


(

2 + γ
αlb
z

‖h‖
‖z‖

)(
2αub

z + γ ‖h‖‖z‖

)2

9800 (αlb
z )

4︸ ︷︷ ︸
ϑ1

‖h‖2

‖z‖2
+ ε

 ‖h‖
2
. (50)
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Furthermore, under the condition that

γ ≤ αlb
z

‖z‖
‖h‖ and

‖h‖
‖z‖ ≤

√
98
(
αlb
z

)2
√

3 (2αub
z + αlb

z )
,

one can simplify (50) by observing that ϑ1 ≤ 1
100 , which results in

1

m

m∑
i=1

∣∣a>i h∣∣3∣∣a>i z∣∣ 1Ei1∩Di,2γ ≤
(

1

100
+ ε

)
‖h‖2 . (51)

Putting all preceding results in this subsection together reveals that with probability exceeding 1 −
exp (−Ω (m)),

−
〈
h,

1

2m
∇`tr (z)

〉
≥

{
1.99− 2 (ζ1 + ζ2)−

√
8/π

‖h‖
αlb
z ‖z‖

− 3ε

}
‖h‖2

≥
{

1.99− 2 (ζ1 + ζ2)−
√

8/π(3αh)−1 − 3ε
}
‖h‖2 (52)

holds simultaneously over all x and z satisfying

‖h‖
‖z‖ ≤ min

{
αlb
z

3αh
,
αlb
z

6
,

√
98/3

(
αlb
z

)2
2αub

z + αlb
z

,
1

11

}
(53)

as claimed in Proposition 2.
To conclude this section, we provide a tighter estimate about the norm of the truncated gradient.

Lemma 7. Fix δ > 0, and assume that yi = (a>i x)2. Suppose that m ≥ c0n for some large constant c0 > 0.
There exist some universal constants c, C > 0 such that with probability at least 1− C exp (−cm),

1

m

∥∥∇`tr (z)
∥∥ ≤ (1 + δ) · 4

√
1.02 + 0.665/αh ‖h‖ (54)

holds simultaneously for all x, z ∈ Rn satisfying ‖h‖‖z‖ ≤ min
{
αlb
z

3αh
,
αlb
z

6 ,

√
98/3(αlb

z )
2

2αub
z +αlb

z
, 1

11

}
.

Lemma 7 complements the preceding arguments by allowing us to identify a concrete plausible range for
the step size. Specifically, putting Lemma 7 and Proposition 2 together suggests that

−
〈
h,

1

m
∇`tr (z)

〉
≥

2
{

1.99− 2 (ζ1 + ζ2)−
√

8/(9π)α−1
h − ε

}
(1 + δ)

2 · 16 (1.02 + 0.665/αh)

∥∥∥∥ 1

m
∇`tr (z)

∥∥∥∥2

. (55)

Taking ε and δ to be sufficiently small we arrive at a feasible range (cf. Definition (11))

µ ≤ 0.994− ζ1 − ζ2 −
√

2/(9π)α−1
h

2 (1.02 + 0.665/αh)
:= µ0. (56)

This establishes Proposition 1 and in turn Theorem 1 when µt is taken to be a fixed constant.
To justify the contraction under backtracking line search, it suffices to prove that the resulting step size

falls within this range (56), which we defer to Appendix D.

3 Stability
This section goes in the direction of establishing stability guarantees of TWF. We concentrate on the iterative
gradient stage, and defer the analysis for the initialization stage to Appendix C.

Before continuing, we collect two bounds that we shall use several times. The first is the observation that

1

m
‖y −A(zz>)‖1 ≤

1

m
‖A(xx> − zz>)‖1 +

1

m
‖η‖1 . ‖h‖‖z‖+

1

m
‖η‖1 . ‖h‖‖z‖+

1√
m
‖η‖, (57)
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where the last inequality follows from Cauchy-Schwarz. Setting

vi := 2
yi − |a>i z|2

a>i z
1Ei1∩Ei2

as usual, this inequality together with the truncation rules E i1 and E2
1 give

|vi| . ‖h‖+ ‖η‖√
m‖z‖

=⇒
∥∥ 1
m∇`tr(z)

∥∥ = 1
m‖A

>v‖ ≤
∥∥∥ 1√

m
A
∥∥∥ 1√

m
‖v‖

(i)
. 1√

m
‖v‖ . ‖h‖+ ‖η‖√

m‖z‖ ,
(58)

where (i) arises from [3, Corollary 5.35].
As discussed before, the estimation error is contractive if − 1

m∇`tr (z) satisfies the regularity condition.
With (58) in place, RC reduces to

− 1

m
〈∇`tr (z) ,h〉 & ‖h‖2. (59)

Unfortunately, (59) does not hold for all z within the neighborhood of x due to the existence of noise.
Instead we establish the following:

• The condition (59) holds for all h obeying

c3
‖η‖ /√m
‖z‖ ≤ ‖h‖ ≤ c4‖x‖ (60)

for some constants c3, c4 > 0 (we shall call it Regime 1); this will be proved later. In this regime, the
reasoning before gives

dist
(
z +

µ

m
∇`tr(z), x

)
≤ (1− ρ)dist(z,x) (61)

for some appropriate constants µ, ρ > 0 and, hence, error contraction occurs as in the noiseless setting.

• However, once the iterate enters Regime 2 where

‖h‖ ≤ c3 ‖η‖√
m ‖z‖ (62)

the estimation error might no longer be contractive. Fortunately, in this regime each move by µ
m∇`tr (z)

is of size at most O( ‖η‖√
m‖z‖ ), compare (58). As a result, at each iteration the estimation error cannot

increase by more than a numerical constant times ‖η‖√
m‖z‖ before possibly jumping out (of this regime).

Therefore,

dist
(
z +

µ

m
∇`tr(z), x

)
≤ c5

‖η‖√
m‖x‖ (63)

for some constant c5 > 0. Moreover, as long as ‖η‖∞/‖x‖2 is sufficiently small, one can guarantee
that c5

‖η‖√
m‖x‖ ≤ c5

‖η‖∞
‖x‖ ≤ c4‖x‖. In other words, if the iterate jumps out of Regime 2, it will still fall

within Regime 1.

To summarize, suppose the initial guess z(0) obeys dist(z(0),x) ≤ c4‖x‖. Then the estimation error will
shrink at a geometric rate 1 − ρ before it enters Regime 2. Afterwards, z(t) will either stay within Regime
2 or jump back and forth between Regimes 1 and 2. Because of the bounds (63) and (61), the estimation
errors will never exceed the order of ‖η‖√

m‖x‖ from then on. Putting these together establishes (6), namely,
the first part of the theorem.

Below we justify the condition (59) for Regime 1, for which we start by gathering additional properties
of the truncation rules. By Cauchy-Schwartz, 1

m ‖η‖1 ≤ 1√
m
‖η‖ ≤ 1

c3
‖h‖ ‖z‖. When c3 is sufficiently large,

applying Lemmas 1 and 2 gives

1
m

∑m
l=1

∣∣∣yl − ∣∣a>l z∣∣2∣∣∣ ≤ 1
m

∥∥A (xx> − zz>)∥∥
1

+ 1
m ‖η‖1 ≤ 2.98‖h‖‖z‖;

1
m

∑m
l=1

∣∣∣yl − ∣∣a>l z∣∣2∣∣∣ ≥ 1
m

∥∥A (xx> − zz>)∥∥
1
− 1

m ‖η‖1 ≥ 1.151‖h‖‖z‖.
(64)
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From now on, we shall denote Ẽ i2 :=
{ ∣∣|a>i x|2 − |a>i z|2∣∣ ≤ αh

m

∥∥y −A (zz>)∥∥
1

|a>i z|
‖z‖

}
to differentiate from

E i2. For any small constant ε > 0, we introduce the index set G := {i : |ηi| ≤ Cε ‖η‖ /
√
m} that satisfies

|G| = (1− ε)m. Note that Cε must be bounded as n scales, since

‖η‖2 ≥
∑

i/∈G
η2
i ≥ (m− |G|) · C2

ε ‖η‖2/m ≥ εC2
ε ‖η‖2 ⇒ Cε ≤ 1/

√
ε. (65)

We are now ready to analyze the truncated gradient, which we separate into several components as follows

∇tr` (z) = 2
∑
i∈G

∣∣a>i x∣∣2 − ∣∣a>i z∣∣2
a>i z

ai1Ei1∩Ei2 + 2
∑
i/∈G

∣∣a>i x∣∣2 − ∣∣a>i z∣∣2
a>i z

ai1Ei1∩Ẽi2︸ ︷︷ ︸
:=∇clean

tr `(z)

+ 2
∑
i∈G

ηi
a>i z

ai1Ei1∩Ei2︸ ︷︷ ︸
:=∇noise

tr `(z)

