
A Maximum likelihood estimator

Let Y ∈ Rn1×···×nK be a noisy observed tensor generated as follows:

Y = X ∗ + σE =
R∑

r=1

βru
(1)
r ◦ · · · ◦ u(K)

r + σE ,

where E is a noisy tensor whose entries are i.i.d. normal N (0, 1).

Let X̂MLE be the (intractable) estimator defined as

X̂MLE = arg min
X

(
|||Y − X |||2F : rank(X ) ≤ R

)
.

We have the following performance guarantee for X̂MLE:
Theorem 3. Let R ≤ mink nk/2. Then there is a constant c such that

|||X̂MLE −X ∗|||F ≤ cσ

√√√√RK
K∑

k=1

nk log(2K/K0) + log(2/δ),

with probability at least 1− δ, where K0 = log(3/2).

Note that the factor RK in the square root is rather conservative. In the best case, this factor reduces
to linear in R and this is what we present in Section 4 as “optimistic” ignoring constants and δ; see
Eq. (11).

Proof of Theorem 3. Since X̂MLE is a minimizer and X ∗ is also feasible, we have

|||Y − X̂MLE|||2F ≤ |||Y − X ∗|||
2
F ,

which implies

|||X ∗ − X̂MLE|||2F ≤ σ〈E , X̂MLE −X ∗〉
≤ σ|||E|||op|||X̂MLE −X ∗|||nuc,

where
|||X |||op := sup

u(1),...,u(K)

{ ∑

i1,i2,...,iK

Xi1,i2,...,iKu(1)i1 u
(2)
i2
· · ·u(K)

iK
:

‖u(1)‖ = ‖u(2)‖ = · · · = ‖u(K)‖ = 1
}

is the tensor spectral norm and the nuclear norm

|||X |||nuc := inf
u(1),...,u(K)

{∑

r

‖u(1)
r ‖ · ‖u(2)

r ‖ · · · ‖u(K)
r ‖ :

X =
R∑

r=1

u(1)
r ◦ · · · ◦ u(K)

r

}

is the dual of the spectral norm.

Since both X̂MLE and X ∗ are rank at most R, the difference X̂MLE − X ∗ is rank at most 2R. More-
over, any rank-R CP decomposition with R ≤ mink nkcan be reduced to an orthogonal CP decom-
position with rank at most RK via the Tucker decomposition [14]. Thus, denoting this orthogonal
decomposition by X̂MLE − X ∗ =

∑RK

r=1 ũ
(1)
r ◦ · · · ◦ ũ(K)

r and using βr := ‖ũ(1)
r ‖ · · · ‖ũ(K)

r ‖, we
have

|||X̂MLE −X ∗|||nuc ≤
RK∑

r=1

βr ≤
√
RK

√∑RK

r=1
β2
r

=
√
RK |||X̂MLE −X ∗|||F ,

where the last equality follows because the decomposition is orthogonal.

Finally applying the tail bound for the spectral norm ‖E‖op of random Gaussian tensor E [24], we
obtain what we wanted.
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Algorithm 1: Tensor denoising via the subspace norm
Input: noisy tensor Y , subspace dimension H , regularization constant λ
for k = 1 to K do
P̂

(k) ←− top H left singular vectors of Y (k)

end for
for k = 1 to K do
S(k) ←− P̂ (1) ⊗ · · · ⊗ P̂ (k−1) ⊗ P̂ (k+1) ⊗ · · · ⊗ P̂ (K)

end for
Output: X̂ = arg minX

1
2 |||Y − X |||

2
F + λ|||X |||s.

B Details of optimization

For solving problem (8), we follow the alternating direction method of multipliers described in [25].
We scale the objective function in (8) by 1/λ, and consider the dual problem

min
D,{W (k)}Kk=1

λ

2
|||D|||2F − 〈D,Y〉

s.t. max
k
‖W (k)‖ ≤ 1,

W (k) = D(k)S
(k), k = 1, . . . ,K,

(12)

where D ∈ Rn1×n2×···×nK is the dual tensor that corresponds to the residual in the primal problem
(8), andW (k)’s are auxiliary variables introduced to make the problem equality constrained.

