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Figure 5: Comparison of complete graph Stein discrepancy convergence for P = Unif(0, 1).

A Proof of Proposition 1

Our integrability assumption together with the boundedness of g and rg imply that E
P

[hr, g(Z)i]
and E

P

[hg(Z),r log p(Z)i] exist. Define the `1 ball of radius r, B
r

= {x 2 Rd

: kxk1 
r}. Since X is convex, the intersection X \ B

r

is compact and convex with Lipschitz boundary
@(X \ B

r

). Thus, the divergence theorem (integration by parts) implies that

E
P

[(T
P

g)(Z)] = E
P

[hr, g(Z)i+ hg(Z),r log p(Z)i] =
Z

X
hr, p(z)g(z)i dz

= lim

r!1

Z

X\Br

hr, p(z)g(z)i dz = lim

r!1

Z

@(X\Br)

hg(z), n
r

(z)ip(z) dz

for n
r

the outward unit normal vector to @(X \B
r

). The final quantity in this expression equates to
zero, as hg(x), n(x)i = 0 for all x on the boundary @X , g is bounded, and lim

m!1 p(x
m

) = 0 for
any (x

m

)

1
m=1

with x
m

2 X for all m and kx
m

k1 ! 1.

B Proof of Theorem 2: Stein Discrepancy Lower Bound for Strongly
Log-concave Densities

We let Ck

(X ) denote the set of real-valued functions on X with k continuous derivatives and dMk·k
denote the smooth function distance, the IPM generated by

Mk·k ,
n

h 2 C3

(X )

�

�

�

sup

x2X max

⇣

krh(x)k⇤, ��r2h(x)
�

�

⇤
,
�

�r3h(x)
�

�

⇤⌘  1

o

.

We additionally define the operator norms kvk
op

, kvk
2

for vectors v 2 Rd, kMk
op

,
sup

v2Rd
:kvk2=1

kMvk
2

for matrices M 2 Rd⇥d , and kTk
op

, sup

v2Rd
:kvk2=1

kT [v]k
op

for ten-
sors T 2 Rd⇥d⇥d.

The following result, proved in the companion paper [35], establishes the existence of explicit con-
stants (Stein factors) c

1

, c
2

, c
3

> 0, such that, for any test function h 2 Mk·k, the Stein equation

h(x)� E
P

[h(Z)] = (T
P

g
h

)(x)

has a solution g
h

=

1

2

ru
h

belonging to the non-uniform Stein set Gc1:3

k·k .

Theorem 7 (Stein Factors for Strongly Log-concave Densities [35, Theorem 2.1]). Suppose that
X = Rd and that log p 2 C4

(X ) is k-strongly concave with

sup

z2X

�

�r3

log p(z)
�

�

op

 L
3

and sup

z2X

�

�r4

log p(z)
�

�

op

 L
4

.

For each x 2 X , let (Z
t,x

)

t�0

represent the overdamped Langevin diffusion with infinitestimal
generator

(Au)(x) =
1

2

hru(x),r log p(x)i+ 1

2

hr,ru(x)i (9)
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and initial state Z
0,x

= x. Then, for each h 2 C3

(X ) with bounded first, second, and third
derivatives, the function

u
h

(x) ,
Z 1

0

E
P

[h(Z)]� E[h(Z
t,x

)] dt

solves the the Stein equation
h(x)� E

P

[h(Z)] = (Au
h

)(x) (10)
and satisfies

sup

z2X
kru

h

(z)k
2

 2

k
sup

z2X
krh(z)k

2

,

sup

z2X

�

�r2u
h

(z)
�

�

op

 2L
3

k2
sup

z2X
krh(z)k

2

+

1

k
sup

z2X

�

�r2h(z)
�

�

op

, and

sup

z,y2X ,z 6=y

�

�r2u
h

(z)�r2u
h

(y)
�

�

op

kz � yk
2

 6L2

3

k3
sup

z2X
krh(z)k

2

+

L
4

k2
sup

z2X
krh(z)k

2

+

3L
3

k2
sup

z2X

�

�r2h(z)
�

�

op

+

2

3k
sup

z2X

�

�r3h(z)
�

�

op

.

