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1 Notation throughout supplementary material

We will use ',.,& to denote that the corresponding (in)equality holds up to constants. We will use ⇔ to
denote equivalence. We will say that an event happens with high probability, if it happens with probability
1− 1

Kc or 1− 1
Nc for some constant c.

2 Case study 1: Sparse topic priors, support initialization

2.1 Provable convergence of tEM

As a reminder, the theorem we want to prove is:

Theorem 1. Given an instance of topic modelling satisfying the Case Study 1 properties specified above,

where the number of documents is Ω(K log2 N
ε′2 ), if we initialize the supports of the βti,j and γtd,i variables

correctly, after O(log(1/ε′) + logN) KL-tEM, iterative-tEM updates or incomplete-tEM updates, we recover
the topic-word matrix and topic proportions to multiplicative accuracy 1 + ε′, for any ε′ s.t. 1 + ε′ ≤ 1

(1−ε)7 .

The general outline of the proof will be the following.

• Identifying dominating topic: For the modified tEM updates, we need to make sure that the topic with
maximal γtd,i is the dominant.

• Phase I: Getting constant multiplicative factor estimates: First, we’ll show that after initialization, after
O(logN) number of rounds, we will get to variables βti,j , γ

t
d,i which are within a constant multiplicative

factor from β∗i,j , γ
∗
d,i.

– Lower bounds on the β and γ variables: We’ll show that determining the supports of the docu-
ments and the topic-word matrix, as well as being able to identify the documents in which topic
i is large is enough to ensure that all the βti,j and γti,j variables are lower bounded by 1

C0
β
β∗i,j and

1
C0
γ
γ∗d,i respectively for some constants C0

β ≥ 1, C0
γ ≥ 1.

– Improving upper bounds on the βti,j values: We show that, if the above two properties are satisfied,
we can get a multiplicative upper bound of the βti,j values, which strictly improves at each step
until it reaches a constant. This improvement is very fast: we only need a logarithmic number of
steps. After this happens, we show that the γ variables corresponding to these β estimates must
be within a constant of the ground truth as well.

• Phase II (Alternating minimization - lower and upper bound evolution): Once the β and γ estimates
are within a constant factor of their true values, we show that the lone words and documents have a
boosting effect: they cause the multiplicative upper and lower bounds to improve at each round.

A word about incorporating the ”correct supports” assumption in our algorithms. For the β variables
this is obvious: we just set βti,j = 0 if β∗i,j = 0. For the γ variables it’s also fairly straightforward. In KL-tEM
we mean simply that in the convex program above, we constrain γtd,i = 0 if γ∗d,i = 0.

In the iterative version, this just means that before starting the γ iterations, we set the initial value to 0
if γ∗d,i = 0, and uniform among the rest of the variables. Same for the incomplete version.

In the interest of brevity, whenever we say ”the supports are correct”, the above is what we will mean.
Recall, we use t to count the iterations for β variables. Put another way, γtd,i is the value we get for γd,i

after the β variables were updated to βti,j . (Which of course, implies, βt+1
i,j will be the values we get for the

β variables after the γ variables are updated to γtd,i.)
The proofs are for each of the variants of tEM are similar. For starters, we show everything for KL-tEM,

and then just mention how to modify the arguments to get the results for the other variants in section 2.2.
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2.1.1 Determining largest topic

First, we show that the ”thresholding” operation works. Namely, we show that if γtd,i > γtd,i′ ,∀i 6= i′, then
γ∗d,i is the largest topic in the document (there is a unique one by the ”slightly gapped documents” property).

Furthermore, we can say that 1
2γ
∗
d,i ≤ γtd,i ≤ 2γ∗d,i.

Lemma 2. Fix a document d. Let the supports of the γ and β variables be correct. Then, after a γ iteration,
if γtd,i > γtd,i′ , i 6= i′, γ∗d,i is the largest topic in the document. Furthermore, 1

2γ
∗
d,i ≤ γtd,i ≤ 2γ∗d,i.

Proof. Since there are a constant number of topics in the document, the largest topic has proportion Ω(1).
Consider the KL-tEM convex optimization problem. The KKT conditions are easily seen to imply1:

N∑
j=1

f̃d,j
f td,j

βti,j = 1 (2.1)

For each topic i, since we are considering a constrained optimization problem, it has to be the case that
it either satisfies 2.1, γtd,i = 0 or γtd,i = 1.

Let’s assume first that i satisfies 2.1. Then,

γtd,i =

N∑
j=1

f̃d,j
f td,j

βti,jγ
t
d,i ≤

∑
j:β∗i,j 6=0

f̃d,j

Let’s call the words j, which only appear in the support of topic i in the document lone for that topic,
and let’s denote that set as Li.

If Li are the lone words for topic i,
∑
j /∈Li,β∗i,j 6=0 f̃d,j = To(1) = o(1), so

γtd,i ≤
∑
j∈Li

(1 + ε)β∗i,jγ
∗
d,i + o(1) ≤ (1 + ε)γ∗d,i + o(1) ≤ γ∗d,i + o(1)

On the other hand, γtd,i ≥
∑
j∈Li β

∗
i,jγ
∗
d,i ≥ (1− ε)(1− o(1))γ∗d,i ≥ (1− o(1))γ∗d,i, so γtd,i ≥ γ∗d,i − o(1).

Since there is a constant gap of ρ between the largest topic and the next largest one, the maximum γtd,i
is indeed the largest topic in the document. Furthermore, since (1− o(1))γ∗d,i ≤ γtd,i ≤ (1 + o(1))γ∗d,i, clearly
1
2γ
∗
d,i ≤ γtd,i ≤ 2γ∗d,i follows as well.

On the other hand, we claim no topic which is in the support of a document d can actually have γtd,i = 0.

If this happens, it’s easy to see that
∑N
j=1 f̃d,j log(

f̃d,j
ftd,j

) = ∞: one only needs to look at a summand

corresponding to a lone word j for topic i. Just by virtue of the way lone words are defined, γtd,i = 0 would

imply f td,j = 0. It’s clear that one can get a finite value for
∑
j f̃d,j log(

f̃d,j
ftd,j

) on the other hand, by just

setting γtd,i = γ∗d,i, so γtd,i = 0 cannot happen at an optimum.

2.1.2 Lower bounds on the γtd,i and βti,j variables

Next, we show that subject to the thresholding being correct, at any point in time t, all the estimates γtd,i
and βti,j are appropriately lower bounded.

The proof is similar for both the β and γ variables, and both for the KL-tEM and iterative tEM updates,
but as mentioned before, we focus on the KL-tEM first.

Lemma 3. Fix a particular document d. Suppose that the supports of the γ and β variables are correct.
Then, γtd,i ≥ (1− o(1))γ∗d,i.

1One gets these trivially, turning the constraint that
∑K

i=1 γ
t
d,i = 1 into a Lagrange multiplier
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Proof. Multiplying both sides of 2.1 by γtd,i, we get

γtd,i =

N∑
j=1

f̃d,j
f td,j

βti,jγ
t
d,i

As above, let’s split the above sum in two parts: lone words, and non-lone. Then clearly,

γtd,i ≥
∑
j∈Li

(1− ε)β∗i,jγ∗d,i

For notational convenience, let’s denote α̃ =
∑
j∈Li β

∗
i,j . Let’s estimate α̃. By the assumption on the size

of the intersection of topics, ∑
j /∈Li

β∗i,j ≤ Tr = o(1)

.
Hence, α̃ ≥ (1− ε)(1− o(1)) = 1− o(1). So, the claim of the lemma holds.

The lower bound on the βti,j values proceeds similarly, but here we will crucially make use of the fact
that for the large topics, we have both upper and lower bounds on the γtd,i values.

Lemma 4. Suppose that the supports of the γ and β variables are correct. Additionally, if i is a large topic
in d, let 1

2γ
∗
d,i ≤ γtd,i ≤ 2γ∗d,i. Then, βt+1

i,j ≥ 1
2 (1− o(1))β∗i,j.

Proof. Let’s call lone the documents where β∗i′,j = 0 for all other topics i′ 6= i appearing in that document
for the topic-word pair (i, j). Let Dl be the set of lone documents. Then, certainly it’s true that

βt+1
i,j ≥ β

t
i,j

∑
d∈Dl

f̃d,j
ftd,j

γtd,i∑D
d=1 γ

t
d,i

However, for a lone document, f td,j = γtd,i · βti,j (it’s easy to check all the other terms in the summation for

f td,j vanish, because either γtd,i′ = 0 or βti′,j = 0). Hence,

βt+1
i,j ≥

∑
d∈Dl(1− ε)

γ∗d,iβ
∗
i,j

γtd,i·β
t
i,j
βti,jγ

t
d,i∑D

d=1 γ
t
d,i

= (1− ε)β∗i,j

∑
d∈Dl γ

∗
d,i∑D

d=1 γ
t
d,i

However, since the update is happening only over documents where topic i is large, γtd,i ≤ 2γ∗d,i. So, we
can conclude

βt+1
i,j ≥ (1− ε)β∗i,j

1

2

∑
d∈Dl γ

∗
d,i∑D

d=1 γ
∗
d,i

Let’s call α =
∑
d∈Dl

γ∗d,i∑D
d=1 γ

∗
d,i

, and let’s analyze it’s value.

By Lemma 49 and Lemma 48,∑
d∈Dl

γ∗d,i ≥ (1− ε)|Dl|E[γ∗d,i|γ∗d,i is dominating, γ∗d,i′ = 0,∀i′ 6= i s.t. j appears in topic i′]

D∑
d=1

γ∗d,i ≤ (1 + ε)|D|E[γ∗d,i|γ∗d,i is dominating]

By the weak topic correlations assumption, then,

∑
d∈Dl γ

∗
d,i∑D

d=1 γ
∗
d,i

≥ (1− o(1))
|Dl|
|D|

.

Furthermore, by the independent topic inclusion property, each of the o(K) topics other than i that word
j belongs to appears in a document with probability Θ(1/K), so the probability that a document which
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contains topic i contains one of them is o(1), i.e. |Dl||D| . By Lemma 50, furthermore, |Dl||D| ≥ 1 − o(1) when

ε = o(1). Hence, α ≥ 1− o(1).
Altogether, we get that βt+1

i,j ≥ 1
2 (1− o(1))β∗i,j as claimed.

2.1.3 Upper bound on the βti,j values

Having established a lower bound on the βti,j variables throughout all iterations, together with the lower
bounds on the γtd,i variables and the good estimates for the large topics, we will be able to prove the upper

bound of the multiplicative error of βti,j keeps improving, until βti,j ≤ Cββ∗i,j , for some constant Cβ .