The augmented Lagrangian function of problem (12) could be written as follows:

Lη(D, {W (k)}Kk=1, {M (k)}Kk=1)

=
λ

2
|||D|||2 − 〈D,Y〉+

K∑

k=1

(
〈M (k),D(k)S

(k) −W (k)〉

+
η

2
‖D(k)S

(k) −W (k)‖2F + 1‖·‖≤1(W (k))
)
,

whereM (k)’s are the multipliers, η is the augmenting parameter, and 1‖·‖≤1 is the indicator function
of the unit spectral norm ball.

We follow the derivation in [25] and conclude that the updates of D, M (k) and W (k) can be com-
puted in closed forms. We further combine the updates of W (k) and other steps so that it needs

not to be explicitly computed. The sum of the products ofM (k) and S(k)> finally converges to the
solution of the primal problem (8), see Algorithm 2.

The update for the Lagrangian multipliers M (k) (k = 1, . . . ,K) is written as singular value soft-
thresholding operator defined as

proxtrη (Z) = P max(Σ− η, 0)Q>,

where Z = PΣQ> is the SVD of Z.

A notable property of the subspace norm is the computational efficiency. The update of M (k)

requires singular value decomposition, which usually dominates the costs of computation. For prob-
lem (12), the size ofM (k) is only nk×HK−1. Comparing with previous approaches, e.g. the latent
approach whose multipliers are nk ×

∏
k′ 6=k nk′ matrices, the size of our variables is much smaller,

so the per-iteration cost is reduced.

C Additional experiments

We report the experimental results when the input rank of CP and the subspace approach is are over-
specified, on the same synthetic dataset as Section 4. We consider the case where the input rank is
8.
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Algorithm 2: ADMM for subspace norm minimization

Input: Y , λ, S(1), . . . ,S(K), η, initializations D0, {M (1)
0 , . . . ,M

(K)
0 }

t = 0
repeat

Dt+1 = 1
λ+ηK

(
Y +KηDt −

∑
k foldk

(
(2M

(k)
t −M (k)

t−1)S(k)>)
)

for k = 1 to K do
M

(k)
t+1 = proxtrη

(
M

(k)
t + ηD(k),t+1S

(k)
)

end for
t← t+ 1

until convergence

Output: X̂ =
∑K
k=1M

(k)
t S(k)>.
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Figure 3: Tensor denoising on synthetic dataset when the input rank is larger than the truth.

We impose the `2 regularizations on the factors of CP. We test 20 values that are logarithmically
spaced between 0.01 and 10 are the regularization parameter. For each value, we compute 20 solu-
tions with random initializations and select the one with lowest objective value.

For the subspace approach, we computed solutions for 20 values of the regularization parameter that
are logarithmically spaced between 1 and 1000.

As before, we report the minimum relative error obtained by the same method. The results are
shown in Figure 3. We include the case the rank is specified incorrectly for comparison. Clearly,
even if the rank is much larger than the truth, the subspace approach and CP are robust with proper
regularization.
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D Proofs

D.1 Proof of Theorem 1

We consider the second moment of X̃:

X̃X̃
>

= β2uu> + σ2EE> + βσ(uv>E> +Evu>)

=

B︷ ︸︸ ︷
β2uu> +mσ2I +

G︷ ︸︸ ︷
σ2EE> −mσ2I + βσ(uv>E> +Evu>) .

The eigenvalue decomposition ofB can be written as

B = [u U2]

[
β2 +mσ2

mσ2I

] [
u>

U>2

]
.

We first show a deterministic lower bound for |〈û,u〉| assuming β2 ≥ 2‖G‖, where û is the leading

eigenvector of X̃X̃
>

. Then we bound the spectral norm ‖G‖ of the noise term (Lemma 3) and
derive the sufficient condition for β.