Hence, by the equivalence of non-uniform Stein discrepancies (Proposition 4), dMk·k(µ, P ) 
S(µ, T

P

,Gc1:3

k·k )  max(c
1

, c
2

, c
3

)S(µ, T
P

,Gk·k) for any probability measure µ.

The desired result now follows from Lemma 8, which implies that the Wasserstein distance
dWk·k(µm

, P ) ! 0 whenever dMk·k(µm

, P ) ! 0 for a sequence of probability measures (µ
m

)

m�1

.

Lemma 8 (Smooth-Wasserstein Inequality). If µ and ⌫ are probability measures on Rd, and kvk �
kvk

2

for all v 2 Rd, then

dMk·k(µ, ⌫)  dWk·k(µ, ⌫)  3max

✓

dMk·k(µ, ⌫),
3

q

dMk·k(µ, ⌫)
p
2E[kGk]2

◆

.

for G a standard normal random vector in Rd.

Lemma 2.2 of the companion paper [35] establishes this result for the case k·k = k·k
2

; we omit the
proof of the generalization which closely mirrors that of the Euclidean norm case.

C Proof of Proposition 3: Stein Discrepancy Upper Bound

Fix any g in Gk·k . By Proposition 1, E[(T
P

g)(Z)] = 0. The Lipschitz and boundedness contraints
on g and rg now yield
E
Q

[(T
P

g)(X)] = E[(T
P

g)(X)� (T
P

g)(Z)]

= E[hg(X),r log p(X)i � hg(Z),r log p(Z)i+ hr, g(X)� g(Z)i]
= E[hg(X),r log p(X)�r log p(Z)i+ hg(X)� g(Z),r log p(Z)i]
+ E[hr, g(X)� g(Z)i]
 E[kr log p(X)�r log p(Z)k] + E

⇥

�

�r log p(Z)(X � Z)

>�
�

⇤

+ E[kX � Zk].
To derive the second advertised inequality, we use the definition of the matrix norm, the Fenchel-
Young inequality for dual norms, the definition of the matrix dual norm, and the Cauchy-Schwarz
inequality in turn:

E
⇥

�

�r log p(Z)(X � Z)

>�
�

⇤

= E
"

sup

M :kMk⇤
=1

hr log p(Z),M(X � Z)i
#

 E
"

sup

M :kMk⇤
=1

kr log p(Z)kkM(X � Z)k⇤
#

 E[kr log p(Z)kkX � Zk] 
r

E
h

kr log p(Z)k2
i

E
h

kX � Zk2
i

.

Since our bounds hold uniformly for all g in Gk·k , the proof is complete.
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D Proof of Proposition 4: Equivalence of Non-uniform Stein Discrepancies

Fix any c
1

, c
2

, c
3

> 0, and let c
max

= max(c
1

, c
2

, c
3

) and c
min

= min(c
1

, c
2

, c
3

). Since the Stein
discrepancy objective is linear in g, we have aS(Q, T

P

,Gk·k) = S(Q, T
P

, aGk·k) for any a > 0.
The result now follows from the observation that c

min

Gk·k ✓ Gc1:3

k·k ✓ c
max

Gk·k .

E Proof of Proposition 5: Equivalence of Classical and Complete Graph
Stein Discrepancies

The first inequality follows from the fact that Gk·k ✓ Gk·k,Q,G1
. By the Whitney-Glaeser extension

theorem [16, Thm. 1.4] of Glaeser [15], for every function g 2 Gk·k,Q,G1
, there exists a function

g̃ 2 
d

G⇤
k·k with g(x

i

) = g̃(x
i

) and rg(x
i

) = rg̃(x
i

) for all x
i

in the support of Q. Here 
d

is a
constant, independent of (Q,P ), depending only on the dimension d and norm k·k. Since the Stein
discrepancy objective is linear in g and depends on g only through the values g(x

i

) and rg(x
i

), we
have S(Q, T

P

,Gk·k,Q,G1
)  S(Q, T

P

,
d

Gk·k) = 
d

S(Q, T
P

,Gk·k).

