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A Appendix to Proof of Theorem 1

A.1 Proof of Theorem 5

Statement of Theorem 5:
Let |Ω| > c20w

2
G(ER) log d, for large enough constant c0. There exists a RSC parameter κc0 > 0

with κc0 ≈ 1 − o
�

1√
log d

�
, and a constant c1 such that, the following holds w.p. greater that

1− exp(−c1w
2
G(ER)),

∀X ∈ TR ∩ A(βc0),
d1d2
|Ω| �PΩ(X)�22 ≥ κc0�X�2F .

Proof: Recall that TR = {Δ : R(Θ∗ + Δ) ≤ R(Θ∗) and ER = TR ∩ Sd1d2−1. Using the
properties of norms, it can be easily verified that for the non–trivial case of Θ∗ �= 0, TR is a cone
with non–empty interior.

We use Theorem 2 as a key result in this proof.
Define ĒR = TR ∩ Bd1d2 .
ĒR is a compact subset of TR with non–empty interior, which satisfies the conditions of Theorem 2.
Also, since TR ∩ A(βc0) is a cone, the following can be easily verified:

wΩ,g(ĒR ∩ A(βc0)) = wΩ,g(ER ∩ A(βc0))

wG(ĒR ∩ A(βc0)) = wG(ER ∩ A(βc0)) ≤ wG(ER)
(19)

We define a random variable V (Ω) = supX∈ER∩A(βc0 )

���d1d2

|Ω| �PΩ(X)�22 − 1
���.

Note that: Ed1d2

|Ω| �PΩ(X)�2 = 1; and

for X ∈ A(βc0), �X�∞ ≤ βc0√
d2d2

.

A.1.1 Expectation of V (Ω)

Recall that Ω = {Ek : s = 1, 2, . . . |Ω|} are sampled uniformly form standard basis for Rd1×d2 ,
(�k) are a sequence of independent Rademacher variables, and wG(.) denotes the Gaussian width.
For constant k1, k2, k3 not necessarily same in each occurrence:

EV (Ω)
(a)

≤ 2d1d2
|Ω| E sup

X∈ER∩A(βc0
)

���
|Ω|�

k=1

�X,Ek�2�k
���
(b)

≤ k1βc0

√
d1d2
|Ω| E sup

X∈ER∩A(βc0
)

���
|Ω|�

k=1

�X,Ek��k
���

= k1βc0

√
d1d2
|Ω| wΩ,�(ĒR ∩ A(βc0))

(c)

≤ k1

�
β2
c0w

2
G(ER)

|Ω| + k2
β2
c0

|Ω| ≤
k3

c0
√
log d

, (20)

where (a) follows from symmetrization (Lemma 18), (b) from contraction principle as
φk(�X,Ek�) = �X,Ek�2

2 supX∈ER∩A(βc0
) �X�∞

is a contraction (Lemma19), and (c) follows from Theo-

rem 2.
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A.1.2 Concentration about EV (Ω)

Let Ω� ⊂ [m]× [n] be another set of indices that differ from Ω in exactly one element. We have:

V (Ω)− V (Ω�) = sup
X∈ER∩A(βc0 )

���d1d2|Ω|
�

ij∈Ω

X2
ij − 1

���− sup
X∈ER∩A(βc0 )

���d1d2|Ω|
�

kl∈Ω�

X2
kl − 1

���

≤ d1d2
|Ω| sup

X∈ER∩A(βc0
)



���
�

ij∈Ω

X2
ij −

�

kl∈Ω�

X2
kl

���




≤ 2d1d2
|Ω| sup

X∈ER∩A(βc0
)

�X�2∞ ≤ 2β2
c0

|Ω| . (21)