Lemma 5. Let the β variables have the correct support, and βti,j ≥ 1
Cm

β∗i,j, γ
t
d,i ≥ 1

Cm
γ∗d,i whenever β∗i,j 6= 0,

γ∗d,i 6= 0. Let βti,j = Ctββ
∗
i,j, where Ctβ ≥ 4Cm, and Cm is a constant. Then, in the next iteration, βt+1

i,j ≤

Ct+1
β β∗i,j, where Ct+1

β ≤ Ctβ
2 .

Proof. Without loss of generality, let’s assume Cm ≥ 2. (Since certainly, if the statement of the lemma holds
with a smaller constant, it holds with Cm = 2.)

We proceed similarly as in the prior analyses. We will split the sum into the portion corresponding to
the lone and non-lone documents.

Let’s analyze the terms
f̃d,j
ftd,j

γtd,i corresponding to the non-lone documents.

Now, f td,j ≥ 1
C2
m
f∗d,j , so

f̃d,j
ftd,j
≤ (1 + ε)C2

m. Also, γtd,i ≤ 2γ∗d,i, since topic i is the dominant in document d.

Since Cm ≥ 2,
f̃d,j
ftd,j

γtd,i ≤ (1 + ε)C3
mγ
∗
d,i.

Also, note that
∑D
d=1 γ

t
d,i ≥ 1

Cm

∑D
d=1 γ

∗
d,i, again, since i is the dominant topic.

As usual, let’s denote the set of lone documents Dl:

βt+1
i,j ≤ (1 + ε)Cm

∑
d∈Dl β

∗
i,jγ
∗
d,i +

∑
d∈D\Dl C

3
mγ
∗
d,iβ

t
i,j∑D

d=1 γ
∗
d,i

As in the prior proofs, let’s denote by α :=
∑
d∈Dl

γ∗d,i∑D
d=1 γ

∗
d,i

.

As in Lemma 4, α ≥ 1 − o(1), so βt+1
i,j ≤ (1 + ε)Cm(αβ∗i,j + (1 − α)C3

mβ
t
i,j), which in turn implies that

βt+1
i,j

β∗i,j
≤ (1 + ε)Cm(α+ (1−α)C3

mC
t
β). In order to ensure that

βt+1
i,j

β∗i,j
<

Ctβ
2 , it would be sufficient to prove that

(1 + ε)Cm(α+ (1− α)(C3
mC

t
β) <

Ctβ
2

which is equivalent to α >
C3
mC

t
β −

Ctβ
2(1+ε)Cm

C3
mC

t
β − 1

.

Let’s look at the right hand side. As, by assumption, Ctβ ≥ 4Cm, it follows that

C3
mC

t
β −

Ctβ
2(1+ε)Cm

C3
mC

t
β − 1

≤
C3
mC

t
β −

Ctβ
2(1+ε)Cm

C3
mC

t
β −

Ctβ
4Cm

Hence, the right hand side is upper bounded by

C3
m − 1

2(1+ε)Cm

C3
m − 1

4Cm

= 1−

2
1+ε−1

4Cm

C3
m − 1

4Cm

But, since Cm is bounded by a constant, and α = 1− o(1), the claim follows.
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2.1.4 Upper bounds on the γ values

Finally, we show that if we ever reach a point where the β values are both upper and lower bounded by
a constant, the γ values one gets after the γ step are appropriately upper bounded by a constant. More
precisely:

Lemma 6. Fix a particular document d. Let’s assume the supports for the β and γ variables are correct.

Furthermore, let 1
Cm
≤ βti,j

β∗i,j
≤ Cm for some constant Cm. Then, γtd,i ≤ (1 + o(1))γ∗d,i.

Proof. As in the proof of Lemma 3, let’s look at the KKT conditions for γtd,i into a part corresponding to

lone words Li and non-lone words. Multiplying 2.1 by γtd,i as before,

γtd,i =
∑
j∈Li

f̃d,j + γtd,i
∑
j /∈Li

f̃d,j
f td,j

βti,j

Again, let α̃ =
∑
j∈Li β

∗
i,j .

By Lemma 3, certainly γtd,i ≥ 1
Cm

γ∗d,i. Hence,
f̃d,j
f td,j

≤ (1 + ε)C2
m. So we have, γtd,i ≤ (1 + ε)(α̃γ∗d,i +

C3
m(1− α̃)γtd,i). In other words, this implies γtd,i ≤

(1+ε)α̃
1−(1+ε)C3

m(1−α̃)γ
∗
d,i. Since α̃ = 1− o(1), it’s easy to check

that α̃
1−C3

m(1−α̃) ≤ 1 + o(1), which is enough for what we need.

So, as a corollary, we finally get:

Corollary 7. For some t0 = O(log( 1
β∗min

))) = O(logN) , it will be the case that for all t ≥ t0,
1

C0
β

≤
β∗i,j
βti,j
≤

C0
β for some constant C0

β and
1

C0
γ

≤
γ∗d,i
γtd,i
≤ C0

γ for some constant C0
γ .

This concludes Phase I of the analysis.

2.1.5 Phase II: Alternating minimization - upper and lower bound evolution

Taking Corollary 7 into consideration, we finally show that, if the β and γ values are correct up to a constant
multiplicative factor, and we have the correct support, we can improve the multiplicative error in each
iteration, thus achieving convergence to the correct values.

This portion bears resemblance to techniques like state evolution and density evolution in the literature
for iterative methods for decoding error correcting codes. In those techniques, one keeps track of a certain
quantity of the system that’s evolving in each iteration. In density evolution, this is the probability density
function of the messages that are being passed, in state evolution, it is a certain average and variance of the
variables we are estimating.

In our case, we keep track of the ”multiplicative accuracy” of our estimates γtd,i, β
t
i,j . In particular, we

will keep track of quantities Ctγ and Ctβ , such that at iteration t, 1
Ctβ
≤ βi,j∗

βti,j
≤ Ctβ and 1

Ctγ
≤ γd,i∗

γtd,i
≤ Ctγ after

the corresponding γ iteration.
We will show that improvement in the quantities Ctβ causes a large enough improvement in the Ctγ

updates, so that after an alternating step of β and γ updates, Ct+1
β ≤ (Ctβ)1/2.

First, we show that when the β variables are estimated up to a constant multiplicative factor, the constant
for the γ values after they’ve been iterated to convergence is slightly better than the constant for the β values.
More precisely:

Lemma 8. Let’s assume that our current iterates βti,j satisfy 1
Ctβ
≤ βi,j∗

βti,j
≤ Ctβ for Ctβ ≥ 1

(1−ε)7 . Then, after

iterating the γ updates to convergence, we will get values γtd,i that satisfy (Ctβ)1/3 ≤ γd,i∗
γtd,i
≤ (Ctβ)1/3.
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Proof. As usual, we will split the KKT conditions for γt+1,t′

d,i into two parts: one for the lone, and one for
the non-lone words. Let’s call the set of lone words Li, as previously. Then. we have

γtd,i =
∑
j∈Li

f̃d,j + γtd,i
∑
j /∈Li

f̃d,j
f td,j

βti,j

Again, let α̃ =
∑
j∈Li β

∗
i,j = o(1), as we proved before.

Let’s denote as Ctγ = maxi(max(
γ∗d,i
γtd,i

,
γtd,i
γ∗d,i

)).

We claim that it has to hold that Ctγ ≤ (Ctβ)1/3. Assume the contrary, and let i0 = argmaxi(max(
γ∗d,i
γtd,i

,
γtd,i
γ∗d,i

)).

Let’s first assume that
γtd,i0
γ∗d,i0

= Ctγ .

By the definition of Ctγ ,

γtd,i0 =
∑
j∈Li0

f̃d,j + γtd,i0

∑
j /∈Li0

f̃d,j
f td,j

βti0,j ≤ (1 + ε)(α̃γ∗d,i0 + (1− α̃)(Ctβ)2(Ctγ)2γ∗d,i0)

We claim that
(1 + ε)(α̃+ (1− α̃)(Ctβ)2(Ctγ)2) ≤ (Ctγ)1/3 (2.2)

which will be a contradiction to the definition of Ctγ .

After a little rewriting, 2.2 translates to α̃ ≥ 1−
(Ctγ )1/3

1+ε −1

(CtβC
t
γ)2−1

. By our assumption on Ctγ , Ctβ ≤ C3
γ , so the

right hand side above is upper bounded by 1−
(Ctγ )1/3

1+ε −1

(Ctγ)8−1 .

But, Lemma 6 implies that certainly Ctγ ≤ C0
γ , where C0

γ is some absolute constant. The function

f(c) =
c1/3

1+ε − 1

c8 − 1

can be easily seen to be monotonically decreasing on the interval of interest, and hence is lower bounded by
(C0
γ )1/3

1+ε −1

(C0
γ)8−1 , which is in terms some absolute constant smaller than one. Since α̃ = 1−o(1). the claim we want

is clearly true.

The case where
γ∗d,i0
γtd,i0

= Ctγ is similar. In this case,

γtd,i0 =
∑
j∈Li0

f̃d,j + γtd,i0

∑
j /∈Li0

f̃d, j

f td,j
βti0,j ≥ (1− ε)(α̃γ∗d,i0 + (1− α̃)

1

(Ctβ)2(Ctγ)2
γ∗d,i0)

We then claim that

(1− ε)(α̃+ (1− α̃)
1

(Ctβ)2(Ctγ)2
) ≥ 1

(Ctγ)1/3
(2.3)

Again, 2.3 rewrites to:

α̃ ≥
1

(1−ε)(Ctγ)1/3 − 1
(Ctβ)2(Ctγ)2

1− 1
(Ctβ)2(Ctγ)2

= 1−
1− 1

(1−ε)(Ctγ)1/3

1− 1
(CtβC

t
γ)2

Again, the right hand side above is upper bounded by 1 −
1− 1

(1−ε)(Ctγ )1/3

1− 1
(Ctγ )8

. But Cγ ∈ [1, C0
γ ], and the

function
1− 1

(1−ε)c1/3

1− 1
c8

is monotonically increasing, so lower bounded by

1− 1
(1−ε)( 1

(1−ε)7
)1/3

1− 1
( 1

(1−ε)7
)8

=
1− (1− ε)4/3

1− (1− ε)56
≥ 1

42

7



Hence, 1−
1− 1

(1−ε)(Ctγ )1/3

1− 1
(Ctγ )32

is upper bounded by 41
42 . Again, our bound on α̃ gives us what we want.

Lemma 9. Let’s assume that our current iterates βti,j satisfy 1
Ctβ
≤ βi,j∗

βti,j
≤ Ctβ, Ctβ ≥ 1

(1−ε)7 , and after the

corresponding γ update, we get 1
Ctγ
≤ γd,i∗

γtd,i
≤ Ctγ , where Ctβ ≥ (Ctγ)3. Then, after one β step, we will get new

values βt+1
i,j that satisfy 1

Ct+1
β

≤ βi,j∗
βt+1
i,j

≤ Ct+1
β where Ct+1

β = (Ctβ)1/2.