+ 2
∑
i/∈G

(
yi −

∣∣a>i z∣∣2
a>i z

1Ei1∩Ei2 −
∣∣a>i x∣∣2 − ∣∣a>i z∣∣2

a>i z
1Ei1∩Ẽi2

)
ai︸ ︷︷ ︸

:=∇extra
tr `(z)

. (66)

• For each index i ∈ G, the inclusion property (24) (i.e. E i3 ⊆ E i2 ⊆ E i4) holds. To see this, observe that∣∣yi − |a>i z|2∣∣ ∈ ∣∣|a>i x|2 − |a>i z|2∣∣± |ηi|.
Since |ηi| ≤ Cε‖η‖/

√
m � ‖h‖‖z‖ when c3 is sufficiently large, one can derive the inclusion (24)

immediately from (64). As a result, all the proof arguments for Proposition 2 carry over to ∇clean
tr ` (z),

suggesting that

−
〈
h,

1

m
∇clean

tr ` (z)
〉
≥ 2

{
1.99− 2 (ζ1 + ζ2)−

√
8/(9π)α−1

h − ε
}
‖h‖2. (67)

• Next, letting wi = 2ηi
a>i z

1Ei1∩Ei21{i∈G}, we see that for any constant δ > 0, the noise component obeys∥∥∥∥ 1

m
∇noise

tr `(z)

∥∥∥∥ =

∥∥∥∥ 1

m
A>w

∥∥∥∥ ≤ ∥∥∥∥ 1√
m
A

∥∥∥∥∥∥∥∥ 1√
m
w

∥∥∥∥ (ii)
≤ 1 + δ√

m
‖w‖ ≤ (1 + δ)

2‖η‖/√m
αlb
z ‖z‖

, (68)

when m/n is sufficiently large. Here, (ii) arises from [3, Corollary 5.35], and the last inequality is a
consequence of the upper estimate

‖w‖2 ≤ 4
m∑
i=1

|ηi|2
(a>i z)2

1Ei1∩Ei2 ≤ 4
m∑
i=1

|ηi|2
(αlb
z ‖z‖)2

=
4 ‖η‖2

(αlb
z ‖z‖)2

. (69)

In turn, this immediately gives∣∣∣∣〈h, 1

m
∇noise

tr ` (z)
〉∣∣∣∣ ≤ ‖h‖

∥∥∥∥ 1

m
∇noise

tr ` (z)

∥∥∥∥ ≤ 2 (1 + δ)

αlb
z

‖η‖√
m‖z‖‖h‖. (70)

• We now turn to the last term∇extra
tr ` (z). According to the definition of E i2 and Ẽ i2 as well as the property

(64), the weight qi := 2
(
yi−|a>i z|2
a>i z

1Ei1∩Ei2 −
|a>i x|2−|a>i z|2

a>i z
1Ei1∩Ẽi2

)
1{i/∈G} is bounded in magnitude by

6‖h‖. This gives
‖q‖ ≤

√
m− |G| · 6‖h‖ ≤ 6

√
εm‖h‖,

⇒
∣∣∣〈 1

m
∇extra

tr ` (z) ,h
〉∣∣∣ ≤ ‖h‖ · ∥∥ 1

m
∇extra

tr ` (z)
∥∥ =

1

m
‖h‖ ·

∥∥A>q∥∥ ≤ 6 (1 + δ)
√
ε‖h‖2. (71)
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Taking the above bounds together yields

− 1

m
〈∇`tr (z) ,h〉 ≥ 2

{
1.99− 2 (ζ1 + ζ2)−

√
8

9π

1

αh
− 6(1 + δ)

√
ε− ε

}
‖h‖2 − 2 (1 + δ)

αlb
z

‖η‖√
m ‖z‖‖h‖.

Since ‖h‖ ≥ c3 ‖η‖√
m‖z‖ for some large constant c3 > 0, setting ε to be small one obtains

− 1

m
〈∇`tr (z) ,h〉 ≥ 2

{
1.95− 2 (ζ1 + ζ2)−

√
8/(9π)α−1

h

}
‖h‖2 (72)

for all h obeying

c3‖η‖/
√
m

‖z‖ ≤ ‖h‖ ≤ min

{
1

11
,
αlb
z

3αh
,
αlb
z

6
,

√
98/3

(
αlb
z

)2
2αub

z + αlb
z

}
‖z‖,

which finishes the proof of Theorem 2 for general η.
Up until now, we have established the theorem for general η, and it remains to specialize it to the Poisson

model. Standard concentration results, which we omit, give

1

m
‖η‖2 ≈ 1

m

m∑
i=1

E
[
η2
i

]
=

1

m

m∑
i=1

(
a>i x

)2 ≈ ‖x‖2. (73)

Substitution into (6) completes the proof.

4 Minimax lower bound
The goal of this section is to establish the minimax lower bound given in Theorem 3. For notational simplicity,
we denote by P (y | w) the likelihood of yi

ind.∼ Poisson(|a>i w|2), 1 ≤ i ≤ m conditional on {ai}. For any
two probability measures P and Q, we denote by KL (P‖Q) the Kullback–Leibler (KL) divergence between
them:

KL (P‖Q) :=

ˆ
log

(
dP

dQ

)
dP, (74)

The basic idea is to adopt the general reduction scheme discussed in [4, Section 2.2], which amounts to
finding a finite collection of hypotheses that are minimally separated. Below we gather one result useful for
constructing and analyzing such hypotheses.

Lemma 8. Suppose that ai ∼ N (0, In), n is sufficiently large, and m = κn for some sufficiently large
constant κ > 0. Consider any x ∈ Rn\{0}. On an event B of probability approaching one, there exists a
collectionM of M = exp (n/30) distinct vectors obeying the following properties:

(i) x ∈M;

(ii) for all w(l),w(j) ∈M,

1/
√

8− (2n)−1/2 ≤
∥∥w(l) −w(j)

∥∥ ≤ 3/2 + n−1/2; (75)

(iii) for all w ∈M,
|a>i (w − x) |2
|a>i x|2

≤ ‖w − x‖
2

‖x‖2 {2 + 17 log3m}, 1 ≤ i ≤ m. (76)

In words, Lemma 8 constructs a set M of exponentially many vectors/hypotheses scattered around x
and yet well separated. From (ii) we see that each pair of hypotheses in M is separated by a distance
roughly on the order of 1, and all hypotheses reside within a spherical ball centered at x of radius 3/2+o(1).
When ‖x‖ ≥ log1.5m, every hypothesis w ∈ M satisfies ‖w‖ ≈ ‖x‖ � 1. In addition, (iii) says that the
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quantities |a>i (w − x) |/|a>i x| are all very well controlled (modulo some logarithmic factor). In particular,
when ‖x‖ ≥ log1.5m, one must have

|a>i (w − x) |2
|a>i x|2

.
‖w − x‖2
‖x‖2 log3m .

1

log3m
log3m . 1. (77)

In the Poisson model, such a quantity turns out to be crucial in controlling the information divergence
between two hypotheses, as demonstrated in the following lemma.

Lemma 9. Fix a family of design vectors {ai}. Then for any w and r ∈ Rn,

KL
(
P (y | w + r) ‖ P (y | w)

)
≤
∑m

i=1
|a>i r|2

(
8 +

2|a>i r|2
|a>i w|2

)
. (78)

Lemma 9 and (77) taken collectively suggest that on the event B ∩C (B is in Lemma 8 and C := {‖A‖ ≤√
2m}), the conditional KL divergence (we condition on the ai’s) obeys

KL
(
P (y | w) ‖ P (y | x)

)
≤ c3

∑m

i=1

∣∣a>i (w − x)
∣∣2 ≤ 2c3m ‖w − x‖2 , ∀w ∈M; (79)

here, the inequality holds for some constant c3 > 0 provided that ‖x‖ ≥ log1.5m, and the last inequality is
a result of C (which occurs with high probability). We now use hypotheses as in Lemma 8 but rescaled in
such a way that

‖w − x‖ � δ, and ‖w − w̃‖ � δ, ∀w, w̃ ∈M with w 6= w̃. (80)

for some 0 < δ < 1. This is achieved via the substitution w ←− x+δ(w−x); with a slight abuse of notation,
M denotes the new set.