F Proof of Proposition 6: Equivalence of Spanner and Complete Graph
Stein Discrepancies

The first inequality follows from the fact that Gk·k,Q,G1
✓ Gk·k,Q,Gt

. Fix any g 2 Gk·k,Q,Gt
and any

pair of points z, z0 2 supp(Q). By the definition of Gk·k,Q,Gt
, we have max

�kg(z)k⇤, krg(z)k⇤� 
1. By the t-spanner property, there exists a sequence of points z

0

, z
1

, z
2

, . . . , z
L�1

, z
L

2 supp(Q)

with z
0

= z and z
L

= z0 for which (z
l�1

, z
l

) 2 E for all 1  l  L and
P

L

l=1

kz
l�1

� z
l

k 
tkz

0

� z
L

k. Since max

⇣

kg(zl�1)�g(zl)k⇤

kzl�1�zlk , krg(zl�1)�rg(zl)k⇤

kzl�1�zlk
⌘

 1 for each l, the triangle inequal-
ity implies that

krg(z
0

)�rg(z
L

)k⇤ 
L

X

l=1

krg(z
l�1

)�rg(z
l

)k⇤ 
L

X

l=1

kz
l�1

� z
l

k  tkz
0

� z
L

k.

Identical reasoning establishes that kg(z
0

)� g(z
L

)k⇤  tkz
0

� z
L

k.

Furthermore, since kg(z
l�1

)� g(z
l

)�rg(z
l

)(z
l�1

� z
l

)k⇤  1

2

kz
l�1

� z
l

k2 for each l, the trian-
gle inequality and the definition of the tensor norm k·k⇤ imply that
kg(z

0

)� g(z
L

)�rg(z
L

)(z
0

� z
L

)k⇤


L

X

l=1

kg(z
l�1

)� g(z
l

)�rg(z
l

)(z
l�1

� z
l

)k⇤ + k(rg(z
l

)�rg(z
L

))(z
l�1

� z
l

)k⇤


L

X

l=1

1

2

kz
l�1

� z
l

k2 + krg(z
l

)�rg(z
L

)k⇤kz
l�1

� z
l

k


L

X

l=1

1

2

kz
l�1

� z
l

k2 +
L�1

X

l

0
=l

krg(z
l

0
)�rg(z

l

0
+1

)k⇤kz
l�1

� z
l

k


L

X

l=1

kz
l�1

� z
l

k
 

1

2

kz
l�1

� z
l

k+
L�1

X

l

0
=l

kz
l

0 � z
l

0
+1

k
!


 

L

X

l=1

kz
l�1

� z
l

k
!

2

 t2kz
0

� z
L

k2.

Since z, z0 were arbitrary, and the Stein discrepancy objective is linear in g, we conclude that
S(Q, T

P

,Gk·k,Q,Gt
)  S(Q, T

P

, 2t2Gk·k,Q,G1
) = 2t2 S(Q, T

P

,Gk·k,Q,G1
).

G Finite-dimensional Classical Stein Program

Theorem 9 (Finite-dimensional Classical Stein Program). If X = (↵,�) for �1  ↵ < �  1,
and x

(1)

< · · · < x
(n

0
)

represent the sorted values of {x
1

, . . . , x
n

,↵,�} \R, then the non-uniform

12



classical Stein discrepancy S(Q, T
P

,Gc1:3

k·k ) is the optimal value of the convex program

max

g

P

n

0

i=1

q(x
(i)

)

d

dx

log p(x
(i)

)g(x
(i)

) + q(x
(i)

)g0(x
(i)

) (11a)

s.t. 8i 2 {1, . . . , n0 � 1}, |g0(x
(i)

)|  c
2

, |g(x
(i+1)

)� g(x
(i)

)|  c
2

(x
(i+1)

� x
(i)

), (11b)

g(x
(i)

)� g(x
(i+1)

) +

1

4c
3

�

g0(x
(i)

)� g0(x
(i+1)

)

�

2

+

x
(i+1)

� x
(i)