Proof. The proof proceeds in complete analogy with Lemmas 4 and 5.
Again, let’s tackle the lower and upper bound separately. The upper bound condition is:

α >
(CtβC

t
γ)2 − (Ctβ)1/2

(1+ε)Ctγ

(CtγC
t
β)2 − 1

Using Ctβ ≥ (Ctγ)3, we can upper bound the expression on the right by 1 −
(Ctβ)1/6

1+ε − 1

(Ctβ)8/3 − 1
. The function

f(c) =
x1/6

1+ε −1

x8/3−1
is monotonically decreasing on the interval [1, C0

β ] of interest, so because α = 1− o(1), we get
what we want.

Similarly, for the lower bound, we want that

α >

Ctγ
(Ctβ)1/2(1−ε) −

1
(CtγC

t
β)2

1− 1
(CtβC

t
γ)2

Yet again, using Ctβ ≥ (Ctγ)3, we get that the right hand side is upper bounded by

1−
1− 1

(1−ε)C1/6
β

1− 1
C3
β

However, the function f(c) =
1− 1

(1−ε)c1/6

1− 1

c8/3

is monotonically increasing on the interval [1, C0
β ], so lower bounded

by
1− 1

(1−ε)( 1
(1−ε)7

)1/6

1− 1

( 1
(1−ε)7

)8/3

= 1−(1−ε)1/6

1−(1−ε)21 ≥ 1
126 . Hence, 1 −

1− 1

(1−ε)C1/6
β

1− 1

C3
β

is upper bounded by 125
126 , so using the fact

that α = 1− o(1), we get what we want.

Putting lemmas 8 and 9 together, we get:

Lemma 10. Suppose it holds that 1
Ct ≤

βi,j∗
βti,j

≤ Ct, Ct ≥ 1
(1−ε)7 . Then, after one KL minimization step

with respect to the γ variables and one β iteration, we get new values βt+1
i,j that satisfy 1

Ct+1 ≤ βi,j∗
βt+1
i,j

≤ Ct+1,

where Ct+1 =
√
Ct

Proof. By Lemma 8, after the γ iterations, we get γtd,i values that satisfy the condition 1
(C′)t ≤

γd,i∗
γtd,i
≤ (C ′)t,

where (C ′)t = (Ct)1/3.

Then, by Lemma 9, after the γ iteration, we will get 1
Ct+1 ≤ βi,j∗

βt+1
i,j

≤ Ct+1, such that Ct+1 = (Ct)1/2,

which is what we need.

Hence, as a corollary, we get immediately:
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Corollary 11. Lemma 10 above implies that Phase III requires O(log( 1
log(1+ε′) )) = O(log( 1

ε′ )) iterations to

estimate each of the topic-word matrix and document proportion entries to within a multiplicative factor of
1 + ε′.

This finished the proof of Theorem 1 for the KL-tEM version of the updates. In the next section, we will
remark on why the proofs are almost identical in the iterative and incomplete tEM version of the updates.

2.2 Iterative tEM updates, incomplete tEM updates

We show how to modify the proofs to show that the iterative tEM and incomplete tEM updates work as
well. We’ll just sketch the arguments as they are almost identical as above.

In those updates, when we are performing a γ update, we initialize with γtd,i = 0 whenever topic i does

not belong to document d, and γtd,i uniform among all the other topics.
Then, the way to modify Lemmas 3, 6, 8 is simple. Instead of arguing by contradiction about what

happens at the KKT conditions, one will assume that at iteration t′ (t′ to indicate these are the separate
iterations for the γ variables that converge to the values γtd,i) it holds that 1

Ct′γ
γ∗d,i ≤ γt

′

d,i ≤ Ct
′

γ γ
∗
d,i. Then, as

long as Ct
′

γ is too big, compared to Ctβ , one can show that Ct
′

γ is decreasing (to Ct
′+1
γ = (Ctγ)1/2, say), using

exactly the same argument we had before. Furthermore, the number of such iterations needed will clearly
be logarithmic.

But the same argument as above proves the incomplete tEM updates work as well. Namely, even if we
perform only one update of the γ variables, they are guaranteed to improve.

2.3 Initialization

For completeness, we also give here a fairly easy, efficient initialization algorithm. Recall, the goal of this
phase is to recover the supports - i.e. to find out which topics are present in a document, and identify the
support of each topic. To reiterate the theorem statement:

Theorem 12 (Restatement of Theorem 2). If the number of documents is Ω(K4 log2K), there is a polynomial-
time procedure which with probability 1−Ω( 1

K ) correctly identifies the supports of the β∗i,j and γ∗d,i variables.

We will find the topic supports first. Roughly speaking, we will devise a test, which will take as input
two documents d, d′, and will try to determine if the two documents have a topic in common or not. The
test will have no false positives, i.e. will never say NO, if the documents do have a topic in common, but
might say NO even if they do. We will then, ensure that with high probability, for each topic we find a pair
of documents intersecting in that topic, such that the test says YES.

We will also be able to identify which pairs intersect in exactly one topic, and from this we will be able to
find all the topic supports. Having done all of this, finding the topics in each document will be easy as well.
Roughly speaking, if a document doesn’t contain a given topic, it will not contain all of the discriminative
words in that document.

We give the algorithm formally as pseudocode Algorithm 1.
Now, let’s proceed to analyze the above algorithm, proceeding in a few parts.

2.3.1 Constructing a no-false-positives test

First, we describe how one determines the supports of the topics. Let’s define Test(d, d′) = YES, if∑
j min{f∗d,j , f∗d′,j} ≥ 1

2T , and NO otherwise. Then, we claim the following.

Lemma 13. If d, d′ both contain a topic i0, s.t. γ∗d,i0 ≥ 1/T , γ∗d′,i0 ≥ 1/T then Test(d, d′) = YES. If d, d′

do not contain a topic i0 in common, then Test(d, d′) = NO.

Proof. Let’s prove the first claim.∑
j

min{f̃d,j , f̃d′,j} ≥
∑
j

(1− ε) min{β∗i0,jγ
∗
d,i0 , β

∗
i0,jγ

∗
d′,i0} ≥

9



Algorithm 1 Initialization

repeatK4 log2K times
Sample a pair of documents (d, d′).
.Test if (d, d′) intersect with no false positives:
if
∑
j min{f∗d,j , f∗d′,j} ≥ 1

2T then
Sd,d′ := {j, s.t.f∗d,j , f∗d′,j > 0}
.”Weed-out” words that are not in the support of the intersection of (d,d’)
for all documents d′′ 6= {d, d′} do

if
∑
j min{f∗d,j , f∗d′′,j} ≥ 1

2T and
∑
j min{f∗d′,j , f∗d′′,j} ≥ 1

2T then
Sd,d′ = Sd,d′ ∩ j, s.t f∗d′′,j > 0

end if
end for

end if
until
.Determine which Sa,b correspond to documents intersecting in one topic only)
if Set Sa,b appears less than D/K2.5 times, where D is the total number of documents then

Remove Sa,b.
end if
if Set Sa,b can be written as the union of two other sets Sc,d, Se,f , where neither is contained inside the
other then

Remove Sa,b.
end if
if Set Sa,b is strictly contained inside Sd,d′ for some Sd,d′ then

Remove Sd,d′ .
end if
Remove duplicates.
The remaining lists Sa,b are declared to be topic supports.

10



∑
j

(1− ε)1/Tβ∗i0,j ≥ 1/2T

Now, let’s prove the second claim. Let’s suppose d, d′ contain no topic in common.
Let’s fix a topic i0 that belongs to document d. By the ”small discriminative words intersection”, we

have the following property: ∑
j∈i0,j∈i′

β∗i,j = o(1)

for any other topic i′ 6= i0.
Denoting by Toutside the words belonging to topic i0, and no topic in document d′, and Tinside the words

belonging to at least one other topic in d′, we have∑
j∈Tinside

β∗i,j ≤ T · o(1) = o(1)

For the words j ∈ Toutside, min{f∗d,j , f∗d′,j} = 0
By the above, ∑

j

min{f̃d,j , f̃d′,j} ≤ (1 + ε)T 2o(1) = o(1)

Thus, the test will say NO, as we wanted.

2.3.2 Finding the topic supports from identifying pairs

Let’s call d, d′ an identifying pair of documents for topic i, if d, d′ intersect in topic i only, and furthermore
the test says YES on that pair.

From this identifying pair, we show how to find the support of the topic i in the intersection. What we’d
like to do is just declare the words j, s.t. f∗d,j , f

∗
d′,j are both non-zero as the support of topic i. Unfortunately,

this doesn’t quite work. The reason is that one might find words j, s.t. they belong to one topic i′ in d,
and another topic i′′ in d′′. Fortunately, this is easy to remedy. As per the pseudo-code above, let’s call the
following operation WEEDOUT (d, d′):

• Set S = {j, s.t.f∗d,j > 0, f∗d′,j > 0}.

• For all d′′, s.t. Test(d, d′′) = Y ES, Test(d′, d′′) = Y ES:

• Set S = S ∪ {j, s.t.f∗d′′,j > 0}

• Return S.

Lemma 14. With probability 1−Ω( 1
K ), for any pair of documents d, d′ intersecting in one topic, WEEDOUT (d, d′)

is the support of S.

Proof. For this, we prove two things. First, it’s clear that S is initialized in the first line in a way that
ensures that it contains all words in the support of topic i. Furthermore, it’s clear that at no point in
time we will remove a word j from S that is in the support of topic i. Indeed - if Test(d, d′′) = Y ES and
Test(d′, d′′) = Y ES, then by Lemma 13 document d′′ must contain topic i. In this case, f∗d′′,j > 0, and we
won’t exclude j from S.

So, we only need to show that the words that are not in the support of topic i will get removed.
Let d, d′ intersect in a topic i. Let a word j be outside the support of a given topic i. Because of the

independent topic inclusion property, the probability that a document d′′ contains topic i, and no other topic
containing j is Ω(1/K).

Since the number of documents is Ω(K4 log2K), by Chernoff, the probability that there is a document
d′′, s.t. Test(d, d′′) = Y ES, Test(d′, d′′) = Y ES, but f∗d′′,j = 0, is 1 − Ω( 1

eK2 log2 K
). Union bounding over

all words j, as well as pairs of documents d, d′, we get that for any documents d, d′ intersection in a topic i,
we get the claim we want.
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2.3.3 Finding the identifying pairs

Finally, we show how to actually find the identifying pairs. The main issue we need to handle are documents
that do intersect, and the TEST returns yes, but they intersect in more than one topic. There’s two
ingredients to ensuring this is true in the above algorithm.

• First, we delete all sets in the list of sets Sa,b that show up less than D2/K2.5 number of times.