By similar arguments on V (Ω�)− V (Ω), |V (Ω)− V (Ω�)| ≤ 2β2
c0

|Ω| . Therefore, using Mc Diarmid’s

inequality (34), we have P (V (Ω) > EV (Ω) + δ) ≤ exp
�
−c�1

δ2|Ω|
β4
c0

�
. Using δ = 1

c0
√
log d

, we have

P

�
V (Ω) >

k�3
c0
√
log d

�
≤ exp

�
− c1w

2
G(ER)

�
,

where c0 is a constant that can be chosen independent of k3. Choosing c0 large enough, we can set
κc0 := 1− δc0 = 1− k�

3

c0
√
log d

close to 1. �

A.2 Proof of Lemma 6

Recall that η ∈ R|Ω| is a vector of centered, unit variance sub-Gaussian random variables with
�ηk�Ψ2 ≤ b. Combining Lemma 25 and Lemma 26, we have that η2k and η2k−1 are sub–exponential
with �η2k−1�Ψ1 ≤ 2�η2k�Ψ1 ≤ 4�ηk�Ψ2 ≤ 4b2. Thus, using Lemma 24, for a constant c�2, we have:

P
���� 1

|Ω|

|Ω|�

k=1

η2k − 1
��� > τ

�
≤ 2 exp

�
− c�2|Ω|min

� τ2

16b4
,
τ

4b2
��

. (22)

Choosing τ to be an appropriate constant, we have �PΩ(Θ
∗)− y)�2 ≤ 2ξ

�
|Ω| ≤ λcn w.p. greater

than 1− exp(−c2τ |Ω|), and the lemma follows from the optimality of �Θcn and triangle inequality.

B Appendix to Proof of Theorem 2

B.1 Results from Generic Chaining

In this section, K denotes a universal constant, not necessarily the same at each occurrence.
Definition 7 (Gamma Functional (Definition 2.2.19 in [33])). Given a complete pseudometric space
(T, d), an admissible sequence is an increasing sequence (An) of partitions of T such that |A0| = 1
and |An| ≤ 22

n

for n ≥ 1. For α > 0, we define the Gamma functional γα(T, d) as follows:

γα(T, d) = inf
(An)n≥0

sup
t∈T

�

n≥0

2n/αΔd(An(t)), (23)

where inf is over all admissible sequences (An), An(t) is the unique element of An that contains t,
and Δd(A) is the diameter of the set A measured in metric d.
Lemma 10 (Majorizing Measures Theorem (Theorem 2.4.1 in [33])). Given a closed set T in a
metric space, let (Xt)t∈T be a centered Gaussian process indexed by t ∈ T , i.e. (Xt) are jointly
Gaussian. For s, t ∈ T , let dX(s, t) :=

�
E(Xs −Xt)2 denote the canonical pseudometric associ-

ated with (Xt). We then have :

1

K
γ2(T, dX) ≤ E sup

t∈T
Xt ≤ Lγ2(T, dX).
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In particular, considering the canonical Gaussian process (
�

i tigi)t∈T , we have:

1

K
γ2(T, �.�F ) ≤ wG(T ) ≤ Kγ2(T, �.�F ).

Lemma 11 (Theorem 2.4.12 in [33]). Let (Xt)t∈T be a centered Gaussian process with canonical
distance dX =

�
E(Xs −Xt)2. Let (Yt)t∈T be another centered process indexed by the same set

T , such that it satisfies the following condition:

∀s, t ∈ T, u > 0, P(|Ys − Yt| > u) ≤ 2 exp
�
− u2

2d2X(s, t)

�
,

then, we have E sups,t∈T |Ys − Yt| ≤ KE supt∈T Xt.

If further, (Yt)t∈T is symmetric, then E supt |Yt| ≤ E sups,t∈T |Ys − Yt| = 2E supt∈T Yt.

Note that from the properties of sub–Gaussian random variables, the above lemma can be directly
bound canonical sub–Gaussian complexity measures using canonical Gaussian complexities.