The hardness of a minimax estimation problem is known to be dictated by information divergence in-
equalities such as (79). Indeed, suppose that

1

M − 1

∑
w∈M\{x}

KL
(
P (y | w) ‖ P (y | x)

)
≤ 1

10
log (M − 1) (81)

holds, then the Fano-type minimax lower bound [4, Theorem 2.7] asserts that

inf
x̂

sup
x∈M

E
[
‖x̂− x‖

∣∣ {ai}] & min
w,w̃∈M,w 6=w̃

‖w − w̃‖. (82)

Since M = exp(n/30), (81) would follow from

2c3‖w − x‖2 ≤ n/(300m). w ∈M. (83)

Hence, we just need to select δ to be a small multiple of
√
n/m. This in turn gives

inf
x̂

sup
x∈M

E
[
‖x̂− x‖

∣∣ {ai}] & min
w,w̃∈M,w 6=w̃

‖w − w̃‖ &
√
n/m. (84)

Finally, it remains to connect ‖x̂ − x‖ with dist (x̂,x). Since all the w ∈ M are clustered around x
and are at a mutual distance about δ that is much smaller than ‖x‖, we can see that for any reasonable
estimator, dist(x̂,x) = ‖x̂− x‖. This finishes the proof.

A Proofs for Section 2

A.1 Proof of Lemma 3
First, we make the observation that (a>i z)2− (a>i x)2 =

(
2a>i z − a>i h

)
a>i h is a quadratic function in a>i h.

If we assume γ ≤ αlb
z ‖z‖
‖h‖ , then on the event E i1 one has

(a>i z)2 ≥ αlb
z ‖z‖ · |a>i z| ≥ γ ‖h‖

∣∣a>i z∣∣ . (85)
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Solving the quadratic inequality that specifies Diγ gives

a>i h ∈
[
a>i z −

√(
a>i z

)2
+ γ ‖h‖

∣∣a>i z∣∣, a>i z −
√(
a>i z

)2 − γ ‖h‖ ∣∣a>i z∣∣] ,
or a>i h ∈

[
a>i z +

√(
a>i z

)2 − γ ‖h‖ ∣∣a>i z∣∣, a>i z +

√(
a>i z

)2
+ γ ‖h‖

∣∣a>i z∣∣] ,
which we will simplify in the sequel.

Suppose for the moment that a>i z ≥ 0, then the preceding two intervals are respectively equivalent to

a>i h ∈

 − γ ‖h‖
∣∣a>i z∣∣

a>i z +

√(
a>i z

)2
+ γ ‖h‖

∣∣a>i z∣∣ ,
γ ‖h‖

∣∣a>i z∣∣
a>i z +

√(
a>i z

)2 − γ ‖h‖ ∣∣a>i z∣∣
 := I1;

a>i h− 2a>i z ∈

 − γ ‖h‖
∣∣a>i z∣∣

a>i z +

√(
a>i z

)2 − γ ‖h‖ ∣∣a>i z∣∣ ,
γ ‖h‖

∣∣a>i z∣∣
a>i z +

√(
a>i z

)2
+ γ ‖h‖

∣∣a>i z∣∣
 := I2.

Assuming (85) and making use of the observations

γ ‖h‖
∣∣a>i z∣∣

a>i z +

√(
a>i z

)2 − γ ‖h‖ ∣∣a>i z∣∣ ≤ γ ‖h‖
∣∣a>i z∣∣

a>i z
= γ ‖h‖

and
γ ‖h‖

∣∣a>i z∣∣
a>i z +

√(
a>i z

)2
+ γ ‖h‖

∣∣a>i z∣∣ ≥ γ ‖h‖
∣∣a>i z∣∣(

1 +
√

2
) ∣∣a>i z∣∣ =

γ

1 +
√

2
‖h‖ ,

we obtain the inner and outer bounds[
±
(
1 +
√

2
)−1

γ ‖h‖
]
⊆ I1, I2 ⊆

[
± γ ‖h‖

]
.

Setting γ1 := γ

1+
√

2
gives(

Di,1γ1 ∩ Ei,1
)
∪
(
Di,2γ1 ∩ Ei,1

)
⊆ Dγ ∩ Ei,1 ⊆

(
Di,1γ ∩ Ei,1

)
∪
(
Di,2γ ∩ Ei,1

)
.

Proceeding with the same argument, we can derive exactly the same inner and outer bounds in the regime
where a>i z < 0, concluding the proof.

A.2 Proof of Lemma 4
By homogeneity, it suffices to establish the claim for the case where both h and z are unit vectors.

Suppose for the moment that h and z are statistically independent from {ai}. We introduce two auxiliary
Lipschitz functions approximating indicator functions:

χz (τ) :=


1, if |τ | ∈

[√
1.01αlb

z ,
√

0.99αub
z

]
;

−100
(
αub
z

)−2
τ2 + 100, if |τ | ∈

[√
0.99αub

z , α
ub
z

]
;

100
(
αlb
z

)−2
τ2 − 100, if |τ | ∈

[
αlb
z ,
√

1.01αlb
z

]
;

0, else.

(86)

χh (τ) :=


1, if |τ | ∈

[
0,
√

0.99γ
]

;

− 100
γ2 τ

2 + 100, if |τ | ∈
[√

0.99γ, γ
]

;

0, else.
(87)

Since h and z are assumed to be unit vectors, these two functions obey

0 ≤ χz
(
a>i z

)
≤ 1Ei1 , and 0 ≤ χh

(
a>i h

)
≤ 1Di,1γ (88)
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and thus,

1

m

m∑
i=1

(
a>i h

)2
1Ei1∩D

i,1
γ
≥ 1

m

m∑
i=1

(a>i h)2χz(a
>
i z)χh(a>i h). (89)

We proceed to lower bound 1
m

∑m
i=1

(
a>i h

)2
χz
(
a>i z

)
χh
(
a>i h

)
.

Firstly, to compute the mean of (a>i h)2χz(a
>
i z)χh(a>i h), we introduce an auxiliary orthonormal matrix

Uz =

[
z>/ ‖z‖

...

]
(90)

whose first row is along the direction of z, and set

h̃ := Uzh, and ãi := Uzai. (91)

Also, denote by ãi,1 (resp. h̃1) the first entry of ãi (resp. h̃), and ãi,\1 (resp. h̃\1) the remaining entries of
ãi (resp. h̃), and let ξ ∼ N (0, 1). We have

E
[ (
a>i h

)2
χz
(
a>i z

)
χh
(
a>i h

) ]
≥ E

[
(a>i h)2χz

(
a>i z

) ]
− E

[(
a>i h

)2 (
1− χh

(
a>i h

))]
≥ E

[(
ãi,1h̃1

)2
χz
(
a>i z

)]
+ E

[(
ã>i,\1h̃\1

)2]E [χz (a>i z)]− ‖h‖2 E [ξ21{|ξ|>√0.99γ}
]

≥ |h̃1|2(1− ζ1) + ‖h̃\1‖2(1− ζ1)− ζ2‖h‖2 (92)

≥ (1− ζ1 − ζ2) ‖h‖2 ,

where the identity (92) arises from (39) and (40). Since
(
a>i h

)2
χz
(
a>i z

)
χh
(
a>i h

)
is bounded in magnitude

by γ2 ‖h‖2, it is a sub-Gaussian random variable with sub-Gaussian norm O(γ2 ‖h‖2). Apply the Hoeffding-
type inequality [3, Proposition 5.10] to deduce that for any ε > 0,

1

m

m∑
i=1

(
a>i h

)2
χz
(
a>i z

)
χh
(
a>i h

)
≥ E

[(
a>i h

)2
χz
(
a>i z

)
χh
(
a>i h

)]
− ε ‖h‖2 (93)

≥ (1− ζ1 − ζ2 − ε) ‖h‖2 (94)

with probability at least 1− exp(−Ω(ε2m)).
The next step is to obtain uniform control over all unit vectors, for which we adopt a basic version of an

ε-net argument. Specifically, we construct an ε-net Nε with cardinality |Nε| ≤ (1 + 2/ε)
2n (cf. [3]) such that

for any (h, z) with ‖h‖ = ‖z‖ = 1, there exists a pair h0, z0 ∈ Nε satisfying ‖h− h0‖ ≤ ε and ‖z − z0‖ ≤ ε.
Now that we have discretized the unit spheres using a finite set, taking the union bound gives

1

m

m∑
i=1

(
a>i h0

)2
χz
(
a>i z0

)
χh
(
a>i h0

)
≥ (1− ζ1 − ζ2 − ε) ‖h0‖2 , ∀h0, z0 ∈ Nε (95)

with probability at least 1− (1 + 2/ε)2n exp(−Ω(ε2m)).
Define f1(·) and f2(·) such that f1(τ) := τχh(

√
τ) and f2(τ) := χz(

√
τ), which are both bounded functions

with Lipschitz constant O(1). This guarantees that for each unit vector pair h and z,∣∣∣(a>i h)2 χz (a>i z)χh (a>i h)− (a>i h0

)2
χz
(
a>i z0

)
χh
(
a>i h0

)∣∣∣
≤ |χh

(
a>i z

)
| · |
(
a>i h

)2
χh
(
a>i h

)
−
(
a>i h0

)2
χh
(
a>i h0

)
|+ |(a>i h0)2χh

(
a>i h0

)
| · |χh

(
a>i z

)
− χh

(
a>i z0

)
|

≤ |χh
(
a>i z

)
| ·
∣∣f1

(
|a>i h|2

)
− f1

(
|a>i h0|2

)∣∣+
∣∣(a>i h0)2χh

(
a>i h0

) ∣∣ · ∣∣f2

(
|a>i z|2

)
− f2

(
|a>i z0|2

) ∣∣
.
∣∣(a>i h)2 − (a>i h0)2

∣∣+
(
a>i z)2 − (a>i z0)2

∣∣.
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Consequently, there exists some universal constant c3 > 0 such that∣∣∣ 1

m

m∑
i=1

(
a>i h

)2
χz
(
a>i z

)
χh
(
a>i h

)
− 1

m

m∑
i=1

(
a>i h0

)2
χz
(
a>i z0

)
χh
(
a>i h0

) ∣∣∣
.