• Second, we remove sets that can be written as the union of two other sets Sc,d, Se,f , where neither of
the two is contained inside the other.

• After this, we delete the non-maximal sets in the list.

The following lemma holds:

Lemma 15. Each topic has Ω(D2/K2) identifying pairs with probability 1− Ω( 1
K ).

Proof. Let Ii be the event that there are at least Ω(D2/k2) identifying pairs for topic i. Let Ni be a random
variable denoting the number of documents which have topic i as a dominating topic. Furthermore, let

Mi be the event that there are at least
N2
i

2 − K
√
N2
i identifying pairs among the Ni ones that have i as

a dominating topic. By the dominant topic equidistribution property, probability that a document d has a
topic i as a dominating topic is at least C/K for some constant C. Then, clearly,

Pr[∩Ki=1Ii] ≥ Pr

[
∩Ki=1

(
Ni ≥

1

2
C
D

K

)]
Pr

[
∩Ki=1Mi| ∩Ki=1

(
Ni ≥

1

2
C
D

K

)]
Let’s estimate Pr

[
∩Ki=1

(
Ni ≥ 1

2C
D
K

)]
first. The probabilities that different documents have i0 as the

dominating topic are clearly independent, so by Chernoff, if Ni is the number of documents where i is the
dominating topic,

Pr[Ni ≥ (1− ε)CD
K

] ≥ 1− e− ε
2

3 C
D
K

Since D = Ω(K2), plugging in ε = 1
2 , Pr[Ni <

1
2C

D
K ] ≥ 1− e−Ω(K). Union bounding over all topics, we get

that with probability Pr
[
∩Ki=1

(
Ni ≥ 1

2C
D
K

)]
≥ 1− 1

K .

Now, let’s consider Pr
[
∩Ki=1Mi| ∩Ki=1

(
Ni ≥ 1

2C
D
K

)]
. The event ∩Ki=1

(
Ni ≥ 1

2C
D
K

)
can be written as the

disjoint union of events
{D = ∪Ki=1Di,∀i 6= j,Di ∩Dj = ∅}

where D is the set of all documents, Di is the set of documents that have i as the dominating topic,
and |Di| ≥ 1

2C
D
K ,∀i. (i.e. all the partitions of D into K sets of sufficiently large size). Evidently,

if we prove a lower bound on Pr
[
∩Ki=1Mi|E

]
for any such event E, it will imply a lower bound on

Pr
[
∩Ki=1Mi| ∩Ki=1

(
Ni ≥ 1

2C
D
K

)]
. For any such event, consider two documents d, d′ ∈ {Di}, i.e. having

i as the dominating topic. Let Id,d′ be an indicator variable denoting the event that d, d′ do not intersect
in an additional topic. Pr[Id,d′ = 1] = 1− o(1), by the independent topic inclusion property and the events
Id,d′ are easily seen to be pairwise independent. Furthermore, Var[Id,d′ ] = o(1). By Chebyshev’s inequality,

Pr

 ∑
d,d′∈Di

Id,d′ ≥
1

2
D2
i − c

√
D2
i

 ≥ 1− 1

c2

If Ni = Ω(K logK), plugging in c = K, we get that Pr

 ∑
d,d′∈Di

Id,d′ = Ω(D2
i )

 ≥ 1 − Ω(
1

K2
). Hence,

Pr
[
∩Ki=1Mi|E

]
≥ 1− 1

K , by a union bound, which implies Pr
[
∩Ki=1Mi| ∩Ki=1

(
Ni ≥ 1

2C
D
K

)]
≥ 1− 1

K .
Putting all of the above together, if D = Ω(K2 logK), with probability 1 − Ω( 1

K ), all topics have
Ω(D2/K2) identifying pairs, which is what we want.
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The lemma implies that with probability 1− Ω( 1
K ), we will not eliminate the sets Sa,b corresponding to

topic supports.
We introduce the following concept of a ”configuration”. A set of words C will be called a ”configuration”

if it can be constructed as the intersection of the discriminative words in some set of topics, i.e.

Definition. A set of words C is called a configuration if there exists a set I = {I1, . . . , I|I|} of topics, s.t.

C = ∩|I|i=1WIi

Let’s call the minimal size of a set I that can produce C the generator size of C.

Now, we claim the following fact:

Lemma 16. If a configuration C has generator size ≥ 3, then with probability 1 − Ω( 1
K ), it cannot appear

as one of the sets Sa,b after step 2 in the WEEDOUT procedure.

Proof. Since C has generator size at least 3, if two sets d, d′ intersect in less than two topics, then step 1 in
WEEDOUT cannot produce Sa,b which is equal to C. Hence, prior to step 2, C can only appear as Sd,d′ for
d, d′ that intersect in at least 3 topics.

Let Id,d′ be an indicator variable denoting the fact that the pair of documents d, d′ intersects in at least
3 topics. We have Pr[Id,d′ = 1] ≤ 1/K3 + 1/K4 + . . . 1/KT = O(1/K3) by the independent topic inclusion
property.

If I3 is a variable denoting the total number of documents that intersect in at least 3 topics, again by
Chebyshev as in Lemma 15 we get:

Pr[I3 ≥ Θ(D/K3)− cΘ(
√
D/K3/2)] ≥ 1− 1

c2

Again, by putting c =
√
K, since the number of documents is K4 log2K, with probability 1 − 1

K , all
configurations with generator size ≥ 3 cannot appear as one of the sets Sa,b, as we wanted.

This means that after the WEEDOUT step, with probability 1 − Ω( 1
K ), we will just have sets Sa,b

corresponding to configurations generated by two topics or less. The options for these are severely limited:
they have to be either a topic support, the union of two topic supports, or the intersection of two topic
supports. We can handle this case fairly easily, as proven in the following lemma:

Lemma 17. After the end of step 3, with probability 1 − Ω( 1
K ), the only remaining Sa,b are those corre-

sponding to topic supports.

Proof. First, when we check if some Sd,d′ is the union of two other sets and delete it if yes, I claim we will
delete the sets equal to configurations that correspond to unions of two topic supports (and nothing else).
This is not that difficult to see: certainly the sets that do correspond to configurations of this type will get
deleted.

On the other hand, if it’s the case that Sa,b corresponds to a single topic support, we won’t be able to
write it as the union of two sets Sd,d′ , Sd′′,d′′′ , unless one is contained inside the other - this is ensured by
the existence of discriminative words.

Hence, after the first two passes, we will only be left with sets that are either topic supports, or inter-
sections of two topic supports. Then, removing the non-maximal is easily seen to remove the sets that are
intersections, again due to the existence of discriminative words.

2.3.4 Finding the document supports

Now, given the supports of each topic, for each document, we want to determine the topics which are non-zero
in it. The algorithm is given in 2:

Lemma 18. If a topic i0 is such that γ∗d,i0 > 0, it will be declared as ”IN”. If a topic i0 is such that γ∗d,i0 = 0,
it will be declared as out.
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Algorithm 2 Finding document supports

Initialize R = ∅.
for each i do

Compute Score(i) =
∑
j∈Support(i)\R f̃d,j

end for
Find i∗ such that Score(i∗) is maximum.
while Score(i∗) > 0 do

Output i∗ to be in the support of d.
R = R ∪ support(i∗)
Recompute Score for every other topic.
Find i∗ with maximum score.

end while

Proof. Consider a topic i. At any iteration of the while cycle, consider
∑
j∈Support(i)\R f̃d,j . Clearly, f̃d,j ≥

(1− ε)γ∗d,iβ∗i,j . Also
∑
j∈R β

∗
i,j = To(1). Hence,

∑
j∈Support(i)\R

f̃d,j ≥ (1− ε)γ∗d,i(1− To(1)) ≥ 1

2
γ∗d,i

So, topic i will be added eventually.
On the other hand, let’s assume the document doesn’t contain a given topic i0. Let’s call B the set

of words j which are in the support of i0, and belong to at least one of the topics in document d. Then,∑
j∈i0 f̃d,j =

∑
j∈B f̃d,j . Let i∗ be the topic which is present in the document but not added yet and has

maximum value of γ∗d,i. Then ∑
j∈B

f̃d,j ≤ (1 + ε)
∑
i∈d

∑
j∈B

γ∗d,iβ
∗
i,j ≤

(1 + ε)γ∗d,i∗
∑
i∈d

∑
j∈B

β∗i,j ≤

(1 + ε)Tγ∗d,i∗o(1) ≤ γ∗d,i∗ ] · o(1)

Hence, topic i∗ will always get preference over i0. Once all the topics which are present in the document
have been added, it is clear that no more topic will be added since score will be 0.

This finally finishes the proof of Theorem 12.

3 Case study 2: Dominating topics, seeded initialization

As a reminder, seeded initialization does the following:

• For each topic i, the user supplies a document d, in which γ∗d,i ≥ Cl.

• We initialize with β0
i,j = f∗d,j .

The theorem we want to show is:

Theorem 19 (Restatement of Theorem 3). Given an instance of topic modelling satisfying the Case Study

2 properties specified above, where the number of documents is Ω(K log2 N
ε′2 ), if we initialize with seeded initial-

ization, after O(log(1/ε′)+logN) of KL-tEM updates, we recover the topic-word matrix and topic proportions
to multiplicative accuracy 1 + ε′.

The proof will be in a few phases again:

14



• Phase I: Anchor identification: First, we will show that as long as we can identify the dominating
topic in each of the documents, the anchor words will make progress, in the sense that after O(logN)
number of rounds, the values for the topic-word estimates will be almost zero for the topics for which
the word is not an anchor, and lower bounded for the one for which it is.

• Phase II: Discriminative word identification: Next, we show that as long as we can identify the
dominating topics in each of the documents, and the anchor words were properly identified in the
previous phase, the values of the topic-word matrix for words which do not belong to a certain topic
will keep dropping until they reach almost zero, while being lower bounded for the words that do.

• For Phase I and II above, we will need to show that the dominating topic can be identified at any step.
Here we’ll leverage the fact that the dominating topic is sufficiently large, as well as the fact that the
anchor words have quite a large weight.

• Phase III: Alternating minimization: Finally, we show that after Phase I and II above, we are back to
the scenario of the previous section: namely, there is a ”boosting” type of improvement in each next
round.

3.1 Estimates on the dominating topic

Before diving into the specifics of the phases above, we will show what the conditions we need are to be
able to identify the dominating topic in each of the documents. For notational convenience, let ∆m be the
m-dimensional simplex: x ∈ ∆m iff ∀i ∈ [m], 0 ≤ xi ≤ 1 and

∑
i xi = 1.

First, during a γ update, we are minimizing KL(f̃d||fd) with respect to the γd variables, so we need some
way or arguing that whenever the β estimates are not too bad, minimizing this quantity also quantifies how
far the γd variables are from γ∗d .