Let û be the leading eigenvector of X̃X̃
>

with eigenvalue λ̂, r = Bû − λ̂û = −Gû. We have
U>2 r = (mσ2 − λ̂)U>2 û. Hence, for all β2 > 2‖G‖, it holds that

| sin(û,u)| = ‖U>2 û‖2 =
‖U>2 r‖2
λ̂−mσ2

≤ ‖G‖
β2 − ‖G‖ ≤

2‖G‖
β2

,

where we used ‖U>2 r‖2 = ‖U>2 Gû‖2 ≤ ‖G‖, and λ̂ ≥ u>X̃X̃
>
u> ≥ β2 + mσ2 − ‖G‖.

Therefore,

|〈û,u〉| = | cos(û,u)| ≥
√

1− 4‖G‖2
β4

≥ 1− 4‖G‖2
β4

,

if β2 ≥ 2‖G‖.
It follows from Lemma 3 (shown below) that

‖G‖ ≤
{

2C̄σ2
√
mn, if β/σ <

√
m,

2C̄βσ
√
n, otherwise,

where C̄ is a universal constant with probability at least 1− 4e−n.

Now consider the first case (β/σ <
√
m) and assume β2 ≥ 4C̄σ2

√
mn ≥ 2‖G‖. Note that this

case only arises when
√
m ≥ 4C̄

√
n. Denoting C = 16C̄2, we obtain the first case in the theorem.

Next, consider the second case (β/σ ≥ √m). If
√
m ≥ 4C̄

√
n as above, we have β/σ ≥ 4C̄

√
n,

which implies β2 ≥ 2‖G‖ and we obtain the second case in the theorem. On the other hand, if√
m < 4C̄

√
n, we require β/σ ≥ 4C̄

√
n to obtain the last case in the theorem.

Lemma 3. Let G be constructed as in Theorem 1. If m ≥ n, there exists an universal constant C̄
such that

‖G‖ ≤ C̄σ2
(√

mn+
√
n(β/σ)2

)
,

with probability at least 1− 4e−n.

Proof. The proof is an ε-net argument. Let

λ = 2σ2
(√

4mn+ 4n+
√

8n(β/σ)2
)
.

The goal is to control |x>Gx| for all the vectors x on the unit Euclidean sphere Sn−1. In order to
do this, we first bound the probability of the tail event |x>Gx| > λ, for any fixed x ∈ Sn−1. Then
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we bound the probability that |x>Gx| > λ for all the vectors in a ε-net Nε. Finally, we establish
the connection between supx∈Nε

|x>Gx| and ‖G‖.
To bound P(|x>Gx| > λ) for a fix x ∈ Sn−1, we expand x>Gx as

x>Gx = σ2(‖z‖2 −m) + 2βσ(u>x)γ,

where z = E>x and γ = v>z. Since z ∼ N (0, I), we can see that ‖z‖2 is χ2 distributed with m
degrees of freedom and γ ∼ N (0, 1).

First we bound the deviation of the χ2 term. By the corollary of Lemma 1 in [17], we have
P(
∣∣‖z‖2 −m

∣∣ > λ1) ≤ 2e−4n, (13)

where λ1 = 2(
√

4mn+ 4n).

Next we bound the deviation of the Gaussian term. Using the Gaussian tail inequality, we have
P (|γ| > λ2) ≤ 2e−4n, (14)

where λ2 =
√

8n.

Combining inequalities (22) and (14), we have

P(|x>Gx| > λ)

≤ P
(
σ2
∣∣‖z‖2 −m

∣∣+ |2βσ(u>x)γ| > σ2λ1 + 2βσλ2
)

≤ P
(∣∣‖z‖2 −m

∣∣ > λ1 ∨ |γ| > λ2
)

≤ P
(∣∣‖z‖2 −m

∣∣ > λ1
)

+ P (|γ| > λ2)

≤ 4e−4n,

where the second to last line follows from the union bound.