1

m

∥∥∥A(hh> − h0h
>
0

)∥∥∥
1

+
1

m

∥∥A(zz> − z0z
>
0

)∥∥
1

(i)
≤ c3

{∥∥hh> − h0h
>
0

∥∥
F

+
∥∥zz> − z0z

>
0

∥∥
F

}
(ii)
≤ 2.5c3

{∥∥h− h0

∥∥ · ∥∥h∥∥+
∥∥z − z0

∥∥ · ∥∥z∥∥} ≤ 5c3ε,

where (i) results from Lemma 1, and (ii) arises from Lemma 2 whenever ε < 1/2.
With the assertion (95) in place, we see that with high probability,

1

m

m∑
i=1

(
a>i h

)2
χz
(
a>i z

)
χh
(
a>i h

)
≥ (1− ζ1 − ζ2 − (5c3 + 1) ε) ‖h‖2

for all unit vectors h and z. Since ε can be arbitrary, putting this and (89) together completes the proof.

A.3 Proof of Lemma 5
The proof makes use of standard concentration of measure and covering arguments, and it suffices to restrict
our attention to unit vectors h. We find it convenient to work with an auxiliary function

χ2 (τ) =


|τ | 32 , if |τ | ≤ γ2,

−γ
(
|τ | − γ2

)
+ γ3, if γ2 < |τ | ≤ 2γ2,

0, else.

Apparently, χ2 (τ) is a Lipschitz function of τ with Lipschitz norm O (γ). Recalling the definition of Di,1γ ,
we see that each summand is bounded above by

|a>i h|3 1Di,1γ ≤ χ2

(
|a>i h|2

)
.

For each fixed h and ε > 0, applying the Bernstein inequality [3, Proposition 5.16] gives

1

m

m∑
i=1

∣∣a>i h∣∣3 1Di,1γ ≤ 1

m

m∑
i=1

χ2

(∣∣a>i h∣∣2) ≤ E
[
χ2

(∣∣a>i h∣∣2)]+ ε

≤ E
[ ∣∣a>i h∣∣3 ]+ ε =

√
8/π + ε

with probability exceeding 1− exp
(
−Ω

(
ε2m

))
.

From [3, Lemma 5.2], there exists an ε-net Nε of the unit sphere with cardinality |Nε| ≤
(
1 + 2

ε

)n. For
each h, suppose that ‖h0 − h‖ ≤ ε for some h0 ∈ Nε. The Lipschitz property of χ2 implies

1

m

m∑
i=1

{
χ2

(∣∣a>i h∣∣2)− χ2

(∣∣a>i h0

∣∣2)} .
1

m

m∑
i=1

∣∣∣∣∣a>i h∣∣2 − ∣∣a>i h0

∣∣2∣∣∣ (i)� ‖h− h0‖ ‖h‖ � ε,

where (i) arises by combining Lemmas 1 and 2. This demonstrates that with high probability,

1

m

m∑
i=1

∣∣a>i h∣∣3 1Di,1γ ≤ 1

m

m∑
i=1

χ2

(
|a>i h|2

)
≤
√

8/π +O (ε)

for all unit vectors h, as claimed.
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A.4 Proof of Lemma 6
Without loss of generality, the proof focuses on the case where ‖h‖ = 1. Fix an arbitrary small constant
δ > 0. One can eliminate the difficulty of handling the discontinuous indicator functions by working with
the following auxiliary function

χ3 (τ, γ) :=


1, if

√
τ ≥ ψlb (γ) ;

100τ
ψ2

lb(γ)
− 99, if

√
τ ∈

[√
0.99ψlb (γ) , ψlb (γ)

]
;

0, else.
(96)

Here, ψlb (·) is a piecewise constant function defined as

ψlb (γ) := (1 + δ)b
log γ

log(1+δ)c ,

which clearly satisfy γ
1+δ ≤ ψlb (γ) ≤ γ. Such a function is useful for our purpose since for any 0 < δ ≤ 0.005,

1{|a>i h|≥γ} ≤ χ3

( ∣∣a>i h∣∣2 , γ) ≤ 1{|a>i h|≥
√

0.99ψlb(γ)} ≤ 1{|a>i h|≥0.99γ}. (97)

For any fixed unit vector h, the above argument leads to an upper tail estimate: for any 0 < t ≤ 1,

P
{
χ3

( ∣∣a>i h∣∣2 , γ) ≥ t} ≤ P
{
1{|a>i h|≥0.99γ} ≥ t

}
= P

{
1{|a>i h|≥0.99γ} = 1

}
= 2

ˆ ∞
0.99γ

φ (x) dx ≤ 2

0.99γ
φ (0.99γ) , (98)

where φ(x) is the density of a standard normal, and (98) follows from the tail bound
´∞
x
φ(x)dx ≤ 1

xφ (x)

for all x > 0. This implies that when γ ≥ 2, both χ3

(
|a>i h|2, γ

)
and 1{|a>i h|≥0.99γ} are sub-exponential with

sub-exponential norm O(γ−2) (cf. [3, Definition 5.13]). We apply the Bernstein-type inequality for the sum
of sub-exponential random variables [3, Corollary 5.17], which indicates that for any fixed h and γ as well
as any sufficiently small ε ∈ (0, 1),

1

m

m∑
i=1

χ3

( ∣∣a>i h∣∣2 , γ) ≤ 1

m

m∑
i=1

1{|a>i h|≥0.99γ} ≤ E
[
1{|a>i h|≥0.99γ}

]
+ ε

1

γ2

≤ 2

0.99γ
exp

(
−0.49γ2

)
+ ε

1

γ2

holds with probability exceeding 1− exp
(
−Ω(ε2m)

)
.

We now proceed to obtain uniform control over all h and 2 ≤ γ ≤ 2n. To begin with, we consider all
2 ≤ γ ≤ m and construct an ε-net Nε over the unit sphere such that: (i) |Nε| ≤

(
1 + 2

ε

)n; (ii) for any h
with ‖h‖ = 1, there exists a unit vector h0 ∈ Nε obeying ‖h− h0‖ ≤ ε. Taking the union bound gives the
following: with probability at least 1− logm

log(1+δ)

(
1 + 2

ε

)n
exp(−Ω(ε2m)),

1

m

m∑
i=1

χ3

( ∣∣a>i h0

∣∣2 , γ0

)
≤ (0.495γ0)−1 exp

(
−0.49γ2

0

)
+ εγ−2

0

holds simultaneously for all h0 ∈ Nε and γ0 ∈
{

(1 + δ)
k | 1 ≤ k ≤ logm

log(1+δ)

}
.

Note that χ3 (τ, γ0) is a Lipschitz function in τ with the Lipschitz constant bounded above by 100
ψ2

lb(γ0)
.

With this in mind, for any (h, γ) with ‖h‖ = 1 and γ0 := (1 + δ)
k ≤ γ < (1 + δ)

k+1, one has∣∣∣χ3

( ∣∣a>i h0

∣∣2 , γ0

)
− χ3

( ∣∣a>i h∣∣2 , γ)∣∣∣ =
∣∣∣χ3

( ∣∣a>i h0

∣∣2 , γ0

)
− χ3

( ∣∣a>i h∣∣2 , γ0

)∣∣∣
≤ 100

ψ2
lb (γ0)

∣∣∣∣∣a>i h∣∣2 − ∣∣a>i h0

∣∣2∣∣∣ .
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It then follows from Lemmas 1-2 that

1

m

∣∣∣∣∣
m∑
i=1

χ3

(∣∣a>i h0

∣∣2 , γ0

)
−

m∑
i=1

χ3

(∣∣a>i h∣∣2 , γ)
∣∣∣∣∣ ≤ 100

ψ2
lb (γ0)

1

m

∥∥∥A(hh> − h0h
>
0

)∥∥∥
1

≤ 250 (1 + δ)
2

γ2
‖h− h0‖‖h‖ ≤

250(1 + δ)2ε

γ2
.