2

�

g0(x
(i)

) + g0(x
(i+1)

)

�

+

1

c
3

(L
b

)

2

+

 c
3

4

(x
(i+1)

� x
(i)

)

2, (11c)

g(x
(i+1)

)� g(x
(i)

) +

1

4c
3

�

g0(x
(i)

)� g0(x
(i+1)

)

�

2 � x
(i+1)

� x
(i)

2

�

g0(x
(i)

) + g0(x
(i+1)

)

�

+

1

c
3

(L
u

)

2

+

 c
3

4

(x
(i+1)

� x
(i)

)

2, and (11d)

8i 2 {1, . . . , n0}, |g(x
(i)

)|  I
⇥

↵ < x
(i)

< �
⇤

(c
1

� 1

2c
3

g0(x
(i)

)

2

) (11e)

where (r)
+

, max(r, 0),

L
b

, c3
2

(x
(i+1)

� x
(i)

)� 1

2

�

g0(x
(i)

) + g0(x
(i+1)

)

�� c
2

, and

L
u

, c3
2

(x
(i+1)

� x
(i)

) +

1

2

�

g0(x
(i)

) + g0(x
(i+1)

)

�� c
2

.

We say the program (11) is finite-dimensional, because it suffices to optimize over vectors �,� 2
Rn

0
representing the function values (�

i

= g(x
(i)

)) and derivative values (�
i

= g0(x
(i)

)) at each
sample or boundary point x

(i)

. Indeed, by introducing slack variables, this program is representable
as a convex quadratically constrained quadratic program with O(n) constraints, O(n) variables, and
a linear objective. Moreover, the pairwise constraints in this program are only enforced between
neighboring points in the sequence of ordered locations x

(i)

. Hence the resulting constraint matrix
is sparse and banded, making the problem particularly amenable to efficient optimization.

Proof Throughout, we say that g̃ is an extension of g if g̃(x
(i)

) = g(x
(i)

) and g̃0(x
(i)

) = g0(x
(i)

)

for each x
(i)

2 supp(Q). Since the Stein objective only depends on g and g0 through their values at
sample points, g and any extension g̃ have identical objective values.

We will establish our result by showing that every g 2 Gc1:3

k·k is feasible for the program (11), so
that S(Q, T

P

,Gc1:3

k·k ) lower bounds the optimum of (11), and that every feasible g for (11) has an
extension in g̃ 2 Gc1:3

k·k , so that S(Q, T
P

,Gc1:3

k·k ) also upper bounds the optimum of (11).

G.1 Feasibility of Gc1:3

k·k

Fix any g 2 Gc1:3

k·k . Also, since g0 is c
2

-bounded and c
3

-Lipschitz, the constraints (11b) must be
satisfied. Consider now the c

2

-bounded and c
3

-Lipschitz extensions of g0

B(t) , max(�c
2

, max

1in

0

⇥

g0(x
(i)

)� c
3

|t� x
(i)

|⇤) and

U(t) , min(c
2

, min

1in

0

⇥

g0(x
(i)

) + c
3

|t� x
(i)

|⇤).

We know that B(t)  g0(t)  U(t) for all t, for, if not, there would be a point t
0

and a point x
(i)

such that |g0(x
(i)

)� g0(t
0

)| > c
3

|x
(i)

� t
0

|, which combined with the c
3

-Lipschitz property would
be a contradiction. Thus, for each sample x

(i)

, the fundamental theorem of calculus gives

g(x
(i+1)

)� g(x
(i)

) =

Z

x(i+1)

x(i)

g0(t) dt �
Z

x(i+1)

x(i)

B(t) dt.

The right-hand side of this inequality evaluates precisely to the right-hand side of the constraint
(11c). An analogous upper bound using U(t) yields (11d).