Furthermore, using Lemma 5.2 and 5.4 of [27], for any ε ∈ [0, 1), it holds that
|Nε| ≤ (1 + 2/ε)n,

and
‖G‖ ≤ (1− 2ε)−1 sup

x∈Nε

|x>Gx|.

Taking the union bound over all the vectors in N1/4, we obtain

P

(
sup

x∈N1/4

|x>Gx| > λ

)
≤ |N1/4|4e−4n < 4e−n.

Finally, the statement is obtained by noticing that n ≤ m. �
We prove a more general version of the theorem that allows the signal part to be rankR in Appendix
E.

D.2 Proof of Lemma 1

Proof. By definition,

|||Y|||s∗ = sup
{M(k)}Kk=1

〈Y,
K∑

k=1

foldk(M (k)S(k)>)〉

s.t.
K∑

k=1

‖M (k)‖∗ ≤ 1

= sup
{M(k)}Kk=1

K∑

k=1

〈Y (k)S
(k),M (k)〉

s.t.
K∑

k=1

‖M (k)‖∗ ≤ 1

= max
k
‖Y (k)S

(k)‖,
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where we used the Hölder inequality in the last line.

D.3 Proof of Theorem 2

First we decompose the error as

|||X ∗ − X̂ |||F ≤ |||X ∗ −Xp|||F + |||Xp − X̂ |||F .
The first term is an approximation error that depends on the choice of the subspace S(k). The second
term corresponds to an estimation error and we analyze the second term below.

Since X̂ is the minimizer of (10) and Xp is feasible,

1

2
|||Y − X̂ |||2F + λ

K∑

k=1

‖M̂ (k)‖∗ ≤
1

2
|||Y − Xp|||2F + λ

K∑

k=1

‖M (k)
p ‖∗,

from which we have

1

2
|||Xp − X̂ |||2F ≤ |||Y − Xp|||s∗ |||Xp − X̂ |||s + λ

K∑

k=1

(
‖M (k)

p ‖∗ − ‖M̂
(k)‖∗

)
. (15)

Next we define ∆k := M̂
(k) −M (k)

p ∈ Rnk×HK−1

and define its orthogonal decomposition
∆k = ∆′k + ∆′′k as

∆′′k := (Ink
− PUp)∆k(IHK−1 − P Vp

),

where PUp
and P Vp

are projection matrices to the column and row spaces of M (k)
p , respectively,

and ∆′k := ∆k −∆′′k .

The above definition allows us to decompose ‖M̂ (k)‖∗ as follows:

‖M̂ (k)‖∗ = ‖M (k)
p + ∆′′k + ∆′k‖∗

≥ ‖M (k)
p ‖∗ + ‖∆′′k‖∗ − ‖∆′k‖∗. (16)

Moreover,

|||Xp − X̂ |||s ≤
K∑

k=1

‖∆k‖∗ ≤
K∑

k=1

(
‖∆′k‖∗ + ‖∆′′k‖∗

)
(17)

Combining inequalities (15)–(17), we have

1

2
|||Xp − X̂ |||2F ≤ (|||Y − Xp|||s∗ + λ)

K∑

k=1

‖∆′k‖∗ + (|||Y − Xp|||s∗ − λ)

K∑

k=1

‖∆′′k‖∗. (18)

Since
|||Y − Xp|||s∗ ≤ σ|||E|||s∗ + |||X ∗ −Xp|||s∗ ,

if λ ≥ σ|||E|||s∗ + |||X ∗ − Xp|||s∗ , the second term in the right-hand side of inequality (18) can be
ignored and we have

1

2
|||Xp − X̂ |||2F ≤ 2λ

K∑

k=1

‖∆′k‖∗

≤ 2λ
K∑

k=1

√
2rk‖∆′k‖F

≤ 2λ
K∑

k=1

√
2rk‖∆k‖F

≤ 2
√

2λ

√√√√
K∑

k=1

rk

√√√√
K∑

k=1

‖∆k‖2F , (19)
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where in the second line we used a simple observation that rank(∆′k) ≤ 2rk.