Putting the above results together gives that for all 2 ≤ γ ≤ (1 + δ)
logm

log(1+δ) = m,

1

m

m∑
i=1

χ3

(∣∣a>i h∣∣2 , γ) ≤ 1

m

m∑
i=1

χ3

(∣∣a>i h0

∣∣2 , γ0

)
+

250 (1 + δ)
2

γ2
ε

≤ 1

0.495γ0
exp

(
−0.49γ2

0

)
+ 251 (1 + δ)

2 ε

γ2

≤ 1

0.49γ
exp

(
−0.485γ2

)
+ 251 (1 + δ)

2 ε

γ2

with probability exceeding 1− logm
log(1+δ)

(
1 + 2

ε

)n
exp

(
−cε2m

)
. This establishes (44) for all 2 ≤ γ ≤ m.

It remains to deal with the case where γ > m. To this end, we rely on the following observation:

1

m

m∑
i=1

1{|a>i h|≥m} ≤
1

m

m∑
i=1

∣∣a>i h∣∣2
m2

(i)
≤ 1 + δ

m2
‖h‖2 � 1

m
, ∀h with ‖h‖ = 1,

where (i) comes from [2, Lemmas 3.1]. This basically tells us that with high probability, none of the indicator
variables can be equal to 1. Consequently, 1

m

∑m
i=1 1{|a>i h|≥m} = 0, which proves the claim.

A.5 Proof of Lemma 7

Fix δ > 0. Recalling the notation vi := 2
{

2a>i h−
|a>i h|2
a>i z

}
1Ei1∩Ei2 , we see from the expansion (35) that∥∥∥ 1

m
∇tr`(z)

∥∥∥ =
∥∥∥ 1

m
A>v

∥∥∥ ≤ 1

m
‖A‖ · ‖v‖ ≤ (1 + δ)

‖v‖√
m

(99)

as soon as m ≥ c1n for some sufficiently large c1 > 0. Here, the norm estimate ‖A‖ ≤ √m (1 + δ) arises
from standard random matrix results [3, Corollary 5.35].

Everything then comes down to controlling ‖v‖. To this end, making use of the inclusion (36) yields

1

4m
‖v‖2 =

1

m

m∑
i=1

(
2a>i h−

|a>i h|2
a>i z

)2

1Ei1∩Ei2 ≤
1

m

m∑
i=1

(
2
∣∣a>i h∣∣+

|a>i h|2
|a>i z|

)2

1Ei1∩(D
i,1
γ4
∪Di,2γ4 )

≤ 1

m

m∑
i=1

{
4(a>i h)2 +

(
4|a>i h|3
|a>i z|

+
|a>i h|4
|a>i z|2

)
1Ei1∩(D

i,1
γ4
∪Di,2γ4 )

}

=
1

m

m∑
i=1

{
4
(
a>i h

)2
+

(
4 +
|a>i h|
|a>i z|

) |a>i h|3
|a>i z|

(
1Ei1∩D

i,1
γ4

+ 1Ei1∩D
i,2
γ4

)}
.

The first term is controlled by [2, Lemma 3.1] in such a way that with probability 1− exp(−Ω(m)),

1

m

m∑
i=1

4
(
a>i h

)2 ≤ 4 (1 + δ) ‖h‖2 .

Turning to the remaining terms, we see from the definition of Di,1γ and Di,2γ that∣∣a>i h∣∣∣∣a>i z∣∣ ≤
{

γ‖h‖
αlb
z ‖z‖

, on E i1 ∩ Di,1γ
2 + γ‖h‖

αlb
z ‖z‖

, on E i1 ∩ Di,2γ
≤
{

1, on E i1 ∩ Di,1γ
3, on E i1 ∩ Di,2γ
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as long as γ ≤ αlb
z ‖z‖
‖h‖ . Consequently, one can bound

1

m

m∑
i=1

(
4 +
|a>i h|
|a>i z|

) |a>i h|3
|a>i z|

(
1Ei1∩D

i,1
γ

+ 1Ei1∩D
i,2
γ

)
≤ 5

m

m∑
i=1

|a>i h|3
|a>i z|

1Ei1∩D
i,1
γ

+
7

m

m∑
i=1

|a>i h|3
|a>i z|

1Ei1∩D
i,2
γ

≤ 5 (1 + δ)
√

8/π‖h‖3
αlb
z ‖z‖

+
7

100
(1 + δ) ‖h‖2 ,

where the last inequality follows from (42) and (51).
Recall that γ4 = 3αh. Taken together all these bounds lead to the upper bound

1

4m
‖v‖2 ≤ (1 + δ)

{
4 +

5
√

8/π ‖h‖
αlb
z ‖z‖

+
7

100

}
‖h‖2 ≤ (1 + δ)

{
4 +

5
√

8/π

3αh
+

7

100

}
‖h‖2

whenever ‖h‖‖z‖ ≤ min

{
αlb
z

3αh
,
αlb
z

6 ,

√
98/3(αlb

z )
2

2αub
z +αlb

z
, 1

11

}
. Substituting this into (99) completes the proof.

B Proofs for Section 4

B.1 Proof of Lemma 8
Firstly, we collect a few results on the magnitudes of a>i x (1 ≤ i ≤ m) that will be useful in constructing
the hypotheses. Observe that for any given x and any sufficiently large m,

P
{

min
1≤i≤m

∣∣a>i x∣∣ ≥ 1

m logm
‖x‖

}
=

(
P
{
|a>i x| ≥

1

m logm
‖x‖

})m
≥
(

1− 2√
2π

1

m logm

)m
≥ 1− o(1).

Besides, since E
[
1{|a>i x|≤ ‖x‖

5 logm}
]
≤ 1√

2π
2

5 logm ≤ 1
5 logm , applying Hoeffding’s inequality yields

P
{∑m

i=1
1{|a>i x|≤ ‖x‖

5 logm} >
m

4 logm

}
= P

{
1

m

∑m

i=1

(
1{|a>i x|≤ ‖x‖

5 logm} − E
[
1{|a>i x|≤ ‖x‖

5 logm}
])

>
1

20 logm

}
≤ exp

(
−Ω
( m

log2m

))
.

To summarize, with probability 1− o(1), one has

min1≤i≤m
∣∣a>i x∣∣ ≥ 1

m logm
‖x‖; (100)∑m

i=1
1{|a>i x|≤ ‖x‖logm} ≤ m

4 logm
:= k. (101)

In the sequel, we will first produce a setM1 of exponentially many vectors surrounding x in such a way
that every pair is separated by about the same distance, and then verify that a non-trivial fraction of M1

obeys (76). Without loss of generality, we assume that x takes the form x = [b, 0, · · · , 0]
> for some b > 0.

The construction of M1 follows a standard random packing argument. Let w = [w1, · · · , wn]
> be a

random vector with
wi = xi +

1√
2n
zi, 1 ≤ i ≤ n,

where zi
ind.∼ N (0, 1). The collectionM1 is then obtained by generating M1 = exp

(
n
20

)
independent copies

w(l) (1 ≤ l < M1) of w. For any w(l),w(j) ∈M1, the concentration inequality [3, Corollary 5.35] gives

P
{

0.5
√
n− 1 ≤ √n

∥∥w(l) −w(j)
∥∥ ≤ 1.5

√
n+ 1

}
≥ 1− 2 exp (−n/8) ;

P
{

0.5
√
n− 1 ≤

√
2n
∥∥w(l) − x

∥∥ ≤ 1.5
√
n+ 1

}
≥ 1− 2 exp (−n/8) .
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Taking the union bound over all
(
M1

2

)
pairs we obtain

0.5− n−1/2 ≤
∥∥w(l) −w(j)

∥∥ ≤ 1.5 + n−1/2, ∀l 6= j

1/
√

8− (2n)−1/2 ≤
∥∥w(l) − x

∥∥ ≤
√

9/8 + (2n)−1/2, 1 ≤ l ≤M1
(102)

with probability exceeding 1− 2M2
1 exp

(
−n8
)
≥ 1− 2 exp

(
− n

40

)
.