Formally, we’ll show the following:

Lemma 20. If, for all i, KL(β∗i ||βti ) ≤ Rβ, and minγd∈∆K
KL(f̃d||fd) ≤ Rf , after running a KL divergence

minimization step with respect to the γd variables, we get that ||γ∗d − γd||1 ≤ 1
p (
√

1
2Rβ +

√
1
2Rf ) + ε.

We will start with the following simple helper claim:

Lemma 21. If the word-topic matrix β is such that in each topic the anchor words have total probability at
least p, then ||β∗v||1 ≥ p||v||1.

Proof.

||β∗v||1 =
∑
j

|
∑
i

β∗i,jvi| ≥
∑
i

∑
j∈Wi

|β∗i,jvi| ≥
∑
i

p|vi| ≥ p||v||1

Lemma 22. If, for all i, KL(β∗i ||βti ) ≤ Rβ, and minγd∈∆K
KL(f̃d||fd) ≤ Rf , after running a KL divergence

minimization step with respect to the γd variables, we get that ||γ∗d − γd||1 ≤ 1
p (
√

1
2Rβ +

√
1
2Rf ) + ε.

Proof. First, observe that minγd∈∆K
KL(f̃d||fd) ≤ Rf , at the the optimal γd, we have that ||f̃d−fd||21 ≤ 1

2Rf ,

i.e. ||f̃d − fd|| ≤
√

1
2Rf , by Pinsker’s inequality.

We will show that if ||γ∗d − γd||1 is large, so must be ||f̃d − fd||1, and hence KL(f̃d||fd) - which will
contradict the above upper bound.

Let’s consider β∗ as N by K matrix, and γ∗ and f∗ as K-dimensional vectors. Let β∗γ∗ just denote
matrix-vector multiplication - so f∗ = β∗γ∗. For any other vector γ̂, let’s denote f̂ = βtγ̃. Then:

||f̃ − f̂ ||1 = ||f̃ − βtγ̃||1 = ||f̃ − (β∗ + (βt − β∗))γ̃||1 ≥

||f̃ − β∗γ̃||1 − ||(βt − β∗)γ̃||1 (3.1)
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Hence, ||f̃ − β∗γ̃||1 ≤ ||(βt − β∗)γ̃||1 + ||f̃ − f̂ ||1. However,
However,

||(βt − β∗)γ||1 ≤ max
i

∑
j

|βti,j − β∗i,j | ≤ max
i

√
1

2
KL(β∗i ||βti ) ≤

√
1

2
Rβ (3.2)

The first inequality is a property of induced matrix norms, the second is via Pinsker’s inequality.

So, by 3.1 and 3.2, ||f̃ −β∗γ̃||1 ≤
√

1
2Rβ +

√
1
2Rf . But now, finally, Lemma 21 implies that ||γ∗d−γd||1 ≤

1
p (
√

1
2Rf +

√
1
2Rβ) + ε.

Lemma 23. Suppose that for the dominating topic i in a document d, γ∗d,i ≥ Cl, and for all other topics

i′, γ∗d,i′ ≤ Cs, s.t. Cl − Cs >
1
p (
√

1
2Rf +

√
1
2Rβ) + ε. Then, the above test identifies the largest topic.

Furthermore, 1
2γ
∗
d,i ≤ γtd,i ≤ 3

2γ
∗
d,i

Proof. By Lemma 22, and the relationship between l1 and total variation distance between distributions, we

have that |γtd,i − γ∗d,i| ≤ 1
2

(
1
p

(√
1
2Rf +

√
1
2Rβ

)
+ ε
)

.

For the dominating topic i, γtd,i ≥ Cl − 1
2

(
1
p

(√
1
2Rf +

√
1
2Rβ

)
+ ε
)

. On the other hand, for any other

topic i′, γtd,i′ ≤ Cs + 1
2

(
1
p

(√
1
2Rf +

√
1
2Rβ

)
+ ε
)

. Since Cl−Cs ≥ 1
p

(√
1
2Rf +

√
1
2Rβ

)
+ ε, γtd,i > γtd,i′ , so

the test works.

On the other hand, since γtd,i ≥ γ∗d,i −
(

1
p

(√
1
2Rf +

√
1
2Rβ

)
+ ε
)
≥ γ∗d,i − 1

2γ
∗
d,i = 1

2γ
∗
d,i. Similarly,

γtd,i ≤ γ∗d,i + 1
p

(√
1
2Rf +

√
1
2Rβ

)
+ ε ≤ γ∗d,i + 1

2γ
∗
d,i = 3

2γ
∗
d,i.

3.2 Phase I: Determining the anchor words

We proceed as outlined. In this section we show that in the first phase of the algorithm, the anchor words
will be identified - by this we mean that we will be able to show that if a word j is an anchor for topic i,
βti,j will be within a factor of roughly 2 from β∗i,j , and βti′,j will be almost 0 for any other topic i′.

We will assume throughout this and the next section that we can identify what the dominating topic is,
and that we have an estimate of the proportion of the dominating topic to within a factor of 2. (We won’t
restate this assumption in all the lemmas in favor of readability.)

We will return to this issue after we’ve proven the claims of Phases I and II modulo this claim.
The outline is the following. We show that at any point in time, by virtue of the initialization, βti,j is

pretty well lower bounded (more precisely it’s at least constant times β∗i,j). This enables us to show that
βti′,j will halve at each iteration - so in some polynomial number of iterations will be basically 0.

3.2.1 Lower bounds on the βti,j values

We proceed as outlined above. We show here that the βti,j variables are lower bounded at any point in time.
More precisely, we show the following lemma:

Lemma 24. Let j be an anchor word for topic i, and let i′ 6= i. Suppose that βti′,j ≤ βti,j. Then, βt+1
i,j ≥

(1− ε)Clβ∗i,j holds.

Proof. We’ll prove a lower bound on each of the terms
f̃d,j
ftd,j

βti,j . Since the update on the β variables is a

convex combination of terms of this type, this will imply a lower bound on βt+1
i,j .

For this, we upper bound f td,j . We have:

f td,j = βti,jγ
t
d,i +

∑
i′ 6=i

βti′,jγ
t
d,i′
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This means that f td,j is a convex combination of terms, each of which is at most βti,j . Hence, f td,j ≤ βti,j

holds. But then
f̃d,j
ftd,j

βti,j ≥ f̃d,j ≥ (1 − ε)β∗i,jγ∗d,i ≥ (1 − ε)Clβ∗i,j . This implies βt+1
i,j ≥ (1 − ε)Clβ∗i,j , as we

wanted.

3.2.2 Decreasing βti′,j values

We’ll bootstrap to the above result. Namely, we’ll prove that whenever βti,j ≥ 1/Cββ
∗
i,j for some constant Cβ ,

the βti′,j values decrease multiplicatively at each round. Prior to doing that, the following lemma is useful.

It will state that whenever the values of the variables βti′,j are somewhat small, we can get some reasonable

lower bound on the values γtd,i we get after a step of KL minimization with respect to the γ variables.

Lemma 25. Let j be an anchor for topic i, and let i′ 6= i. Let βti′,j ≤ bβti,j. Then, for any document d,

when performing KL divergence minimization with respect to the variables γd, for the optimum value γtd,i, it

holds that γtd,i ≥ (1− ε) p
1−bγ

∗
d,i − b

1−b .

Proof. The KKT conditions 2.1 imply that if we denote Ai the set of anchors in topic i,
∑
j∈Ai

f̃d,j
ftd,j

βti,j ≤ 1.

By the assumption of the lemma,
f td,j ≤ bti,jγtd,i + bbti,j(1− γtd,i)

Since f̃d,j ≥ (1− ε)β∗i,jγ∗d,i, this implies
f̃d,j
ftd,j

βti,j ≥ (1− ε)β∗i,j
γ∗d,i

γtd,i(1−b)+b
, i.e.

∑
j∈Ai(1− ε)β

∗
i,j

γ∗d,i
γtd,i(1−b)+b

≤ 1.

Rearranging the terms, we get

γtd,i ≥ (1− ε)
∑
j∈Ai

β∗i,j
γ∗d,i

1− b
− b

1− b
≥ (1− ε)pγ∗d,i −

b

1− b

as we needed.

With this in place, we show that the value βti′,j when j is an anchor for topic i 6= i′, decreases by a factor
of 2 after the update for the β variables.

This requires one more new idea. Intuitively, if we view the update as setting βt+1
i′,j to βti,j multiplied by

a convex combination of terms
f∗d,j
ftd,j

, a large number of them will be zero, just because f∗d,j = 0 unless topic

i belongs to document d.
By the topic equidistribution property then, the probability that this happens is only O(1/K), so if the

weight in the convex combination on these terms is reasonable, we will multiply βti,j by something less than
1, which is what we need.

Lemma 25 says that if γ∗d,i is reasonably large, we will estimate it somewhat decently. If γ∗d,i is small,
then f∗d,j would be small anyway.

So we proceed according to this idea.

Lemma 26. Let j be an anchor for topic i. Let βti′,j ≤ bβti,j for i′ 6= i, and let βti,j ≥ 1/Cββ
∗
i,j for some

constant Cβ. Then, βt+1
i′,j ≤ b/2β∗i,j

Proof. We will split the β update as

βt+1
i′,j = βti′,j(

∑
d∈D1

f̃d,j
ftd,j

γtd,i′∑
d γ

t
d,i′

+

∑
d∈D2

f̃d,j
ftd,j

γtd,i′∑
d γ

t
d,i′

+

∑
d∈D3

f̃d,j
ftd,j

γtd,i′∑
d γ

t
d,i′

)

for some appropriately chosen partition of the documents into three groups D1, D2, D3.
Let D1 be documents which do not contain topic i at all, D2 documents which do contain topic i, and

γ∗d,i ≥ 2b
p , and D3 documents which do contain topic i and γ∗d,i <

2b
p .