Lemma 12 (Theorem 3.1.4 in [33]). Let T be a compact group with non–empty interior. Con-
sider a translation invariant random distance dω , that depends on a random parameter ω and let
d(s, t) =

�
Ed2ω(s, t), then :

�
Eγ2

2(T, dω)
�1/2 ≤ Kγ2(T, d) +K

�
E sup

s,t∈T
d2ω(s, t)

�1/2

B.2 Proof of Lemma 8

Statement of Lemma 8
For a compact subset S ⊆ Rd1×d2 with non–empty interior, ∃ constants k1, k2 such that:

wΩ,g(S) = E sup
X∈S

XΩ,g(X) ≤ k1

�
|Ω|
d1d2

wG(S) + k2

�
E sup

X,Y ∈S
�PΩ(X − Y )�22. �

Proof: Recall definition of (XΩ,g(X))X∈S from (18), such that XΩ,g(X) =
�

k�X,Ek�gk.

By Fubini’s theorem EΩ,g supX∈S XΩ,g(X) = EΩEg supX∈S XΩ,g(X).

Also, we have the following results:

• For a fixed Ω, (XΩ,g(X)) is a Gaussian process with a translation invariant canonical dis-
tance given by dΩ(X,Y ) = �PΩ(X − Y )�22.

• d(X,Y ) :=
�
EΩd2Ω(X,Y ) =

�
|Ω|
d1d2

�X − Y �F
Using Lemma 10 we have: Eg supX∈S XΩ,g(X) ≤ Kγ2(S, dΩ), and the following holds:

wΩ,g(S) = EΩEg sup
X∈S

XΩ,g(X) ≤ KEΩγ2(S, dΩ)
(a)

≤
�
EΩγ2

2(S, dΩ)

(b)

≤ K

�
|Ω|
d1d2

γ2(S, �.�F ) +K
�
E sup

X,Y ∈S
�PΩ(X − Y )�22, (24)

where (a) follows from Jensen’s inequality, (b) from Lemma 12 and noting that by definition ∀M >

0, γ2(T,Mḋ) = Mγ2(T, d). Lemma 8 now follows from (24) and Lemma 10. �

B.3 Proof of Lemma 9

Statement of Lemma 9
There exists constants k3, k4, such that for compact S ⊆ Bd1d2 with non–empty interior

E sup
X,Y ∈S

�PΩ(X − Y )�22 ≤ k3
|Ω|
d1d2

w2
G(S) + k4 sup

X,Y ∈S
�X − Y �∞wΩ,g(S)
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Proof: Using triangle inequality, we have:

E sup
X,Y ∈S

�PΩ(X−Y )�22 ≤ E sup
X,Y ∈S

|�PΩ(X−Y )�22−E�PΩ(X−Y )�22|+ sup
X,Y ∈S

E�PΩ(X−Y )�22
(25)

Further,

sup
X,Y ∈S

E�PΩ(X − Y )�22 =
|Ω|
d1d2

sup
X,Y

�X − Y �2F ≤ |Ω|
d1d2

γ2
2(S, �.�F )2, (26)

where the last inequality follows from the definition of γα.

Finally, we have the following set of equations:

E sup
X,Y ∈S

���PΩ(X − Y )�22 − E[�PΩ(X − Y )�22]
�� = E sup

X,Y ∈S

��
|Ω|�

k=1

�X − Y,Ek�2 − E�X − Y,Ek�2
��

(a)

≤ 2EΩ,(�s) sup
X,Y ∈S

|
|Ω|�

k=1

�X − Y,Ek�2�k|
(b)

≤ k�4 sup
X∈S

�X − Y �∞EΩ,g sup
X,Y ∈S

|
|Ω|�

k=1

�X − Y,Ek�gk|

(c)

≤ 2k�4 sup
X,Y ∈S

�X − Y �∞EΩ,g sup
X∈S

|
|Ω|�

k=1

�X,Ek�gk|
(d)

≤ 4k�4 sup
X,Y ∈S

�X − Y �∞wΩ,g(S), (27)

where (�k) are standard Rademacher variables, i.e. �k ∈ {−1, 1} with equal probability, (a) follows
from symmetrization argument (Lemma 18), (b) follows from contraction principles Lemma 19 and
using φ(�X,Ek�) = �X,Ek�2

2 supX∈S �X�∞
as a contraction, (c) follows from triangle inequality, and (d)

follows from gk being symmetric (Lemma 2.2.1 in [33]). �
The lemma follows by combining Lemma 10 and equations (25), (26), and (27).