Finally, consider any point x
(i)

. If x
(i)

2 {↵,�}, then (11e) is satisfied as g(z) = 0 for any point
z on the boundary. Suppose instead that ↵ < x

(i)

< �. Without loss of generality, we may assume

13



that g0(x
(i)

) � 0. Since g0 is c
3

-Lipschitz, we have g0(t) � g0(x
(i)

)�c
3

|t�x
(i)

| for all t. Integrating
both sides of this inequality from x

(i)

to x
u

= x
(i)

+ g0(x
(i)

)/c
3

, we obtain

g(x
u

)� g(x
(i)

) =

Z

xu

x(i)

g0(t) dt �
Z

xu

x(i)

g0(x
(i)

)� c
3

(t� x
(i)

) dt = g0(x
(i)

)

2/(2c
3

)

Since g(x
u

)  c
1

, we have 1

2c3
g0(x

(i)

)

2

+ g(x
(i)

)  c
1

. Similarly, by integrating the inequality
from x

b

= x
(i)

� g0(x
(i)

)/c
3

to x
(i)

, we have g(x
b

)� g(x
(i)

) � g0(x
(i)

)

2/(2c
3

), which combined
with g(x

b

)  c
1

yields (11e).

G.2 Extending Feasible Solutions

Suppose now that g is any function feasible for the program (11). We will construct an extension
g̃ 2 Gc1:3

k·k by first working independently over each interval (x
(i)

, x
(i+1)

). Fix an index i < n0. Our
strategy is to identify a pair of c

2

-bounded, c
3

-Lipschitz functions m
i

and M
i

defined on the interval
[x

(i)

, x
(i+1)

] which satisfy m
i

(x)  M
i

(x) for all x 2 [x
(i)

, x
(i+1)

], m
i

(x) = M
i

(x) = g0(x) for
x 2 {x

(i)

, x
(i+1)

}, and
R

x(i+1)

x(i)
m

i

(t)dt  g(x
(i+1)

) � g(x
(i)

)  R

x(i+1)

x(i)
M

i

(t)dt. For any such
(m

i

,M
i

) pair, there exists ⇣
i

2 [0, 1] satisfying

g(x
(i+1)

)� g(x
(i)

) =

Z

x(i+1)

x(i)

⇣
i

m
i

(t) + (1� ⇣
i

)M
i

(t)dt,

and hence we will define the extension

g̃(x) = g(x
(i)

) +

Z

x

x(i)

⇣
i

m
i

(t) + (1� ⇣
i

)M
i

(t)dt.

By convexity, the extension derivative g̃0 is c
2

-bounded and c
3

-Lipschitz, so we will only need to
check that sup

x2X |g̃(x)|  c
1

. The maximum magnitude values of g̃ occur either at the interval
endpoints, which are c

1

-bounded by (11e), or at critical points x satisfying g̃0(x) = 0, so it suffices
to ensure that g̃ is c

1

-bounded at all critical points.

We will use the c
2

-bounded, c
3

-Lipschitz functions B and U as building blocks for our extension,
since they satisfy B(t) = U(t) = g0(t) for t 2 {x

(i)

, x
(i+1)

} and B(t)  g0(t)  U(t),

B(t) = max(�c
2

, g0(x
(i)

)� c
3

(t� x
(i)

), g0(x
(i+1)

)� c
3

(x
(i+1)

� t)), and
U(t) = min(c

2

, g0(x
(i)

) + c
3

(t� x
(i)

), g0(x
(i+1)

) + c
3

(x
(i+1)

� t)),

for t 2 [x
(i)

, x
(i+1)

]. We need only consider three cases.

Case 1: B and U are never negative or never positive on [x
(i)

, x
(i+1)

]. For this case, we will
choose m

i

= B and M
i

= U . By (11c) and (11d) we know
R

x(i+1)

x(i)
m

i

(t)dt  g(x
(i+1)

)�g(x
(i)

) 
R

x(i+1)

x(i)
M

i

(t)dt. Since B and U never change signs, g̃ will be monotonic and hence c
1

-bounded for
any choice of ⇣

i

.

Case 2: Exactly one of B and U changes sign on [x
(i)

, x
(i+1)

]. Without loss of generality, we
may assume that g0(x

(i)

), g0(x
(i+1)

) � 0 and that B changes sign. Consider the quantity � ,
R

x(i+1)

x(i)
max{B(t), 0}dt. If g(x

(i+1)

)� g(x
(i)

)  �, we let m
i

= B and M
i

= max{B, 0}.