Next, we relate the norm |||Xp − X̂ |||F to the sum
∑K
k=1 ‖∆k‖2F in the right-hand side of inequality

(19).

First suppose that
∑K
k=1 ‖∆k‖2F ≤ |||Xp − X̂ |||

2
F . Then from inequality (19), we have

|||Xp − X̂ |||F ≤ 4
√

2λ

√√√√
K∑

k=1

rk

by dividing both sides by |||Xp − X̂ |||F .

On the other hand, if |||Xp − X̂ |||2F ≤
∑K
k=1 ‖∆k‖2F , we use the following lemma

Lemma 4. Suppose {M (k)
p }Kk=1, {M̂

(k)}Kk=1 ∈ M(ρ), and S(k) is constructed as a Kro-

necker product of K − 1 ortho-normal matrices P̂
(`)

as S(k) = P̂
(k−1) ⊗ · · · ⊗ P̂ (k+1)

,

where (P̂
(`)

)>P̂
(`)

= IH for ` = 1, . . . ,K. Then for Xp =
∑K
k=1 foldk

(
M (k)

p S(k)>
)

and

X̂ =
∑K
k=1 foldk

(
M̂

(k)
S(k)>

)
, the following inequality holds:

1

2

K∑

k=1

‖∆k‖2F ≤
1

2
|||Xp − X̂ |||2F + ρmax

k
(
√
nk +

√
HK−1)

K∑

k=1

‖∆k‖∗. (20)

Proof. The proof is presented in Section D.5.

Combining inequalities (18) and (20), we have

1

2

K∑

k=1

‖∆k‖2F ≤
(
|||Y − Xp|||s∗ + ρmax

k
(
√
nk +

√
HK−1) + λ

) K∑

k=1

‖∆′k‖∗

+

(
|||Y − Xp|||s∗ + ρmax

k
(
√
nk +

√
HK−1)− λ

) K∑

k=1

‖∆′′k‖∗.

Thus if we take λ ≥ σ|||E|||s∗ + |||X ∗ − Xp|||s∗ + ρmaxk(
√
nk +

√
HK−1), the second term in the

right-hand side can be ignored and following the derivation leading to inequality (19) and dividing

both sides by
√∑K

k=1 ‖∆k‖2F , we have

|||Xp − X̂ |||F ≤

√√√√
K∑

k=1

‖∆k‖2F ≤ 4
√

2λ

√√√√
K∑

k=1

rk,

where the first inequality follows from the assumption.

The final step of the proof is to bound the norm |||E|||s∗ with sufficiently high probability. By Lemma
1,

|||E|||s∗ = max
k
‖E(k)S

(k)‖.

Therefore, taking the union bound, we have

P
(

max
k
‖E(k)S

(k)‖ ≥ t
)
≤

K∑

k=1

P
(
‖E(k)S

(k)‖ ≥ t
)
. (21)

Now since each E(k)S
(k) ∈ Rnk×HK−1

is a random matrix with i.i.d. standard Gaussian entries,

P
(
‖E(k)S

(k)‖ ≥ √nk +
√
HK−1 + t

)
≤ exp(−t2/(2σ2)).
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Therefore, choosing t = maxk(
√
nk +

√
HK−1) +

√
2 log(K/δ) in inequality (21), we have

max
k
‖E(k)S

(k)‖ ≤ max
k

(
√
nk +

√
HK−1) +

√
2 log(K/δ),

with probability at least 1 − δ. Plugging this into the condition for the regularization parameter λ,
we obtain what we wanted.

D.4 Proof of Lemma 2

Proof. i) Let ⊗k′∈[K]\kU
(k′) denote U (1) ⊗ · · · ⊗U (k−1) ⊗U (k+1) ⊗ · · · ⊗U (K). We have

X∗(k) = U (k)C(k)

(
⊗k′∈[K]\kU

(k′)
)>

= U (k)C(k)

(
⊗k′∈[K]\k(U (k′))>

)

= P (k)Λ(k)(Q(k))>.