B.4 Remaining Steps in the Proof of Theorem 2

From Lemma9, we have the following:

�
E sup

X,Y ∈S
�PΩ(X − Y )�22

(a)

≤ K3

�
|Ω|
d1d2

wG(S) +
�
k4( sup

X,Y ∈S
�X − Y �∞)wΩ,g(S)

(b)

≤ K3

�
|Ω|
d1d2

wG(S) +K4( sup
X,Y ∈S

�X − Y �∞) +
1

2
wΩ,g(S), (28)

where (a) follows from triangle inequality, (b) using
√
ab ≤ a/2 + b/2.

Bound on wΩ,g(S) in Theorem 2 follows by using (28) in Lemma 8.

C Spectral k–Support Norm

Recall the following definition of spectral k–support norm �Θ�k–sp from (8):

�Θ�k–sp = inf
v∈V(Gk)

� �

g∈Gk

�vg�2 :
�

g∈Gk

vg = σ(Θ)
�
, (29)

where Gk = {g ⊆ [d̄] : |g| ≤ k} is the set of all subsets [d̄] of cardinality at most k, and V(Gk) =
{(vg)g∈Gk

: vg ∈ Rd1 , supp(vg) ⊆ g}.

Proposition 13 (Proposition 2.1 in [2]). For Θ ∈ Rd̄×d̄ with singular values σ(Θ) =
{σ1,σ2, . . . ,σd̄}, such that σ1 ≥ σ2 ≥ . . . ,≥ σd̄. Then,

�Θ�k–sp =

�
k−r−1�

i=1

σ2
i +

1

r + 1

�
d̄�

i=k−r

σi

�2� 1
2

, (30)

where r∈{0, 1, 2, . . . , k−1} is the unique integer satisfying σk−r−1 > 1
r+1

�d1

i=k−r σi ≥ σk−r.�

13



C.1 Proof of Lemma 3

Statement of Lemma 3
If rank of Θ∗ is s and ER is the error set from R(Θ) = �Θ�k–sp, then

w2
G(ER) ≤ s(2d̄− s) +

� (r + 1)2�σ∗
I2
�22

�σ∗
I1
�21

+ |I1|
�
(2d̄− s).

�
Proof We state the following lemmas from existing work.
Lemma 14 (Equation 60 in [29]). Let z be an s ≥ k sparse vector in Rp, and let z̃ is the vector
z sorted in non increasing order of |zi|. Denote r ∈ {0, 1, 2, . . . , k − 1} to be the unique integer
satisfying

|z̃k−r−1| >
1

r + 1

p�

i=k−r

|z̃i| ≥ |z̃k−r|.

Define I2 = {1, 2, . . . , k−r−1}, I1 = {k−r, k−r+1, . . . , s}, and I0 = {s+1, s+2, . . . , p}; and
let z̃I denote the vector z̃ restricted to indices in I . Then the sub–differential of the vector k–support
norm denoted by �.�vk-sp at w is given by:

∂�z�vk-sp =
1

�z�vk-sp

�
z̃I2 +

1

r + 1
�z̃I1�1(sign(z̃I1) + hI0) : �h�∞ ≤ 1

�
,

Lemma 15 (Theorem 2 in [38]). Let R : Rd1×d2 → R+ be an orthogonally invariant norm;
i.e. R(X) = φ(σ(X)) such that φ : Rd1 → R+ is a symmetric gauge function satisfying:
(a) φ(x) > 0 ∀x �= 0, (b) φ(αx) = |α|φ(x), (c) φ(x+ y) ≤ φ(x) + φ(y), and (d) φ(x) = φ(|x|).
Further let ∂φ(x) denote the sub–differential of φ at x. Then for X ∈ Rd̄×d̄ with singular value
decomposition (SVD) X = UXΣXV �

X and σX = diag(ΣX), the sub–differential of R(X) is given
by:

∂R(X) = {UXDV �
X : D = diag(d), and d ∈ ∂Φ(σX)}.