The next step is to show that many vectors in M1 satisfy (76). For any given w with r := w − x, by
letting ai,⊥ := [ai,2, · · · , ai,n]

>, r‖ := r1, and r⊥ := [r2, · · · , rn]
>, we derive

|a>i r|2
|a>i x|2

≤
2|ai,1r‖|2 + 2|a>i,⊥r⊥|2

|ai,1|2 ‖x‖2
≤ 2|r‖|2

‖x‖2
+

2|a>i,⊥r⊥|2

|ai,1|2 ‖x‖2
≤ 2‖r‖2
‖x‖2

+
2|a>i,⊥r⊥|2

|ai,1|2 ‖x‖2
. (103)

It then boils down to developing an upper bound on |a
>
i,⊥r⊥|2
|ai,1|2

. This ratio is convenient to work with since
the numerator and denominator are stochastically independent. To simplify presentation, we reorder {ai}
in a way that

(m logm)−1 ‖x‖ ≤
∣∣a>1 x∣∣ ≤ ∣∣a>2 x∣∣ ≤ · · · ≤ ∣∣a>mx∣∣ ;

this will not affect our subsequent analysis concerning a>i,⊥r⊥ since it is independent of a>i x.
To proceed, we let r(l)

⊥ consist of all but the first entry of w(l) −x, and introduce the indicator variables

ξli :=


1{∣∣∣a>i,⊥r(l)⊥ ∣∣∣≤ 1

m

√
n−1
2n

}, 1 ≤ i ≤ k,
1{∣∣∣a>i,⊥r(l)⊥ ∣∣∣≤√ 2(n−1) logn

n

}, i > k,
(104)

where k = m
4 logm as before. In words, we divide a>i,⊥r

(l)
⊥ , 1 ≤ i ≤ m into two groups, with the first group

enforcing far more stringent control than the second group. These indicator variables are useful since any
w(l) obeying

∏m
i=1 ξ

l
i = 1 will satisfy (76) when n is sufficiently large. To see this, note that for the first

group of indices, ξli = 1 requires∣∣∣a>i,⊥r(l)
⊥

∣∣∣ ≤ 1

m

√
n− 1

2n
≤ 2

m

√
n− 1√
n− 2

∥∥r(l)
∥∥ ≤ 3

m

∥∥r(l)
∥∥, 1 ≤ i ≤ k, (105)

where the second inequality follows from (102). This taken collectively with (100) and (103) yields∣∣a>i r(l)
∣∣2∣∣a>i x∣∣2 ≤ 2‖r(l)‖2

‖x‖2
+

9
m2

∥∥r(l)
∥∥2

1
m2 log2m

‖x‖2 ≤
(2 + 9 log2m)

∥∥r(l)
∥∥2

‖x‖2 , 1 ≤ i ≤ k.

Regarding the second group of indices, ξli = 1 gives∣∣∣a>i,⊥r(l)
⊥

∣∣∣ ≤√2 (n− 1) log n

n
≤
√

17 log n
∥∥r(l)

∥∥, i = k + 1, · · · ,m, (106)

where the last inequality again follows from (102). Plugging (106) and (101) into (103) gives∣∣a>i r(l)
∣∣2∣∣a>i x∣∣2 ≤ 2‖r(l)‖2

‖x‖2
+

17
∥∥r(l)

∥∥2
log n

‖x‖2 / log2m
≤ (2 + 17 log3m)

∥∥r(l)
∥∥2

‖x‖2
, i ≥ k + 1.

Consequently, (76) is satified for all 1 ≤ i ≤ m. It then suffices to guarantee the existence of exponentially
many vectors obeying

∏m
i=1 ξ

l
i = 1.

Note that the first group of indicator variables are quite stringent, namely, for each i only a fraction
O(1/m) of the equations could satisfy ξli = 1. Fortunately, M1 is exponentially large, and hence even
M1/m

k is exponentially large. Put formally, we claim that the first group satisfies

M1∑
l=1

k∏
i=1

ξli ≥
1

2

M1

(2π)
k/2

(1 + 4
√
k/n)k/2

(
1√

2πm

)k
:= M̃1 (107)
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with probability exceeding 1− exp (−Ω (k))− exp(−M̃1/4). With this claim in place (which will be proved
later), one has

M1∑
l=1

k∏
i=1

ξli ≥
1

2
M1

1

(e2m)
k

=
1

2
exp

((
1

20
− k (2 + logm)

n

)
n

)
≥ 1

2
exp

(
1

25
n

)
when n and m/n are sufficiently large. In light of this, we will let M2 be a collection comprising all w(l)

obeying
∏k
i=1 ξ

l
i = 1, which has size M2 ≥ 1

2 exp
(

1
25n
)
based on the preceding argument. For notational

simplicity, it will be assumed that the vectors inM2 are exactly w(j) (1 ≤ j ≤M2).
We now move on to the second group by examining how many vectors w(j) in M2 further satisfy∏m

i=k+1 ξ
j
i = 1. Notably, the above construction of M2 relies only on {ai}1≤i≤k and is independent of

the remaining vectors {ai}i>k. In what follows the argument proceeds conditional on M2 and {ai}1≤i≤k.
Applying the union bound gives

E
[∑M2

j=1

(
1−

∏m

i=k+1
ξji

)]
=
∑M2

j=1
P
{
∃i (k < i ≤ m) :

∣∣∣a>i,⊥r(l)
⊥

∣∣∣ >√2 (n− 1) log n

n

}
≤

M2∑
j=1

m∑
i=k+1

P

{∣∣∣a>i,⊥r(l)
⊥

∣∣∣ >√2 (n− 1) log n

n

}
≤ M2m

1

n2
.

This combined with Markov’s inequality gives∑M2

j=1

(
1−

∏m

i=k+1
ξji

)
≤ m logm

n2
·M2

with probability 1 − o(1). Putting the above inequalities together suggests that with probability 1 − o(1),
there exist at least (

1− m logm

n2

)
M2 ≥

1

2

(
1− m logm

n2

)
exp

(
1

25
n

)
≥ exp

( n
30

)
vectors in M2 satisfying

∏m
l=k+1 ξ

l
i = 1. We then choose M to be the set consisting of all these vectors,

which forms a valid collection satisfying the properties of Lemma 8.
Finally, the only remaining step is to establish the claim (107). To start with, consider an n× k matrix

B := [b1, · · · , bk] of i.i.d. standard normal entries, and let u ∼ N
(
0, 1

nIn
)
. Conditional on the {bi’s,

bu =

 b1,u
...

bk,u

 :=

 b>1 u
...

b>k u

 ∼ N (0, 1

n
B>B

)
.

For sufficiently large m, one has k = m
4 logm ≤ 1

4n. Using [3, Corollary 5.35] we get∥∥∥ 1

n
B>B − I

∥∥∥ ≤ 4
√
k/n (108)

with probability 1−exp (−Ω(k)). Thus, for any constant 0 < ε < 1
2 , conditional on {bi} and (108) we obtain

P

{
k⋂
i=1

{
|b>i u| ≤

1

m

}}
≥ (2π)

− k2 det−
1
2

( 1

n
B>B

)ˆ
bu∈Υ

exp
(
− 1

2
b>u

( 1

n
B>B

)−1

bu

)
dbu

≥ (2π)
− k2
(

1 + 4
√
k/n

)− k2 ˆ
bu∈Υ

exp
(
− 1

2

(
1− 4

√
k/n

)−1 k∑
i=1

b2i,u

)
dbu (109)

≥ (2π)
− k2
(
1 + 4

√
k/n

)− k2 (√2πm
)−k

, (110)

where Υ := {b̃ | |b̃i| ≤ m−1, 1 ≤ i ≤ k} and (109) is a direct consequence from (108).
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When it comes to our quantity of interest, the above lower bound (110) indicates that on an event (defined
via {ai}) of probability approaching 1, we have

E
[∑M1

l=1

∏k

i=1
ξli

]
≥ M1 (2π)

− k2
(

1 + 4
√
k/n

)− k2 (√
2πm

)−k
. (111)

Since conditional on {ai},
∏k
i=1 ξ

l
i are independent across l, applying the Chernoff-type bound [5, Theorem

4.5] gives ∑M1

l=1

∏k

i=1
ξli ≥

M1

2
(2π)

− k2
(

1 + 4
√
k/n

)− k2 (√
2πm

)−k
with probability exceeding 1− exp

(
− 1

8
M1

(2π)k/2(1+4
√
k/n)k/2

(
1√

2πm

)k )
. This concludes the proof.

B.2 Proof of Lemma 9
Before proceeding, we introduce the χ2-divergence between two probability measures P and Q as

χ2 (P‖Q) :=

ˆ (
dP

dQ

)2

dQ− 1. (112)

It is well known (e.g. [4, Lemma 2.7]) that

KL (P‖Q) ≤ log(1 + χ2 (P‖Q)), (113)

and hence it suffices to develop an upper bound on the χ2 divergence.
Under independence, for any w0,w1 ∈ Rn, the decoupling identity of the χ2 divergence [4, Page 96] gives

χ2 (P (y | w1) ‖ P (y | w0)) =
∏m

i=1

(
1 + χ2 (P (yi | w1) ‖ P (yi | w0))

)
− 1

= exp

(∑m

i=1

(
|a>i w1|2 − |a>i w0|2

)2
|a>i w0|2

)
− 1. (114)

The preceding identity (114) arises from the following computation: by definition of χ2(·‖·),

χ2 (Poisson (λ1) ‖ Poisson (λ0)) =

{∑∞

k=0

(
λk1 exp (−λ1)

)2
λk0 exp (−λ0) k!