Since, on the interval [x
(i)

, x
(i+1)

], B is piecewise linear with at most two pieces that can take on the
value 0, B has at most two roots within this interval. However, since B(x) is continuous, negative
for some value of x, and nonnegative at x 2 {x

(i)

, x
(i+1)

}, we know B has at least two roots. Thus
let r

1

< r
2

be the roots of B(x). For any choice of ⇣
i

, the convex combination ⇣
i

m
i

+ (1� ⇣
i

)M
i

will be exactly B outside (r
1

, r
2

). Moreover, if ⇣
i

6= 0, then this combination will be less than 0 on
(r

1

, r
2

), and if ⇣
i

= 0, the combination will be 0 on the whole interval. Hence it suffices to only
check the critical points r

1

and r
2

. By (11e), m
i

(r) = M
i

(r) = B(r) 2 [�c
1

, c
1

] for r 2 {r
1

, r
2

},
and so g̃ will be c

1

-bounded.

If instead g(x
(i+1)

)�g(x
(i)

) > �, we can recycle the argument from Case 1 with m
i

= max{B, 0}
and M

i

= U and conclude that g̃ is c
1

-bounded.

14



Case 3: Both B and U change sign on [x
(i)

, x
(i+1)

]. Without loss of generality, we may assume
that g0(x

(i)

) � 0, g0(x
(i+1)

) < 0. Since B continuously interpolates between g0(x
(i)

) and g0(x
(i+1)

)

on [x
(i)

, x
(i+1)

], it must have a root r. Let w
i

2 [x
(i)

, x
(i+1)

] be the point where B changes from
one linear portion to another. Then because B is monotonic on each linear portion, the fact that
B(w

i

)  B(x
(i+1)

) < 0 means that B cannot have a root between [w
i

, x
(i+1)

] and hence has at
most one root on [x

(i)

, x
(i+1)

]. Hence r is the unique root of B.

In a similar fashion, let us define s as the root of U , and since B(x)  U(x) for all x, we have
s � r. Define

W (x) ,

8

<

:

B(x) x 2 [x
(i)

, r)

0 x 2 [r, s]

U(x) t 2 (s, y],

and  ,
R

x(i+1)

x(i)
W (t)dt. As in Case 2, we will consider two subcases. If g(x

(i+1)

)� g(x
(i)

)   ,
we will let m

i

= B and M
i

= W . By (11e), m
i

(r) = M
i

(r) = B(r) 2 [�c
1

, c
1

], and since this is
the only critical point, g̃ will be c

1

-bounded.

For the other case, in which g(x
(i+1)

) � g(x
(i)

) >  , we choose m
i

= W and M
i

= U . Then
(11e) imply that m

i

(s) = M
i

(s) = U(s) 2 [�c
1

, c
1

], and, since this is the only critical point, the
extension is well-defined on (x

(i)

, x
(i+1)

).

Defining g̃ outside of the interval [x
1

, x
n

0
] It only remains to define our extension g̃ outside

of the interval [x
1

, x
n

0
] when either ↵ or � is infinite. Suppose ↵ = �1. We extend g̃ to each

x 2 (�1, x
1

) using the construction

g̃(x) ,
Z

x

�1
I[t 2 (x

1

� |g0(x
1

)|/c
3

, x
1

)](g0(x
1

)� c
3

sign(g0(x
1

))t) dt.

This extension ensures that g̃0 is c
2

-bounded and c
3

-Lipschitz. Moreover, the constraint (11e)
guarantees that |g̃(x)|  c

1

. Analogous reasoning establishes an extension to (x
n

0 ,1).