Since spectral k–support norm of a matrix X = UXΣXV �
X is the vector k–support norm applied to

the singular values σX = diag(ΣX), Lemma 14 and 15 can be used to infer the following:

∂�X�k–sp=
�
UXDV �

X : diag(D) ∈ 1

�σX�vk-sp

�
σXI2

+
�σXI1

�1
r + 1

(1I1 + hI0) : �h�∞ ≤ 1
��

.

(31)
where 1 ∈ Rd̄ denotes a vector of all ones.

The error cone for R(.) = �.�k–sp is given by the tangent cone:

TR = cone{Δ : �Θ∗ +Δ�k–sp ≤ �Θ∗�k–sp},
and the polar of the tangent cone – the normal cone is given by

T ∗
R = NR(Θ∗) = {Y : �Y,X� ≤ 0 ∀X ∈ TR} = cone(∂R(Θ∗))

Let Θ∗ = U∗Σ∗V ∗� be the full SVD of Θ∗, such that σ∗ = diag(Σ∗) ∈ Rd̄ and σ∗
1 ≥ σ∗

2 . . . ≥ σ∗
d̄
.

Let u∗
i and v∗i for i ∈ [d̄] denote the ith column of U∗ and V ∗, respectively. Further, let the rank of

Θ∗ be rk(Θ∗) = �σ∗�0 = s.

Like for the vector case, denote r ∈ {0, 1, 2, . . . , k−1} to be the unique integer satisfying σ∗
k−r−1 >

1

r + 1

p�

i=k−r

σ∗
i ≥ σ∗

k−r. Define I2 = {1, 2, . . . , k − r − 1}, I1 = {k − r, k − r + 1, . . . , s}, and

I0 = {s+ 1, s+ 2, . . . , p}; Also define the subspace:

T = span{u∗
i x

� : i ∈ I2 ∪ I1, x ∈ Rd̄} ∪ span{yv∗�i : i ∈ I2 ∪ I1, y ∈ Rd̄}
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Let T⊥ be the subspace orthogonal to T and let PT and PT⊥ be the projection operators onto T and
T�, respectively. From (31) we have,

NR(Θ∗) =

�
Y = U∗DV ∗� : D = diag

�
t
r + 1

�σ∗
I1
�1

σ∗
I2 + t1I1 + thI0

�
: t ≥ 0, �h�∞ ≤ 1

�
,

Finally, from Lemma 21, we have that

w2
G(TR ∩ Sd̄d̄−1) ≤ EG inf

X∈NR(Θ∗)
�G−X�2F

≤ EG inf
t>0

�h�∞≤1

���PT (G)− t
r + 1

�σ∗
I1
�1

�

i∈I2

σ∗
i u

∗
i v

∗�
i + t

�

i∈I1

u∗
i v

∗�
i + PT⊥(G)− t

�

i∈I0

hiu
∗
i v

∗�
i

���
2

F

Let PT⊥(G) =
�

i∈I0
σi(PT⊥G)u∗

i v
∗�
i be the decomposition of P⊥

T (G) in the basis
of of {u∗

i v
∗�
i }i∈I0 . Taking t = �PT⊥(G)�op = maxi∈I0 σi(PT⊥(G)), and hi =

σi(PT⊥(G))/�PT⊥(G)�op ≤ 1, we have:

w2
G(TR ∩ Sd̄d̄−1) ≤ EG�PT (G)�2F +

�
(r + 1)2�σ∗

I2
�22

�σ∗
I1
�21

+ |I1|
�
EG�PT (G)�22. (32)

Lemma 3 follows by using EG�PT (G)�2F = s(2d̄− s) and EG�PT (G)�2op ≤ 2(2d̄− s) from [10].