The first part will just vanish because word j is an anchord word for topic i, and topic i does not appear
in it, so f∗d,j = 0 for all documents d ∈ D1.
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The second summand we will upper bound as follows. First, we upper bound
f̃d,j
ftd,j

. We have that

f td,j ≥ βti,jγ
t
d,i ≥ 1/Cββ

∗
i,jγ

t
d,i. However, we can use Lemma 25 to lower bound γtd,i. We have that γtd,i ≥

(1− ε)( p
1−bγ

∗
d,i − b

1−b ) ≥ (1− ε) p
2(1−b)γ

∗
d,i. This alltogether implies

f̃d,j
ftd,j
≤ 1

1−ε
2(1−b)Cβ

p . Hence,

βti′,j

∑
d∈D2

f̃d,j
ftd,j

γtd,i′∑
d γ

t
d,i′

≤ 1

1− ε
2Cβ
p

(1− b)βti′,j

∑
d∈D2

γtd,i′∑
d γ

t
d,i′

Furthermore,
∑
d γ

t
d,i′ ≥ 1

2 |D|Cl. On the other hand, I claim
∑
d∈D2

γtd,i′ = O(K/|D|). Recall that D is the
set of documents where topic i′ is the dominating topic - so by definition they contain topic i. On the other
hand, if a document is in D2 then it contains topic i as well. However, by the independent topic inclusion
property, the probability that a document with dominating topic i′ contains topic i as well is O(1/K). Hence,

βti′,j

∑
d∈D2

f̃d,j
ftd,j

γtd,i′∑
d γ

t
d,i′

= O(
1

K
)bβti,j

For the third summand we provide a trivial bound for the terms
f̃d,j
ftd,j

βti′,jγ
t
d,i′ :

f̃d,j
f td,j

βti′,jγ
t
d,i′ ≤ (1 + ε)β∗i,jγ

∗
d,i ≤ (1 + ε)β∗i,j

2b

p

Since again,
∑
d γ

t
d,i′ ≥ 1

2 |D|Cl, and again, the number of document in D3 is at most O(1/K) for the same
reasons as before, we have that

βti′,j

∑
d∈D3

f∗d,j
ftd,j

γtd,i′∑
d γ

t
d,i′

≤ O(1/K)bβ∗i,j = O(1/K)bβti,j

since βti,j ≥ 1
Cβ
β∗i,j .

From the above three bounds, we get that βt+1
i′,j ≤ O(1/K)bβti,j ≤

b

2
βti,j .

Now, we just have to put together the previous two claims: namely we need to show that the conditions
for the decay of the non-anchor topic values, and the lower bound on the anchor-topic values are actually
preserved during the iterations. We will hence show the following:

Lemma 27. Suppose we initialize with seeded initialization. Then, after t rounds, if j is an anchor word
for topic i, βti,j ≥ (1− ε)Clβ∗i,j, and βti′,j ≤ 2−tCsβ

∗
i,j.

Proof. We prove this by induction.
Let’s cover the base case first. In the seed document corresponding to topic i, γ∗d,i ≥ Cl, so at initialization

β0
i,j ≥ Clβ∗i,j . On the other hand, if topic i appears in the seed document for topic i′, then after initialization

β0
i′,j ≤ Csβ∗i,j < β0

i,j . Hence, at initialization, the claim is true.

On to the induction step. If the claim were true at time step t, since βti′,j ≤ 2−tCsβ
∗
i,j , by Lemma 24,

βt+1
i,j ≥ Clβ

∗
i,j - so the lower bound still holds at time t + 1. On the other hand, since βti,j ≥ Clβ

∗
i,j , by

Lemma 26, at time t+ 1, βti′,j ≤ 2−(t+1)Csβ
∗
i,j .

Hence, the claim we want follows.

Finally, we show the easy lemma that after the values βti′,j have decreased to (almost) 0, βti,j ≥ 1
2β
∗
i,j .
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Lemma 28. Let word j be an anchor word for topic i. Suppose βti′,j ≤ 2−tCsβ
∗
i,j and

t > 10 max(log(N), log(
1

γ∗min

), log(
1

β∗min

))

Then 4β∗i,j ≥ β
t+1
i,j ≥ 1

4β
∗
i,j.

Proof. Let us do the lower bound first. It’s easy to see
∑
i′ β

t
i′,jγd,i′ ≤ 2βti,jγ

t
d,i. Hence,

f̃d,j
f td,j

βti,jγ
t
d,i =

f̃d,j∑
i′ β

t
i′,jγ

t
d,i′

βti,jγ
t
d,i ≥

1

2

f̃d,j
βti,jγ

t
d,i

βti,jγ
t
d,i ≥ (1− ε)1

2
β∗i,jγ

∗
d,i

Hence, after the update,

βt+1
i,j ≥ (1− ε)1

2
β∗i,j

∑
d γ
∗
d,i∑

d γ
t
d,i

≥ 1

4
β∗i,j

since γtd,i ≤ 2γ∗d,i.

The upper bound is similar. Since
∑
i′ β

t
i′,jγd,i′ ≥ βti,jγtd,i,

f̃d,j
f td,j

βti,jγ
t
d,i ≤ f̃d,j ≤ (1 + ε)β∗i,jγ

∗
d,i

Hence,

βt+1
i,j ≤ (1 + ε)β∗i,j

∑
d γ
∗
d,i∑

d γ
t
d,i

≤ 2β∗i,j

since γtd,i ≥ 1
2γ
∗
d,i. This certainly implies the claim we want.

Furthermore, the following simple application of Lemma 25 is immediate and useful:

Lemma 29. Let t > 10 max(logN, log 1
γ∗min

, log 1
β∗min

). Then, γtd,i ≥
p
2γ
∗
d,i.

3.3 Discriminative words

We established in the previous section that after logarithmic number of steps, the anchor words will be
correctly identified, and estimated within a factor of 2. We show that this is enough to cause the support of
the discriminative words to be correctly identified too, as well as estimate them to within a constant factor
where they are non-zero.

Same as before, we will assume in this section that we can identify the dominating topic.
We will crucially rely on the fact that the discriminative words will not have a very large dynamic range

comparatively to their total probability mass in a topic. The high level outline will be similar to the case
for the anchor words. We will prove that if a discriminative word j is in the support of topic i, then βti,j will
always be reasonably lower bounded, and this will cause the values βti′,j to keep decaying for the topics i′

that the word j does not belong to.
The reason we will need the bound on the dynamic range, and the proportion of the dominating topic,

and the size of the dominating topic, is to ensure that the β’s are always properly lower bounded.
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3.3.1 Bounds on the βti,j values

First, we show that because the discriminative words have a small range, the values βti,j whenever β∗i,j is
non-zero are always maintained to be within some multiplicative constant (which depends on the range of
the β∗i,j).

As a preliminary, notice that having identified the anchor words correctly the γ values are appropriately
lower bounded after running the γ update. Namely, by Lemma 29, γtd,i ≥ p/2γ∗d,i

With this in hand, we show that the βti,j values are well upper bounded whenever β∗i,j is non-zero.

Lemma 30. At any point in time t, βti,j ≤ (1 + ε) 2B
Cl
β∗i,j.

Proof. Since
f̃d,j
ftd,j

βti,jγ
t
d,i ≤ f̃d,j we have:

βt+1
i,j ≤

∑
d f̃d,j∑
d γ

t
d,i

≤ 2 ·
∑
d f̃d,j∑
d γ
∗
d,i

On the other hand, we claim that f̃d,j ≤ (1 + ε)Bβ∗i,j . Indeed, f̃d,j ≤ (1 + ε)
∑
i γ
∗
d,iβ

∗
i,j , and for any other

topic i′, β∗i′,j ≤ Bβ∗i,j . Hence,

2 ·
∑
d f̃d,j∑
d γ
∗
d,i

≤
2(1 + ε)DBβ∗i,j∑

d γ
∗
d,i

However, since γ∗d,i ≥ Cl, the previous expression is at most

2(1 + ε)DBβ∗i,j
DCl

=
2(1 + ε)B

Cl
β∗i,j

So, we get the claim we wanted.

The lower bound on the βti,j values is a bit more involved. To show a lower bound on the βti,j values is
maintained, we will make use of both the fact that the discriminative words have a small range, and that
we have some small, but reasonable proportion of documents where γ∗d,i ≥ 1− δ. More precisely, we show:

Lemma 31. Let βti,j ≤
2(1+ε)B

Cl
β∗i,j for all topics i that word j belongs to, and let βti,j ≥ Cl

B β
∗
i,j. Then,

βt+1
i,j ≥

Cl
B β
∗
i,j as well.

Proof. Let’s call Dδ the documents where γ∗d,i ≥ 1− δ. We can certainly lower bound

βt+1
i,j ≥

∑
d∈Dδ

f̃d,j
ftd,j

γtd,iβ
t
i,j∑

d∈D γ
t
d,i

First, let’s focus on
f̃d,j
ftd,j

βti,j . Then,

f̃d,j ≥ (1− ε)(1− δ)β∗i,j (3.3)

Furthermore, since
∑
d∈Dδ γ

t
d,i ≥ 1

2

∑
d∈Dδ γ

∗
d,i and

∑
d γ

t
d,i ≤ 2

∑
d γ
∗
d,i, we have that∑

d∈Dδ γ
t
d,i∑

d γ
t
d,i

≥ 1

4

8

B
(1− δ) =

2

B
(1− δ) (3.4)

Finally, we claim that
βti,j
ftd,j
≥ 1

2 . Massaging this inequality a bit, we get it’s equivalent to:

βti,j
f td,j
≥ 1

2
⇔

20



f ti,j ≤ 2βti,j ⇔

γtd,iβ
t
i,j +

∑
i′

γtd,i′β
t
i′,j ≤ 2βti,j

The left hand side can be upper bounded by

γtd,iβ
t
i,j +

∑
i′

γtd,i′
2(1 + ε)B3

C2
l

βti,j ≤

γtd,iβ
t
i,j + (1− γtd,i)

2(1 + ε)B3

C2
l

βti,j

by the assumptions of the lemma.

So, it is sufficient to show that γtd,iβ
t
i,j + (1 − γtd,i)

2(1+ε)B3

C2
l

βti,j ≤ 2βti,j , however this is equivalent after

some rearrangement to γtd,i ≥ 1− 1
2(1+ε)B3

C2
l

−1
.

It’s certainly sufficient for this that γtd,i ≥ 1− 1
B3

C2
l

= 1− C2
l

B3 , but since since γ∗d,i ≥ 1− δ, by the definition

of δ and Lemmas 22, 33, 34, this certainly holds.
Together with 3.4 and 3.3, we get that

βt+1
i,j ≥ (1− ε) 2

B
(1− δ)2 1

2
β∗i,j ≥ (1− ε) (1− δ)2

B
β∗i,j

But, by our assumptions, (1− ε)(1− δ)2 ≥ Cl, so the claim follows.

3.3.2 Decreasing βti′,j values

Finally, we show that if the discriminative word j does not belong in topic i′, the value for βti′,j will keep
dropping. More precisely, the following is true:

Lemma 32. Let word j and topic i be such that β∗i′,j = 0 and let βti′,j ≤ b. Furthermore, let for all the

topics i that j belongs to hold: βti,j ≥ 1/Cββ
∗
i,j for some constant Cβ. Finally, let γtd,i ≥ 1

Cγ
γ∗d,i for some

constant Cγ . Then, βt+1
i′,j ≤ b/2.