}
− 1

= exp
(
λ0 − 2λ1 +

λ2
1

λ0

){∑∞

k=0

(
λ2

1/λ0

)k
k!

exp
(
− λ2

1

λ0

)}
− 1 = exp

( (λ1 − λ0)
2

λ0

)
− 1.

Set r := w1 −w0. To summarize,

KL (P (y | w1) ‖ P (y | w0)) ≤
m∑
i=1

(
|a>i w1|2 − |a>i w0|2

)2
|a>i w0|2

(115)

≤
m∑
i=1

∣∣a>i r∣∣2 (2 ∣∣a>i w0

∣∣+
∣∣a>i r∣∣)2

|a>i w0|2

=

m∑
i=1

|a>i r|2
(

8|a>i w0|2 + 2|a>i r|2
|a>i w0|2

)
. (116)

C Initialization via truncated spectral Method
This section demonstrates that the truncated spectral method works whenm � n, as stated in the proposition
below.
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Proposition 3. Fix δ > 0 and x ∈ Rn. Consider the model where yi = a>i x+ηi and ai
ind.∼ N (0, I). Suppose

that ‖η‖∞ ≤ ε ‖x‖
2 for some sufficiently small constant ε > 0. With probability exceeding 1− exp (−Ω (m)),

the solution z(0) returned by the truncated spectral method obeys

dist(z(0),x) ≤ δ‖x‖, (117)

provided that m > c0n for some constant c0 > 0.

Proof. By homogeneity, it suffices to consider the case where ‖x‖ = 1. Recall from [2, Lemma 3.1] that
1
m

∑m
i=1(a>i x)2 ∈ [1± ε]‖x‖2. Under the hypothesis ‖η‖∞ ≤ ε‖x‖2, one has 1

m ‖η‖1 ≤ ε‖x‖2, which yields

1

m

m∑
l=1

yl =
1

m

m∑
l=1

(
a>l x

)2
+

1

m

m∑
l=1

ηl ∈ [1± 2ε]‖x‖2

with probability 1− exp(−Ω(m)). This in turn implies that

1{|(a>i x)2+ηi|≤α2
y( 1
m

∑
l yl)} ≤ 1{|a>i x|2≤α2

y( 1
m

∑
l yl)+|ηi|} ≤ 1{|a>i x|2≤(1+2ε)α2

y+ε}
1{|(a>i x)2+ηi|≤α2

y( 1
m

∑
l yl)} ≥ 1{|a>i x|2≤α2

y( 1
m

∑
l yl)−|ηi|} ≥ 1{|a>i x|2≤(1−2ε)α2

y−ε}

and, hence,

1

m

m∑
i=1

aia
>
i

(
a>i x

)2
1{|a>i x|≤

√
(1−2ε)α2

y−ε}︸ ︷︷ ︸
:=Y 2

� Y � 1

m

m∑
i=1

aia
>
i

(
a>i x

)2
1{|a>i x|≤

√
(1+2ε)α2

y+ε}︸ ︷︷ ︸
:=Y 1

. (118)

Letting ξ ∼ N (0, 1), one can compute

E [Y 1] = β1xx
> + β2I, and E [Y 2] = β3xx

> + β4I, (119)

where β1 := E
[
ξ41{|ξ|≤

√
(1+2ε)α2

y+ε}
]
− E

[
ξ21{|ξ|≤

√
(1+2ε)α2

y+ε}
]
, β2 := E

[
ξ21{|ξ|≤

√
(1+2ε)α2

y+ε}
]
, β3 :=

E
[
ξ41{|ξ|≤

√
(1−2ε)α2

y−ε}
]
− E

[
ξ21{|ξ|≤

√
(1−2ε)α2

y−ε}
]
and β4 := E

[
ξ21{|ξ|≤

√
(1−2ε)α2

y−ε}
]
. Recognizing that

aia
>
i

(
a>i x

)2
1{|a>i x)|≤c} can be rewritten as bib>i for some sub-Gaussian vector bi := ai

(
a>i x

)
1{|a>i x)|≤c},

we apply standard results on random matrices with non-isotropic sub-Gaussian rows [3, Equation (5.26)] to
deduce

‖Y 1 − E [Y 1]‖ ≤ δ, ‖Y 2 − E [Y 2]‖ ≤ δ (120)

with probability 1 − exp (−Ω (m)), provided that m/n exceeds some large constant. Besides, when ε is
sufficiently small, one further has ‖E [Y 1]− E [Y 2] ‖ ≤ δ. These taken together with (118) give

‖Y − β1xx
> − β2I‖ ≤ 3δ. (121)

Fix δ̃ > 0. With (121) in place, repeating the same proof arguments as in [1, Section 7.8] (which we omit
in the current paper) and taking δ, ε to be sufficiently small, we obtain

dist(z(0),x) ≤ δ̃ (122)

as long as m/n is sufficiently large, as claimed.

We now justify that the Poisson model (3) satisfies the condition ‖η‖ ≤ ε‖x‖2 whenever ‖x‖ ≥ log1.5m.
Suppose that µi = (a>i x)2 and hence yi ∼ Poisson(µi). It follows from the Chernoff bound that

P (yi − µi ≥ τ) ≤ E [etyi ]

exp (t(µi + τ))
=

exp (µi (et − 1))

exp (t(µi + τ))
= exp

(
µi
(
et − t− 1

)
− tτ

)
, ∀t ≥ 0.
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Taking τ = 2ε̃µi and t = ε̃ for any 0 ≤ ε̃ ≤ 1 gives

P (yi − µi ≥ 2ε̃µi) ≤ exp
(
µi
(
et − t− 1− 2ε̃t

)) (i)
≤ exp

(
µi
(
t2 − 2ε̃t

))
= exp

(
−µiε̃2

)
,

where (i) follows since et ≤ 1 + t+ t2 (0 ≤ t ≤ 1). Letting κi = µi/‖x‖2 and setting ε̃ = ε/2κi, we obtain

P
(
yi − µi ≥ ε‖x‖2

)
= P (yi − µi ≥ 2ε̃µi) ≤ exp

(
−κi‖x‖2ε̃2

)
= exp

(
− ε2‖x‖2

4κi

)
.

In addition, standard results on Gaussian measures indicate that max1≤i≤m κi . log n. As a consequence, if
‖x‖2 & log3m, then ‖x‖

2

κi
& log2m (1 ≤ i ≤ m), which further gives

P
(
∀i : ηi ≥ ε‖x‖2

)
= P

(
∀i : yi − µi ≥ ε‖x‖2

)
≤ m exp

(
− Ω

(
ε2 log2m

) )
from the union bound. Similarly, applying the same argument on −yi we get ηi ≥ −ε‖x‖2 for all i, which
together with (123) establish that

‖η‖∞ ≤ ε‖x‖2 (123)

with high probability. In conclusion, the claim (117) applies to the Poisson model.

D Local error contraction with backtracking line search
In this paper, we also consider a backtracking line search with truncated objective to determine the learning
rate. This strategy performs a line search along the descent direction

pt :=
1

m
∇`tr(zt)

and determines an appropriate step size that guarantees a sufficient improvement. In contrast to the con-
ventional search strategy that determines the sufficient progress with respect to the true objective function,
we propose to evaluate instead a truncated version of the objective function. Specifically, put

̂̀(z) :=
∑

i∈T̂ (z)

{
yi log(|a>i z|2)− |a>i z|2

}
, (124)

where
T̂ (z) :=

{
i |
∣∣a>i z∣∣ ≥ αlb

z ‖z‖ and
∣∣a>i p∣∣ ≤ αp‖p‖} .

Then the backtracking line search proceeds as

1. Start with τ = 1;

2. Repeat τ ← βτ until
1

m
̂̀(z(t) + τp(t)

)
≥ 1

m
̂̀(z(t)

)
+

1

2
τ
∥∥p(t)

∥∥2
, (125)

where β ∈ (0, 1) is some pre-determined constant;

3. Set µt = τ .

By definition (124), evaluating ̂̀(z(t)+τp(t)) mainly consists in calculating the matrix-vector productA(z(t)+

τp(t)). In total, we are going to evaluate ̂̀(z(t) + τp(t)) for O
(

log 1/β
)
different τ ’s, and hence the total cost

amounts to computing Az(t), Ap(t) as well as O(m log 1/β) additional flops. Note that the matrix-vector
products Az(t) and Ap(t) need to be computed even when one adopts a pre-determined step size. Hence,
the extra cost incurred by a backtracking line search, which is O(m log 1/β) flops, is negligible compared to
that of computing the gradient even once.