D Preliminaries

D.1 Probability and Concentration

Lemma 16 (Bernstein’s Inequality (moment version)). Let Xi, i = 1, 2, . . . , N be independent zero
mean random variables. Further, let σ2 =

�
i E[X2

i ], and M > 0 be such that the following
moment conditions are satisfied for p ≥ 2,

E[Xp
i ] ≤

p!σ2Mp−2

2

Then the following concentration inequality holds:

P
����

�

i

Xi

��� > u
�
≤ 2 exp

� −u2

2σ2 + 2Mu

�
(33)

Lemma 17 (McDiarmid’s Inequality). Let Xi, i = 1, 2, . . . , N be independent random variables.
Consider a function f : RN → R:

If ∀i, sup
X1,X2,...,XN ,X�

i

|f(X1, X2, . . . , XN )− f(X1, X2, . . . , Xi−1, X
�
i, Xi+1, . . . , XN ) ≤ ci,

then, P(|f(X1, X2, . . . , XN )− Ef(X1, X2, . . . , XN )| > u) ≤ 2 exp
�−2u2

�
i c

2
i

�
(34)

Lemma 18 (Symmetrization (Lemma 6.3 in [23])). Let F : R+ → R+ be a convex function,
and Xi, i = 1, 2, . . . be a sequence of mean zero random variables in a Banach space B, s.t
∀i,EF�Xi� < ∞. Denote a vector of standard Rademacher variables of appropriate dimension as
(�i), then

EF
�1
2
�
�

i

�iXi�
�
≤ EF�

�

i

Xi� ≤ EF
�
2�

�

i

�iXi�
�

(35)

Further, if Xi are not centered, then EF
�
��i Xi − E[Xi]�

�
≤ EF

�
2��i �iXi�

�

Lemma 19 (Contraction Principle). Consider a bounded T ⊂ RN , a standard Gaussian and stan-
dard Rademacher sequence, (gi) ∈ RN and (�i) ∈ RN , respectively. If φi : R → R, i ≤ N are
contractions, i.e. ∀s, t ∈ R, |φi(s) − φi(t)| ≤ |s − t|, and with φi(0) = 0, then for any convex

15



function F : R+ → R+, the following results are from Corollary 3.17, Theorem 4.12, and Lemma
4.5, respectively in [23]:

EF
�1
2
sup
t∈T

���
N�

i=1

giφi(ti)
���
�
≤ EF

�
2 sup

t∈T

���
N�

i=1

giti

���
�

(36)

EF
�1
2
sup
t∈T

���
N�

i=1

�iφi(ti)
���
�
≤ EF

�
2 sup

t∈T

���
N�

i=1

�iti

���
�

(37)

EF
�
�

N�

i=1

�iti�
�
≤ EF

��π

2
�

N�

i=1

giti�
�

(38)

D.2 Gaussian Width

Gaussian width plays a key role high dimensional estimation, and plenty of tools have been de-
veloped for computing Gaussian widths of compact subsets [12, 23, 33, 10]. The existing work is
specially well adapted for computing Gaussian widths for intersection of convex cones with unit
norm balls [10], and recent work of [3] propose a mechanism for exploiting these tools for arbitrary
compact sets. We briefly note some of the key results that aid in computing Gaussian widths. Recall
that Sd1d2−1 is a unit Euclidean sphere in Rd1×d2 . Further, for a cone C ∈ Rd1×d2 , we define the
polar cone as C◦ = {X : �X,Y � ≤ 0, ∀Y ∈ C}.

D.2.1 Direct Estimation

The Gaussian width of a compact set T can be directly estimated as a supremum of Gaussian process
over dense countable subset T̄ of T as wG(T ) = supX∈T̄ �X,G�.
We state the following properties are often used in direct estimation. These properties are consoli-
dated from [33], [10] and [3]. In the following statements, k is a constant not necessarily the same
in each occurrence:

• Translation invariant and homogeneous: for any a ∈ R, wG(S + a) = wG(S); and .