Because of the minimality of the Tucker decomposition (5), X∗(k), C(k) and U (k) are all of

rank R, for all k ∈ [K]. Therefore, both C(k) and ⊗k′∈[K]\k(U (k′))> have full row rank.

Hence, C(k) has a Moore-Penrose pseudo inverse C†(k) such that C(k)C
†
(k) = I , and so does

⊗k′∈[K]\k(U (k′))>. As a result, we have

U (k) = P (k)Λ(k)(Q(k))>
(
⊗k′∈[K]\k(U (k′))>

)†
C†(k).

ii) Similarly, we have

Q(k)Λ(k)(P (k))> =
(
⊗k′∈[K]\kU

(k′)
)
C>(k)(U

(k))>.

By the definition of SVD, Λ is invertible and (P (k))>P (k) = I . Hence,

Q(k) =
(
⊗k′∈[K]\kU

(k′)
)
C>(k)(U

(k))>P (k)(Λ(k))−1.

This means Q(k) ∈ span
(
⊗k′∈[K]\kU

(k′)
)

and we then conclude Q(k) ∈
span

(
⊗k′∈[K]\kP

(k′)
)

using (i).
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D.5 Proof of Lemma 4

Expanding Xp and X̂ , we have

|||Xp − X̂ |||2F = |||∑K
k=1 foldk

(
∆kS

(k)>)|||2F

=
K∑

k=1

‖∆k‖2F +
∑

k 6=`
〈foldk(∆kS

(k)>), fold`(∆`S
(`)>)〉

=
K∑

k=1

‖∆k‖2F +
∑

k 6=`
〈foldk(∆k)×k′ 6=k P̂

(k′)
, fold`(∆`)×`′ 6=` P̂

(`′)〉

=

K∑

k=1

‖∆k‖2F +
∑

k 6=`
〈foldk(∆k)×` P̂

(`)
, fold`(∆`)×k P̂

(k)〉

=
K∑

k=1

‖∆k‖2F −
∑

k 6=`
〈∆k(IH ⊗ · · · ⊗ P̂

(`) ⊗ · · · ⊗ IH)>, P̂
(k)

(fold`(∆`))(k)〉

≥
K∑

k=1

‖∆k‖2F −
∑

k 6=`
‖∆k‖∗ · ‖(fold`(∆`))(k)‖

≥
K∑

k=1

‖∆k‖2F − 2ρmax
k

(
√
nk +

√
HK−1)

K∑

k=1

‖∆k‖∗,

from which the lemma holds. Here we regarded foldk(∆kS
(k)) as a Tucker decomposition with

the core tensor foldk(∆k) and factor matrices P̂
(k′)

for k′ 6= k. Most of the factors except for
k and ` cancel out when calculating the inner product between two such tensors in the third line,

because (P̂
(k′)

)>P̂
(k′)

= IH . After unfolding the inner product at the kth mode in the fifth line,
we notice that a multiplication by an ortho-normal matrix does not affect the nuclear norm or the
spectral norm. In the last line we used {∆k}Kk=1 ∈M(2ρ), which follows from the assumption that

both {M (k)
p }Kk=1, {M̂

(k)}Kk=1 ∈M(ρ).
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E Generalization of Theorem 1 to the higher rank case

Theorem 4. Suppose that X =
∑R
r=1 βrurv

>
r , where u1, . . . ,uR ∈ Rn and v1, . . . ,vR ∈ Rm

are unit orthogonal vectors respectively. Let X̃ = X + σE be the noisy observation of X . There
exists an universal constant C such that with probability at least 1− 3e−n, if m/n ≥ C(β1/βR)4,
then

| cos(Û ,U)| ≥





1− Cmn

(βR/σ)4
, if

β1√
m
< σ ≤ βR

(Cmn)
1
4

,

1− Cn(β1/βR)2

(βR/σ)2
, if σ ≤ β1√

m
,

otherwise, | cos(Û ,U)| ≥ 1− Cn(β1/βR)2

(βR/σ)2
if σ ≤ β2

R/(Cn)
1
2 β1.