Proof. We proceed similarly as the analogous claim for anchor words. We split the update as

βt+1
i′,j = βti′,j(

∑
d∈D1

f̃d,j
ftd,j

γtd,i′∑
d γ

t
d,i′

+

∑
d∈D2

f̃d,j
ftd,j

γtd,i′∑
d γ

t
d,i′

)

for some appropriate partitioning of the documents D1, D2.
Namely, let D1 be documents which do not contain any topic to which word j belongs, the D2 documents

which contain at least one topic word j belongs to.

For all the documents in D1, f∗d,j = 0, and we will provide a good bound for the terms
f̃d,j
ftd,j

in D2, this

way, we’ll ensure βti,j gets multiplied by a quantity which is o(1) to get βt+1
i,j , which is of course enough for

what we want.
Bounding the terms in D2 is even simpler than before. We have:

f td,j =
∑
i

βti,jγ
t
d,i ≥

1

CβCγ

∑
i

β∗i,jγ
∗
d,i =

1

CβCγ
f∗d,j

Hence,
f∗d,j
ftd,j
≤ CβCγ .
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Then we have: ∑
d
f̃d,j
ftd,j

γtd,i∑
d γ

t
d,i

≤ (1 + ε)

∑
d

f∗d,j
ftd,j

γtd,i∑
d γ

t
d,i

≤

4(1 + ε)

∑
d

f∗d,j
ftd,j

γ∗d,i∑
d γ
∗
d,i

≤ 4(1 + ε)

∑
d∈D2

CβCγγ
∗
d,i∑

d γ
∗
d,i

But now, by the ”weak topic correlation” property,
∑
d∈D2

γ∗d,i∑
d γ
∗
d,i

= o(1). Indeed, D consists of the documents

where i′ is the dominating topic. In order for the document to belong to D2, at least one of the topics word
j belongs to must belong in the document as well. Since the word j only belongs to o(K) of the topics, and
each document contains only a constant number of topics, by the small topic correlation property, the claim
we want follows.

But then, clearly, 4
∑
d∈D2

CβCγγ
∗
d,i∑

d γ
∗
d,i

= o(1) as well.

Hence, βt+1
i′,j = o(1)βti′,j ≤ 1

2β
t
i′,j , which is what we need.

3.4 Determining dominant topic and parameter range

To complete the proofs of the claims for Phase I and II, we need to show that at any point in time we
correctly identify the dominant topic. Furthermore, in order to maintain the lower bounds on the estimates
for the discriminative words, we will need to make sure that γtd,i is large as well in the documents where
γ∗d,i ≥ 1− δ.

Let’s proceed to the problem of detecting the largest topic first. By Lemma 23 all we need to do is bound
Rf and Rβ at any point in time during this phase. To do this, let’s show the following lemma:

Lemma 33. Suppose for the anchor words βti,j ≥ C1β
∗
i,j, for the discriminative words βti,j ≥ C2β

∗
i,j. Let pi

be the proportion of anchor words in topic i. Then, KL(β∗i ||βti ) ≤ pi log( 1
C1

) + (1− pi) log( 1
C2

).

Proof. This is quite simple. Since log is an increasing function,

KL(β∗i ||βti ) =
∑
j

β∗i,j log(
β∗i,j
βti,j

) ≤ pi log(
1

C1
) + (1− pi) log(

1

C2
)

Lemma 34. Suppose for the anchor words βti,j ≥ C1β
∗
i,j, for the discriminative words βti,j ≥ C2β

∗
i,j. Let pi be

the proportion of anchor words in topic i. Then, minγ∈∆K
KL(f̃d||fd) ≤ log(1+ε)+

(
p log( 1

C1
) + (1− p) log( 1

C2
)
)

.

Proof. Also simple. The value of KL(f̃d||fd) one gets by plugging in γd = γ∗ is exactly what is stated in the
lemma.

We’ll just use the above two lemmas combined from our estimates from before. We know, for all the
anchor words, that βti,j ≥ Clβ∗i,j , and that for the discriminative words, βti,j ≥ Cl

B β
∗
i,j . Hence, by Lemma 33,

at any point in time KL(β∗i ||βti ) ≤ p log( 1
Cl

) + (1− p) log( BCl ). So, by Lemma 23, it’s enough that

Cl − Cs ≥
1

p

(√
2

(
p log(

1

Cl
) + (1− p) log(BCl)

)
+
√

log(1 + ε)

)
+ ε

.

Since 1
p

√
2
(
p log( 1

Cl
) + (1− p) log(BCl)

)
≤ 1

p

√
2
(

log( 1
Cl

) + (1− p) logB
)

, to get a sense of the pa-

rameters one can achieve, for detecting the dominant topic, (ignoring ε contributions), it’s sufficient that

Cl − Cs ≥ 2
p

√
max(log( 1

Cl
), (1− p) logB)
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If one thinks of Cl as 1−η and p ≥ 1− η
logB , since log( 1

Cl
) ≈ η roughly we want that Cl−Cs � 2

p

√
η. (One

takeaway message here is that the weight we require to have on the anchors depends only logarithmically on
the range B.)

Let’s finally figure out what the topic proportions must be in the ”heavy” documents. In these, we want

γ∗d,i ≥ 1− C2
l

2B3 + 1
p

(√
2
(
p log( 1

Cl
) + (1− p) log(BCl)

)
−
√

log(1 + ε)

)
+ ε. A similar approximation to the

above gives that we roughly want γ∗d,i ≥ 1− 1−2η
2B3 + 2

p

√
η.

3.5 Getting the supports correct

At the end of the previous section, we argued that after O(logN) rounds, we will identify the anchor words
correctly, and the supports of the discriminative words as well. Furthremore, we will also have estimated
the values of the non-zero discriminative word probabilities, as well the anchor word probabilities up to a
multiplicative constant. Then, I claim that from this point onward at each of the γ steps, the γt values we
get will have the correct support. Namely, the following is true:

Lemma 35. Suppose for the anchor words and discriminative words j, if β∗i,j = 0, it’s true that βti,j = o( 1
n ).

Furthermore, suppose that if β∗i,j 6= 0, 1
Cβ
β∗i,j ≤ βti,j ≤ Cββ∗i,j for some constant Cβ.

Then, when performing KL minimization with respect to the γ variables, whenever γ∗d,i = 0 we have

γtd,i = 0.

Proof. Let γ∗d,i = 0. If γtd,i 6= 0, then the KKT conditions imply:

N∑
j=1

f̃d,j
f td,j

βti,j = 1 (3.5)

The only terms that are non-zero in the above summation are due to words j that belong to at least one
topic i′ in the document. Let I be the set of words that belong to topic i as well.

By Lemma 29, we know that γtd,i ≥ p/2γ∗d,i Since also βti,j ≥ 1
Cβ
β∗i,j , f

t
d,i ≥

p
2Cβ

f∗d,j . Since βti,j = o( 1
n ) for

words j not in the support of topic I,
∑
j /∈I

f̃d,j
f td,j

βti,j = o(1).

On the other hand, for words in I,
f̃d,j
ftd,j

βti,j ≤ (1+ε)
2C2

β

p β∗i,j , so
∑
j∈I

f̃d,j
ftd,j

βti,j = o(1), by the small support

intersection property.
However, this contradicts 3.5, so we get what we want.

This means that after this phase, we will always correctly identify the supports of the γ variables as well.

3.6 Alternating minimization

Now, finishing the proof of Theorem 19 is trivial. Namely, because of Lemmas 35, 27, and the analogue
of 27, we are basically back to the case where we have the correct supports for both the β and γ variables.
The only thing left to deal with is the fact that the β variables are not quite zero.

Let j be an anchor word for topic i. Let ε′′ = 1− (1− ε′)1/7. Similarly as in Lemma 29, for

t > 10 max(logN, log(
1

ε′′γ∗min

), log(
1

ε′′β∗min

))

it holds that
f∗d,j
ftd,j
≥ (1− ε′)1/7 β

∗
i,jγ
∗
d,i

βtd,iγ
t
d,i

. The same inequality is true if j is a lone word for topic i in document

d.
After the above event, the same proof from Case Study 1 implies that after O(log( 1

ε′ )) iterations we’ll
get

1

1 + ε′
β∗i,j ≤ βti,j ≤ (1 + ε′)β∗i,j
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and
1

1 + ε′
γ∗i,j ≤ γti,j ≤ (1 + ε′)γ∗i,j

This finishes the proof of Theorem 19.

4 Justification of prior assumptions

In this section we provide a brief motivation for our choice of properties on the topic model instances we are
looking at. Nothing in the other sections crucially depends on this section, so it can be freely skipped upon
first reading.

Most of our properties on the topic priors are inspired from what happens with the Dirichlet prior -
specifically, variants of all of the ”weak correlations” between topics hold for Dirichlet. Essentially the only
difference between our assumptions and Dirichlet is the lack of smoothness. (Dirichlet is sparse, but only in
the sense that it leads to a few ”large” topics, but the other topics may be non-negligible as well.)

To the best of our knowledge, the lemmas proven here were not derived elsewhere, so we include them
for completeness.

For all of the claims below, we will be concerned with the following scenario:
~γ = (γ1, γ2, . . . , γK) will be a vector of variables, and ~α = (α1, α2, . . . , αk) a vector of parameters. We

will let ~γ be distributed as ~γ := Dir(α1, α2, . . . , αk), where αi = Ci/K
c, for some constants Ci and c > 1.

4.1 Sparsity

To characterize the sparsity of the topic proportions in a document, we will need the following lemma from
(Telgarsky, 2013):

Lemma 36. (Telgarsky, 2013) For a Dirichlet distribution with parameters (C1/k
c, C2/k

c, . . . , Ck/k
c), the

probability that there are more than c0 ln k coordinates in the Dirichlet draw that are ≥ 1/kc0 is at most
1/kc0 .

It’s clear how this is related to our assumption: if one considers the coordinates ≥ 1
kc0 as ”large”, we

assume, in a similar way, that there are only a few ”large” coordinates. The difference is that we want the
rest of the coordinates to be exactly zero.

4.2 Weak topic correlations

We will prove that the Dirichlet distribution satisfies something akin to the weak topic correlations property.
We prove that when conditioning on some small (o(K)) set of topics being small, the marginal distributions
for the rest of the topic proportions are very close to the original ones. This implies our ”weak topic
correlations” property.

The following is true:

Lemma 37. Let ~γ = (γ1, γ2, . . . , γK) be distributed as specified above.
Let S be a set of topics of size o(K), and let’s denote by γS the vector of variables corresponding to the

topics in the set S, and γS̄ the rest of the coordinates. Furthermore, let’s denote by γ̃S̄ the distribution of
γS̄ conditioned on all the coordinates of γS being at most 1/Kc1 for c1 > 1.

Then, for any i ∈ S̄ and γ = 1− δ, any δ = Ω(1),
PγS̄ (γi = γ) = (1± o(1))Pγ̃S̄ (γi = γ).