• wG(conv(T )) ≤ wG(T )

• wG(T1 + T2) ≤ wG(T1) + wG(T2)

• If T1 ⊆ T2, then wG(T1) ≤ wG(T2).

• If T1 and T2 are convex, then wG(T1 ∪ T2) + wG(T1 ∩ T2) = wG(T1) + wG(T2)

D.2.2 Dudley’s Inequality and Sudakov Minorization

Definition 8 (Covering Number). Consider a metric d defined on S ⊂ Rd1×d2 . Given � > 0,
the �–covering number of S with respect to d, denoted by N (S, �, d), is the minimum number of
points {X̄1, X̄2, . . . , X̄N (S,�,d)} such that ∀ X ∈ S, there exists i ∈ {1, 2, . . . ,N (S, �, d)} with
d(X, X̄i) ≤ �. The set {X̄1, X̄2, . . . , X̄N (S,�,d)} is called the �–cover of S.
Lemma 20 (Dudley’s Inequality and Sudakov Minoration). If S is compact, then for any � > 0,
there exists a constant c s. t.

c�
�
logN(S, �, �.�F ) ≤ wG(S) ≤ 24

� ∞

0

�
N(S, �, �.�F )d�.

The upper bound is the Dudley’s inequality and lower bound is by Sudakov minoration.

D.2.3 Geometry of Polar Cone

Lemma 21 (Proposition 3.6 and Theorem 3.9 of [10]). If C ⊂ Rd1×d2 is a non–empty convex cone
and C◦ be its polar cone, then:

Distance to polar cone : wG(C ∩ Sd1d2−1) ≤ EG[ inf
X∈C◦

�G−X�F ]
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Volume of polar cone : wG(C ∩ Sd1d2−1) ≤ 3

�
4

vol(C◦ ∩ Sd1d2−1)

D.2.4 Infimum over Translated Cones

Lemma 22 (Lemma 3 of [3]). Let S ⊂ Rd1×d2 , and given X ∈ S, define ρ(X) = supY ∈S �X −
Y �F as the diameter of S measured along X . Also define G(X) = cone(S − X) ∩ ρ(X)Bd1d2 ,
where Bd1d2 is the unit Euclidean ball. Then,

wG(S) ≤ inf
X∈S

wG(G(X))

D.2.5 Generic Chaining

Lemma 10 (from [33]) gives the tightest bounds on the Gaussian width of a set. The definition of γ2
(23) can be used derive tight bounds on the Gaussian width that are optimal upto constants. Further
results and examples on using γ–functionals for Gaussian width computation can be found in the
works of Talagrand [31, 32, 33].

D.3 Sub–Gaussian and Sub–Exponential Random Variables

Recall the definition of sub–Gaussian random variables from Definition 2.
Definition 9 (Sub–Exponential Random Variables). A random variable X is said be sub-exponential
if it satisfies one of the following equivalent conditions for k1, k2, and k3 differing from one other
by constants [Definition 5.13 of [36]].

1. P(|X| > t) ≤ e1−t/k1 , ∀ t > 0,

2. ∀p ≥ 1, (E[|X|p])1/p ≤ k2p, or

3. E[eX/k3 ] ≤ e.

The sub–exponential norm is given by:

�X�Ψ1
= inf

�
t > 0 : E exp

� |X|
t

�
≤ 2

�
= sup

p≥1
p−1(E[|X|p])1/p. (39)

The following results on sub–Gaussian and sub–exponential variables are from [36].
Lemma 23 (Hoeffding–type inequality, Proposition 5.10 in [36]). Let X1, X2, . . . , XN be inde-
pendent centered sub-Gaussian random variables, and let K = maxi �Xi�Ψ2

. Then, ∀a ∈ RN and
t ≥ 0, ∃ constant c s.t.,

P
���

N�

i=1

aiXi

�� ≥ t
�
≤ 2 exp

� −ct2

K2�a�22

�
. (40)

Lemma 24 (Bernstein–type inequality, Proposition 5.16 in [36]). Let X1, X2, . . . , XN be indepen-
dent centered sub-exponential random variables, and let K = maxi �Xi�Ψ1

. Then ∀a ∈ RN , and
t ≥ 0, there exists a constant c s.t.