Suppose thatX =
∑R
r=1 β

2
rurv

>
r and X̃ = X + σE. We consider the second moment of X̃:

X̃X̃
>

=

R∑

r=1

β2
ruru

>
r + σ

(
R∑

r=1

βr
(
urv

>
r E
> +Evru

>
r

)
)

+ σ2EE>

=

B︷ ︸︸ ︷
R∑

r=1

β2
ruru

>
r +mσ2I +

G︷ ︸︸ ︷

σ2EE> −mσ2I + σ

(
R∑

i=1

βr
(
urv

>
r E
> +Evru

>
r

)
)
.

The eigenvalue decomposition ofB can be written as

B = [U U2]

[
Σ +mσ2I

mσ2I

] [
U>

U>2

]
,

where U ∈ Rn×R and Σ = diag(β2
1 , . . . , β

2
R). Similarly, the eigenvalue decomposition of X̃X̃

>

can be written as

X̃X̃
>

= [Û Û2]

[
Σ̂

Σ̂′

] [
Û
>

Û
>
2

]
,

where Σ̂ = diag(λ̂1, . . . , λ̂R) and Σ̂′ = diag(λ̂R+1, . . . , λ̂n) s.t. λ̂1 ≥ · · · ≥ λ̂n are the eigenvalues
of X̃X̃

T
.

We first show a deterministic lower bound for | sin(Û ,U)| assuming β2
R ≥ 2‖G‖. Then we bound

the spectral norm ‖G‖ of the noise term (Lemma 3) and derive the sufficient condition for β2
R.

The maximum singular value of mσ2I is mσ2. The minimum singular value of Σ̂ is |λ̂R|. By
Wely’s theorem, ‖G‖ ≥ |λ̂R − β2

R −mσ2|, which means

λ̂R ≥ mσ2 + β2
R − ‖G‖.

LetR = GÛ . Since β2
R ≥ 2‖G‖, we can apply the Wedin theorem and obtain

| sin(Û ,U)| = ‖U>2 Û‖ ≤
‖R‖

β2
R − ‖G‖

=
‖GÛ‖

β2
R − ‖G‖

≤ ‖G‖
β2
R − ‖G‖

≤ 2‖G‖
β2
R

,

where we used the property that the spectral norm is sub-multiplicative and ‖Û‖ = 1 in the second
to last step.
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Therefore,

| cos(Û ,U)| ≥
√

1− 4‖G‖2
β4
R

≥ 1− 4‖G‖2
β4
R

,

if β2
R ≥ 2‖G‖. It follows from Lemma 5 (shown below) that with probability at least 1− 3e−n

‖G‖ ≤
{

2C̄σ2
√
mn, if β1/σ <

√
m,

2C̄σ
√
nβ1, otherwise,

where C̄ is an universal constant.

Let C = 16C̄2. Now consider the first situation where m/n > C(β1/βR)4. If σ > β1√
m

, we

have ‖G‖ ≤ σ2

2 (Cmn)
1
2 . Meanwhile, if σ ≤ βR

(Cmn)
1
4

, then we have β2
R ≥ σ2(Cmn)

1
2 ≥ 2‖G‖.

Combining these two conditions we obtain the first case in the theorem. When σ ≤ β1√
m

, we can see

that ‖G‖ ≤ σ
2 (Cn)

1
2 β1. Moreover, since m/n > C(β1/βR)4, it is implied that σ ≤ β2

R/(Cn)
1
2 β1

and thus β2
R ≥ 2‖G‖. This gives us the second case.