H Equivalence of Constrained Classical and Spanner Stein Discrepancies

For P with support X = (↵
1

,�
1

)⇥ · · ·⇥ (↵
d

,�
d

) for �1  ↵
j

< �
j

 1, Algorithm 1 computes
a Stein discrepancy based on the graph Stein set

Gk·k1,Q,(V,E)

,
⇢

g : X ! Rd | 8x 2 V, j, k 2 {1, . . . , d} with k 6= j, and b
j

2 {↵
j

,�
j

} \ R,

max

⇣

kg(x)k1, krg(x)k1,
|gj(x)|
|xj�bj | ,

|rkgj(x)|
|xj�bj | ,

|gj(x)�rjgj(x)(xj�bj)|
1
2 (xj�bj)

2

⌘

 1, and, 8 (x, y) 2 E,

max

⇣kg(x)�g(y)k1
kx�yk1

,
krg(x)�rg(y)k1

kx�yk1
,
kg(x)�g(y)�rg(x)(x�y)k1

1
2kx�yk2

1
,
kg(x)�g(y)�rg(y)(x�y)k1

1
2kx�yk2

1

⌘

 1

�

,

Our next result shows that the graph Stein discrepancy based on a t-spanner is strongly equivalent
to the classical Stein discrepancy.
Proposition 10 (Equivalence of Constrained Classical and Spanner Stein Discrepancies). If X =

(↵
1

,�
1

)⇥ · · ·⇥ (↵
d

,�
d

), and G
t

= (supp(Q), E) is a t-spanner, then

S(Q, T
P

,Gk·k1
)  S(Q, T

P

,Gk·k1,Q,Gt
)  t2

d

S(Q, T
P

,Gk·k1
),

where 
d

is a constant, independent of (Q,P,G
t

, t), depending only on the dimension d.

Proof

Establishing the first inequality Fix any g 2 Gk·k1
, z 2 supp(Q), and j, k 2 {1, . . . , d} with

k 6= j, and consider any j-th coordinate boundary projection point

b 2 {z + e
j

(↵
j

� z
j

), z + e
j

(�
j

� z
j

)} \ Rd.
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Since b 2 @X , we must have hg(b), n(b)i = hg(b), e
j

i = g
j

(b) = 0. Moreover, for each dimension
k 6= j, we have r

k

g
j

(x) = 0, since otherwise, hg(b+ �e
k

), n(b+ �e
k

)i = g
j

(b + �e
k

) 6= 0 for
some � 2 R and b+ �e

k

2 @X by the continuity of rg
j

.

The smoothness constraints of the classical Stein set Gk·k1
now imply that

|g
j

(z)| = |g
j

(z)� g
j

(b)|  |z
j

� b
j

|, |r
k

g
j

(x)| = |r
k

g
j

(z)�r
k

g
j

(b)|  |z
j

� b
j

|,
and

|g
j

(z)�r
j

g
j

(x)(z
j

� b
j

)| = |g
j

(b)� g
j

(z)� hrg
j

(z), b� zi|  1

2

(z
j

� b
j

)

2

so that all graph Stein set boundary compatibility constraints are satisfied. Hence, we have the
containment Gk·k1

✓ Gk·k1,Q,Gt
, which implies the first advertised inequality.

Establishing the second inequality To establish the second inequality, it suffices to show that for
any g̃ 2 Gk·k1,Q,Gt

, each j 2 {1, . . . , d}, and ⇣ , t, there exists a function g
j

satisfying

g
j

(z) = g̃
j

(z), rg
j

(z) = rg̃
j

(z), g
j

(b) = 0, r
k

g
j

(b) = 0, 8k 6= j, (12)
|g

j

(b)� g
j

(z)|  kb� zk
1

, (13)
krg

j

(b)�rg
j

(z)k1  ⇣kb� zk
1

, krg
j

(b)�rg
j

(b0)k1  ⇣kb� b0k
1

, (14)

|g
j

(b)� g
j

(z)� hrg
j

(z), b� zi|  ⇣

2

kb� zk2
1

, (15)

|g
j

(z)� g
j

(b)� hrg
j

(b), z � bi|  3⇣

2

kb� zk2
1

, and (16)

|g
j

(b)� g
j

(b0)� hrg
j

(b0), b� b0i|  ⇣

2

kb� b0k2
1

(17)