P
���

N�

i=1

aiXi

�� ≥ t
�
≤ 2 exp

�
− cmin

� t2

K2�a�22
,

t

K�a�∞

��
. (41)

Lemma 25 (Lemma 5.14 in [36]). X is sub–Gaussian if and only if X2 is sub–exponential. Further,
�X�2Ψ2

≤ �X2�Ψ1 ≤ 2�X�2Ψ2
.

Lemma 26 (Remark 5.18 in [36]). If X is sub–Gaussian (or sub–exponential), then so is X−EX .
Further, �X − EX�Ψ2 ≤ 2�X�Ψ2 ; �X − EX�Ψ1 ≤ 2�X�Ψ1 .

E Extension to GLMs

This section provides directions for extending the work to matrix completion under generalized
linear models. This section has not been rigorously formalized. An accurate version will be included
in a longer version of the paper.
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We consider an observation model wherein the observation matrix Y is drawn from a member of
natural exponential family parametrized by a structured ground truth matrix Θ∗, such that:

P (Y |Θ∗) =
�

ij

p(Yij) e
YijΘ

∗
ij−A(Θ∗

ij), (42)

where A : dom(Θij) → R is called the log–partition function and is strictly convex and analytic,
and p(.) is called the base measure. This family of distributions encompass a wide range of common
distributions including Gaussian, Bernoulli, binomial, Poisson, and exponential among others. In a
generalized linear matrix completion setting [16], the task is to estimate Θ∗ from a subset of entries
Ω of Y , i.e. (Ω, PΩ(Y )).

A useful consequence of exponential family distribution assumption for observation matrix is that
the negative log–likelihood loss over the observed entries is convex with respect to the natural pa-
rameter Θ∗, and have a one-to-one correspondence with a rich class of divergence functions called
the Bregman Divergence [15, 4]. The negative log likelihood is proportional to:

LΩ(Θ) =
�

(i,j)∈Ω

A(Θij)− YijΘij

We propose the following regularized matrix estimator for generalized matrix completion:

�Θre = argmin
�Θ�∞≤ α∗√

d1d2

d1d2
|Ω| LΩ(Θ) + λreR(Θ). (43)

Hypothesis 1. Let �Θre = Θ∗ + �Δre. In addition to the assumptions in Section 2, we assume that for
some η ≥ 0, ∇2A(u) ≥ e−η|u|∀ u ∈ R. The following result holds for any fixed γ > 1. We define:

�TR,γ = cone{Δ : R(Θ∗ +Δ) ≤ R(Θ∗) +
1

γ
R(Θ∗)}, and �ER,γ = �TR,γ ∩ Sd1d2−1. (44)

Let λre ≥ γ d1d2

|Ω| R∗(∇LΩ(Θ
∗)), and for some c0, |Ω| >

�
γ+1
γ−1

�2
c20w

2
G(

�ER,γ) log d. There exists a
constant k1 such that for large enough c0, there exists κc0 > 0, such that with high probability,

��Δre�2F ≤4α∗2
�γ + 1

γ − 1

�2
max

�
λ2

reΨ
2
R(�TR,γ)

ζ(η,α∗)κ2
c0

,
c20w

2
G(

�ER,γ) log d

|Ω|

�
,

where ζ(η,α∗) = e
−4ηα∗√

d1d2 , and α∗, wG(.), and ΨR(.) are notations from Section 3.

The conjectures follows by combining the results in this paper along with the results from [3], and
[16]. This result is beyond the scope of this paper and will be dealt with more rigorously in a longer
version of the paper.
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