On the other hand, if m/n ≤ C(β1/βR)4, we require σ ≤ β2
R/(Cn)

1
2 β1 to obtain the last case in

the theorem.
Lemma 5. Let G be constructed as in the proof of Theorem 4. If m ≥ n, there exists an universal
constant C̄ such that

‖G‖ ≤ C̄σ2
(√
mn+

√
nβ1/σ

)
,

with probability at least 1− 3e−n.

Proof. The proof is an ε-net argument. Let

λ = 2σ2

(√
4mn+ 4n+

√
R+ 8n+ 4

√
Rn · β1/σ

)
.

The goal is to control |x>Gx| for all the vectors x on the unit Euclidean sphere Sn−1. In order to
do this, we first bound the probability of the tail event |x>Gx| > λ, for any fixed x ∈ Sn−1. Then
we bound the probability that |x>Gx| > λ for all the vectors in a ε-net Nε. Finally, we establish
the connection between supx∈Nε

|x>Gx| and ‖G‖.
To bound P(|x>Gx| > λ) for a fix x ∈ Sn−1, we expand x>Gx as

x>Gx = σ2(‖z‖2 −m) + 2σ
R∑

r=1

βrγr(u
>
r x),

where z = E>x and γr = v>r z. It is easy to see that γr ∼ N (0, 1), z ∼ N (0, I) and ‖z‖2 is χ2

distributed with m degrees of freedom.

Let γ = [γ1, . . . , γR] and ω = [u>1 x, . . . ,u
>
Rx]. We have

|x>Gx| ≤σ2
∣∣‖z‖2 −m

∣∣+ 2σ

∣∣∣∣
R∑

r=1

βrγr(u
>
r x)

∣∣∣∣

≤σ2
∣∣‖z‖2 −m

∣∣+ 2σ
R∑

r=1

max
r∈[R]

|βr| · |γr| · |u>r x|

≤σ2
∣∣‖z‖2 −m

∣∣+ 2σβ1 · ‖γ‖ · ‖ω‖
≤σ2

∣∣‖z‖2 −m
∣∣+ 2σβ1 · ‖γ‖,

where we used the Cauchy-Schwarz inequality in the second to last line and the fact ‖ω‖ ≤ 1 in the
last line. Note that γ1, . . . , γR are i.i.d standard Gaussian distributed so that ‖γ‖2 is χ2 distributed
with R degrees.

First we bound the deviation of the χ2
m term. By the corollary of Lemma 1 in [17], we have

P(
∣∣‖z‖2 −m

∣∣ > λ1) ≤ 2e−4n, (22)
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where λ1 = 2(
√

4mn+ 4n).

Next we bound the χ2
R term. Similarly, we have

P(‖γ‖2 −R > λ2) ≤ e−4n, (23)

where λ2 = 2(
√

4Rn+ 4n).

Combining inequalities (22) and (23), we have

P(|x>Gx| > λ)

≤ P
(
σ2
∣∣‖z‖2 −m

∣∣+ 2σβ1‖γ‖ > σ2λ1 + 2σβ1
√
R+ λ2

)

≤ P
(∣∣‖z‖2 −m

∣∣ > λ1 ∨ ‖γ‖ >
√
R+ λ2

)

≤ P
(∣∣‖z‖2 −m

∣∣ > λ1
)

+ P
(
‖γ‖ >

√
R+ λ2

)

≤ 3e−4n,

where the second to last line follows from the union bound.

Furthermore, using Lemma 5.2 and 5.4 of [27], for any ε ∈ [0, 1), it holds that

|Nε| ≤ (1 + 2/ε)n,

and
‖G‖ ≤ (1− 2ε)−1 sup

x∈Nε

|x>Gx|.

Taking the union bound over all the vectors in N1/4, we obtain

P(‖G‖ ≤ 2λ) ≤ P

(
sup

x∈N1/4

|x>Gx| > λ

)
≤ |N1/4|3e−4n < 3e−n.

Finally, the statement is obtained by noticing that n ≤ m and R ≤ n.
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