for all z 2 supp(Q) and all b, b0 in the j-th coordinate boundary set

B
j

, {b 2 Rd

: b = z + e
j

(↵
j

� z
j

) or b = z + e
j

(�
j

� z
j

) for some z 2 X}.
Indeed, since such g

j

will satisfy max

�|g
j

(z)|, krg
j

(z)k1
�  1 for all z 2 supp(Q) [B

j

and

max

⇣ |gj(x)�gj(y)|
kx�yk1

,
krgj(x)�rgj(y)k1

kx�yk1
,
|gj(x)�gj(y)�rgj(x)(x�y)|

1
2kx�yk2

1
,
|gj(x)�gj(y)�rgj(y)(x�y)|

1
2kx�yk2

1

⌘

 2t2

for all x, y 2 supp(Q) by the argument of Appendix F, the Whitney-Glaeser extension theorem [16,
Thm. 1.4] of Glaeser [15] will then imply that there exists g⇤ 2 t2

d

Gk·k1
, for a constant 

d

independent of g̃ depending only on d, with g⇤(z) = g(z) and rg⇤(z) = rg(z) for all z 2
supp(Q). Since g̃ and g⇤ will have matching Stein discrepancy objective values, and each objective
is linear in g, the second advertised inequality will then follow.

Fix g̃ 2 Gk·k1,Q,Gt
and j 2 {1, . . . , d}. We will now construct a function g

j

satisfying the desired
properties. Since g

j

and rg
j

are determined on supp(Q), and g
j

and r
k

g
j

are determined on B
j

for k 6= j by the constraints (12), it remains to define r
j

g
j

on B
j

. We choose the extension

r
j

g
j

(b) , min

z2supp(Q)

{r
j

g
j

(z) + ⇣kz � bk
1

} for all b 2 B
j

.

Fix any z 2 supp(Q) and b 2 B
j

, and let b⇤ = z + e
j

(b
j

� z
j

). The argument of Appendix F
implies that r

j

g
j

is ⇣-Lipschitz on supp(Q), and hence it is also ⇣-Lipschitz on supp(Q) [ B
j

.
Since

|r
k

g
j

(z)�r
k

g
j

(b)| = |r
k

g
j

(z)|  |z
j

� b
j

|  kz � bk
1

for all k 6= j, we have (14). Moreover, the boundary compatibility constraints of Gk·k1,Q,Gt
imply

|g
j

(b)� g
j

(z)| = |g
j

(z)|  kb⇤ � zk
1

 kb� zk
1

,

establishing (13). We next invoke the triangle inequality, the boundary compatibility conditions
of Gk·k1,Q,Gt

, Hölder’s inequality, the Lipschitz derivative property (14), and the fact kz � bk
1

=

16



kb⇤ � zk
1

+ kb⇤ � bk
1

in turn to establish (15):

|g
j

(b)� g
j

(z)� hrg
j

(z), b� zi| = |g
j

(z)�r
j

g
j

(z)(z
j

� b
j

)� hrg
j

(z), b⇤ � bi|
 |g

j

(z)�r
j

g
j

(z)(z
j

� b
j

)|+ |hrg
j

(b⇤)�rg
j

(z), b⇤ � bi|
 1

2

kb⇤ � zk2
1

+ krg
j

(b⇤)�rg
j

(z)k1kb⇤ � bk
1

 1

2

kb⇤ � zk2
1

+ ⇣kb⇤ � zk
1

kb⇤ � bk
1

 ⇣

2

(kb⇤ � zk
1

+ kb⇤ � bk
1

)

2

=

⇣

2

kb� zk2
1

.

A parallel argument yields (17). Finally, we may deduce (16), as

|g
j

(z)� g
j

(b)� hrg
j

(b), z � bi|  |g
j

(z)�r
j

g
j

(z)(z
j

� b
j

)|+ |r
j

g
j

(b)�r
j

g
j

(z)||z
j

� b
j

|
 1

2

(z
j

� b
j

)

2

+ ⇣kb� zk
1

|z
j

� b
j

|  3⇣

2

kb� zk2
1

by the triangle inequality, the definition of Gk·k1,Q,Gt
, and the Lipschitz property (14).
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