In this section, we verify the effectiveness of a backtracking line search strategy by showing local error
contraction. To keep it concise, we only sketch the proof for the noiseless case, but the proof extends to the
noisy case without much difficulty. Also we do not strive to obtain an optimized constant. For concreteness,
we prove the following proposition.
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Proposition 4. The claim in Proposition 1 continues to hold if αh ≥ 6, αub
z ≥ 5, αlb

z ≤ 0.1, αp ≥ 5, and

‖h‖/‖z‖ ≤ εtr (126)

for some constant εtr > 0 independent of n and m.

Note that if αh ≥ 6, αub
z ≥ 5 and αlb

z ≤ 0.1, then the boundary step size µ0 given in Proposition 1
satisfies

0.994− ζ1 − ζ2 −
√

2/(9π)α−1
h

2
(
1.02 + 0.665α−1

h

) ≥ 0.384.

Thus, it suffices to show that the step size obtained by a backtracking line search lies within (0,0.384). For
notational convenience, we will set

p := m−1∇`tr (z) and E i3 :=
{∣∣a>i z∣∣ ≥ αlb

z ‖z‖ and
∣∣a>i p∣∣ ≤ αp ‖p‖}

throughout the rest of the proof. We also impose the assumption

‖p‖ / ‖z‖ ≤ ε (127)

for some sufficiently small constant ε > 0, so that
∣∣a>i p∣∣ / ∣∣a>i z∣∣ is small for all non-truncated terms. It is

self-evident from (52) that in the regime under study, one has

‖p‖ ≥ 2
{

1.99− 2 (ζ1 + ζ2)−
√

8/π(3αh)−1 − o (1)
}
‖h‖ ≥ 3.64 ‖h‖ . (128)

To start with, consider three scalars h, b, and δ. Setting bδ := (b+δ)2−b2
b2 , we get

(b+ h)
2

log
(b+ δ)

2

b2
− (b+ δ)

2
+ b2 = (b+ h)2 log (1 + bδ)− b2bδ

(i)
≤ (b+ h)

2 {
bδ − 0.4875b2δ

}
− b2bδ = ((b+ h)

2 − b2)bδ − 0.4875 (b+ h)
2
b2δ

= hδ (2 + h/b) (2 + δ/b)− 0.4875 (1 + h/b)
2 |δ (2 + δ/b)|2

= 4hδ +
2h2δ

b
+

2hδ2

b
+
h2δ2

b2
− 0.4875δ2

(
1 +

h

b

)2(
2 +

δ

b

)2

, (129)

where (i) follows from the inequality log (1 + x) ≤ x− 0.4875x2 for sufficiently small x. To further simplify
the bound, observe that

δ2

(
1 +

h

b

)2(
2 +

δ

b

)2

≥ 4δ2

(
1 +

h

b

)2

+ δ2

(
1 +

h

b

)2
4δ

b
and

2hδ2

b
+
h2δ2

b2
=

((
1 +

h

b

)2

− 1

)
δ2.

Plugging these two identities into (129) yields

(129) ≤ 4hδ +
2h2δ

b
−
(

0.95

(
1 +

h

b

)2

+ 1

)
δ2 − 0.4875δ2

(
1 +

h

b

)2
4δ

b

≤ 4hδ − 1.95δ2 +
2h2 |δ|
|b| +

1.9|h|
|b| δ2 +

1.95
∣∣δ3
∣∣

|b|

(
1 +

h

b

)2

.
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Replacing respectively b, δ, and h with a>i z, τa>i p, and −a>i h, one sees that the log-likelihood `i (z) =
yi log(|a>i z|2)− |a>i z|2 obeys

`i (z + τp)− `i (z) = yi log

∣∣a>i (z + τp)
∣∣2∣∣a>i z∣∣2 −

∣∣a>i (z + τp)
∣∣2 +

∣∣a>i z∣∣2
≤ −4τ

(
a>i h

) (
a>i p

)︸ ︷︷ ︸
:=I1,i

− 1.95τ2
(
a>i p

)2︸ ︷︷ ︸
:=I2,i

+
2τ
(
a>i h

)2 ∣∣a>i p∣∣∣∣a>i z∣∣︸ ︷︷ ︸
:=I3,i

+
1.9τ2

∣∣a>i h∣∣∣∣a>i z∣∣ (
a>i p

)2
︸ ︷︷ ︸

:=I4,i

+
1.95τ3

∣∣a>i p∣∣3∣∣a>i z∣∣
(

1− a
>
i h

a>i z

)2

︸ ︷︷ ︸
:=I5,i

.

The next step is then to bound each of these terms separately. Most of the following bounds are straight-
forward consequences from [2, Lemma 3.1] combined with the truncation rule. For the first term, applying
the AM-GM inequality we get

1

m

m∑
i=1

I1,i1Ei3 ≤
4τ

3.64m

m∑
i=1

{
3.642

2

(
a>i h

)2
+

1

2

(
a>i p

)2} ≤ 4τ (1 + δ)

3.64

{
3.642

2
‖h‖2 +

1

2
‖p‖2

}
.

Secondly, it follows from Lemma 4 that

1

m

m∑
i=1

I2,i1Ei3 = −1.95τ2 1

m

m∑
i=1

(
a>i p

)2
1Ei3 ≤ −1.95

(
1− ζ̃1 − ζ̃2

)
τ2 ‖p‖2 ,

where ζ̃1 := max{E
[
ξ21{|ξ|≤√1.01αlb

z }
]
,E
[
1{|ξ|≤√1.01αlb

z }
]
} and ζ̃2 := E

[
ξ21{|ξ|>√0.99αh}

]
. The third term is

controlled by
1

m

m∑
i=1

I3,i1Ei3 ≤ 2τ
αp ‖p‖
αlb
z ‖z‖

{
1

m

m∑
i=1

(
a>i h

)2}
. τε ‖h‖2 .

Fourthly, it arises from the AM-GM inequality that

1

m

m∑
i=1

I4,i1Ei3 ≤ 1.9τ2αp ‖p‖
αlb
z ‖z‖

1

m

m∑
i=1

∣∣a>i h∣∣ ∣∣a>i p∣∣ . ετ2 1

m

m∑
i=1

{
2
∣∣a>i h∣∣2 +

1

8

∣∣a>i p∣∣2} . ετ2 ‖p‖2 .

Finally, the last term is bounded by

1

m

m∑
i=1

I5,i1Ei3 ≤ 1

m

m∑
i=1

1.95τ3
∣∣a>i p∣∣3∣∣a>i z∣∣

(
a>i x

a>i z

)2

≤ 1.95τ3α3
p ‖p‖3

(αlb
z )3 ‖z‖3

1

m

m∑
i=1

(
a>i x

)2
. τ3ε

‖x‖2

‖z‖2
‖p‖2 .

Under the hypothesis (128), we can further derive 1
m

∑m
i=1 I1,i1Ei3 ≤ τ (1.1 + δ) ‖p‖2. Putting all the above

bounds together yields that the truncated objective function is majorized by

1

m

m∑
i=1

{`i (z + τp)− `i (z)}1Ei3 ≤
1

m

m∑
i=1

(I1,i + I2,i + I3,i + I4,i + I5,i)1Ei3

≤ τ (1.1 + δ) ‖p‖2 − 1.95
(

1− ζ̃1 − ζ̃2
)
τ2 ‖p‖2 + τ ε̃ ‖p‖2

=
{
τ (1.1 + δ)− 1.95

(
1− ζ̃1 − ζ̃2

)
τ2 + τ ε̃

}
‖p‖2 (130)

for some constant ε̃ > 0 that is linear in ε.
Note that the backtracking line search seeks a point satisfying 1

m

∑m
i=1 {`i (z + τp)− `i (z)}1Ei3 ≥

1
2τ ‖p‖

2. Given the above majorization (130), this search criterion is satisfied only if

τ/2 ≤ τ (1.1 + δ)− 1.95(1− ζ̃1 − ζ̃2)τ2 + τ ε̃
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or, equivalently,

τ ≤ 0.6 + δ + ε̃

1.95(1− ζ̃1 − ζ̃2)
:= τub.

Taking δ and ε̃ to be sufficiently small, we see that τ ≤ τub ≤ 0.384, provided that αlb
z ≤ 0.1, αub

z ≥ 5,
αh ≥ 6, and αp ≥ 5.

Using very similar arguments, one can also show that 1
m

∑m
i=1 {`i (z + τp)− `i (z)}1Ei3 is minorized by a

similar quadratic function, which combined with the stopping criterion 1
m

∑m
i=1 {`i (z + τp)− `i (z)}1Ei3 ≥

1
2τ ‖p‖

2 suggests that τ is bounded away from 0. We omit this part for conciseness.
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