Proof. It’s a folklore fact that if ~Y = Dir(~α), then

(Y1, Y2, . . . , Yi−1, Yi+1, . . . , YK |Yi = yi) = (1− yi)Dir(α1, α2, . . . , αi−1, αi+1, . . . , αK)

Applying this inductively, we get that γ̃S̄ = (1 −
∑
j∈S γi)Dir(~αS̄). Let’s denote s :=

∑
j∈S γi, and

s̃ =
∑
i∈S αi. Then, since γi ≤ 1/Kc1 for i ∈ S, s = o(1). Similarly, s̃ = o(1).

For notational convenience, let’s call α̃0 =
∑
i/∈S αi, and α0 =

∑
i αi = α̃0 + s̃.
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The marginal distribution of variable Yi where ~Y = Dir(~α) is Beta(αi, α0 − αi).
Hence,

PγS̄ (γi = γ) =
1

B(αi, α̃0 + s̃− αi)
γαi−1(1− γ)α̃0+s̃−αi−1

and

Pγ̃S̄ (γi = γ) =
1

B(αi, α̃0 − αi)
(

γ

1− s
)
αi−1

(1− γ

1− s
)α̃0−αi−1

The following holds:

γαi−1(1− γ)α̃0+s̃−αi−1

( γ
1−s )αi−1(1− γ

1−s )α̃0−αi−1
=

(1− s)αi−1

(
(1− s)(1− γ)

1− s− γ

)−αi−1

(1− γ)s̃ =

(
1 +

s

1− s− γ

)−αi−1

(1− γ)s̃

Now, I claim the above expression is 1± o(1).
We’ll just prove this for each of the terms individually. Since 1 + s

1−s−γ ≥ 1 and −1 − αi ≤ −1, it

follows that (1 + s
1−s−γ )−αi−1 ≤ 1. On the other hand, by Bernoulli’s inequality, (1 + s

1−s−γ )−αi−1 ≥
1− (αi + 1) s

1−s−γ ≥ 1− o(1), since γ = 1− δ, for some constant δ, by our assumptions.

For the second term, since 1 − γ ≤ 1 and s̃ ≥ 0, (1 − γ)s̃ ≤ 1. On the other hand, again by Bernoulli’s
inequality, (1− γ)s̃ ≥ 1− γs̃ = 1− o(1), as we needed.

Comparing B(αi, α̃0 + s̃−αi) and B(αi, α̃0−αi) is not so much more difficult. By definition, B(αi, α0−
αi) =

∫ 1

0
xαi−1(1− x)α0−αi−1 dx, so

B(αi, α0 + s̃− αi)
B(αi, α0 − αi)

=∫ 1

0
xαi−1(1− x)α̃0+s̃−αi−1 dx∫ 1

0
xαi−1(1− x)α̃0−αi−1 dx

We’ll just bound each of the ratios
xαi−1(1− x)α̃0+s̃−αi−1

xαi−1(1− x)α̃0−αi−1

Namely, this is just (1 − x)s̃. Same as above, 1 − o(1) ≤ (1 − γ)s̃ ≤ 1. Hence, these are within a constant
from each other.

4.3 Dominant topic equidistribution

Now, we pass to proving a smooth version of the dominant topic equidistribution property. Namely, for a
threshold x0 = o(1), we can consider a topic ”large” whenever it’s bigger than x0. We will show that for any
topics Yi, Yj , the probabilities that Yi > x0 and Yj > x0 are within a constant from each other.

Mathematically formalizing the above statement, we will prove the following lemma:

Lemma 38. Let ~γ = (γ1, γ2, . . . , γK) be distributed as specified above. Then, P(Yi>x0)
P(Yj>x0) = O(1), for any i, j

if x0 = o(1).
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Proof. As before, the marginal distribution of Yi is Beta(αi, α0 − αi). The Beta distribution pdf is just

P(x) = xαi−1(1−x)α0−αi−1

B(αi,α0−αi) , where B(αi, α0 − αi) =
∫ 1

0
xαi−1(1− x)α0−αi−1 dx.

Hence, the ratio we care about can be written as

(
∫ 1

x0
xαi−1(1− x)α0−αi−1 dx)/B(αi, α0 − αi)

(
∫ 1

x0
xαj−1(1− x)α0−αj−1 dx)/B(αj , α0 − αj)

To get a bound on this ratio, it’s sufficient to bound the normalization constants B(αi, α0 − αi) and

B(αj , α0−αj), as well as the ratio

∫ 1
x0
xαi−1(1−x)α0−αi−1 dx∫ 1

x0
xαj−1(1−x)α0−αj−1 dx

. Let’s prove first that B(αi, α0−αi) ' B(αj , α0−

αj)

By definition, B(αi, α0 − αi) =
∫ 1

0
xαi−1(1 − x)α0−αi−1 dx. The way we’ll analyze this quantity is that

we’ll divide the integral in two parts, one from 0 to 1
2 and one from 1

2 to 1.
Since α0 = O(1), it follows that α0 − αi − 1 & −1 and α0 − αi − 1 . 1. Hence, (1− x)α0−αi−1 = Θ(1).

It follows that ∫ 1
2

0

xαi−1(1− x)α0−αi−1 dx '
∫ 1

2

0

xαi−1 dx =

' (1/2)αi

αi
' 1

αi

where the last equality follows since 1
2 ≤ (1/2)αi ≤ 1.

The second portion is not much more difficult. Since 1
2 ≤

1
2

αi−1 ≤ 1, it follows∫ 1

1
2

xαi−1(1− x)α0−αi−1 dx '
∫ 1

1
2

(1− x)α0−αi−1 dx =

' (1/2)α0−αi

α0 − αi
' 1

α0

where the last two equalities come about since −1 . α0 − αi . 1.
But the above two estimates proved that for any i, B(αi, α0 − αi) ' 1

αi
, as we needed.

So, we proceed onto bounding ∫ 1

x0
xαi−1(1− x)α0−αi−1 dx∫ 1

x0
xαj−1(1− x)α0−αj−1 dx

We’ll proceed in a similar fashion as before. We’ll pick some point xT , and if x < xT , we will show that
xαj−1(1−x)α0−αj−1 is within a constant factor from xαi−1(1−x)α0−αi−1. On the other hand, we will show
that part of the integral where x > xT is dominated by the part where x < xT , which will imply the claim
we need.

Let’s rewrite the ratio above a little:

xαj−1(1− x)α0−αj−1

xαi−1(1− x)α0−αi−1
=

(
x

1− x
)αj−αi = e(αj−αi) ln( x

1−x )

Proceeding as outlined, I claim that for sufficiently large constants C1, C2, s.t. if x ≤ 1 − 1

1+C1e
1
αi

1
C2

,

then xαj−1(1−x)α0−αj−1

xαi−1(1−x)α0−αi−1 = O(1). Let’s call xT = 1− 1

1+C1e
1
αi

1
C2

.

The claim is then, that if xT ≥ x ≥ x0, that (αj − αi) ln( x
1−x ) = O(1).

First let’s assume, αj − αi ≥ 0.
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Then, if ln( x
1−x ) < 0 ⇔ x < 1

2 , the condition is of course satisfied. So let’s assume x ≥ 1
2 . When

1
2 ≤ x ≤ xT , we get that x

1−x ≤ C1e
e

1
αj

1
C2

. Hence, ln( x
1−x ) ≤ lnC1 + 1

αj
1
C2

. It follows that if C1, C2 are

sufficiently large,

(
x

1− x
)αj−αi ≤ eln( x

1−x )αj = O(1)

On the other hand, if αj − αi ≤ 0, when x ≥ 1
2 , (αj − αi) ln( x

1−x ) ≤ 0, so we are fine. However, since

|αj − αi| ≤ αi, it’s easy to check when x ≥ e−c1/αi

1+e−c1/αi
> x0, that (αj − αi) ln( x

1−x ) = O(1).
Finally, we want to claim that the portion of the integral from xT to 1 is dominated by the portion from

x0 to xT .
We can show that the latter portion is O(e−K), and the first is Ω(1).
Let’s lower bound the first portion. We lower bound

∫ xT
x0

xαi−1(1 − x)α0−αi−1 dx by xαi−1
T

∫ xT
x0

(1 −
x)α0−αi−1 dx. For the first factor in the above expression, we use Bernoulli’s inequality to prove it’s Ω(1).
For the second, the integral will evaluate to

(1− x0)α0−αi − (1− xT )α0−αi

α0 − αi
Let’s lower bound the first term in the numerator. If α0 − αi ≥ 1, another application of Bernoulli’s
inequality gives: (1 − x0)α0−αi ≥ 1 − (α0 − αi)x0 ≥ 1 − o(1). If, on the other hand, 0 ≤ α0 − αi ≤ 1,
(1− x0)α0−αi ≥ 1− x0 ≥ 1− o(1).

Then, I claim that (1− xT )α0−αi = e−Ω(K). Indeed, for some constant C3,(
1

1 + C1e
1
αj

1
C2

)α0−αi

≤

(
1

C3e
1
αj

1
C2

)α0−αi

=

= e− ln(C3e
1
αj

1
C2 )(α0−αi)

However, since α0 = Ω(Kαj) and α0−αi = Ω(α0), the above expression is upper bounded by e−Ω(K), which
is what we were claiming. Hence, xαi−1

T

∫ xT
x0

(1− x)α0−αi−1 dx = Ω(1).
Let’s upper bound the latter portion. This expression is upper bounded by

xαi−1
T

∫ 1

xT

(1− x)α0−αi−1 dx = xαi−1
T

(
1

1+C1e
1
αj

1
C2

)α0−αi

α0 − αi

Now, we will separately bound each of xαi−1
T and

 1

1+C1e

1
αj

1
C2

α0−αi

α0−αi .

The first term can be written as 1

x
1−αi
T

. Now, since 1 − αi ≥ 0, we can use Bernoulli’s inequality to

lower bound x1−αi
T by 1 − 1

1+C1e
1
αj

1
C2

(1 − αi). Since 1

1+C1e
1
αj

1
C2

= O(1/e
1
αj ), and 1 − αi ≤ 1/2, let’s say,

1− 1

1+C1e
1
αj

1
C2

(1− αi) = Ω(1), i.e. xαi−1
T = O(1).

For the second term, we already proved above that (1−xT )α0−αi = e−Ω(K), This implies that
∫ 1

xT
xαi−1(1−

x)α0−αi−1 dx = O(e−K), which finishes the proof.

4.4 Independent topic inclusion

Finally, there’s a very simple proxy for ”independent topic inclusion”. Again, as above, γ̃S̄ = (1 −∑
j∈S γi)Dir(~αS̄).

But, if we consider ”inclusion” the probability that a given topic is ”noticeable” (i.e. ≥ 1
nc0 , say), we can

use the above Lemma 38 to show that the probability that any topic is ”large” (but still o(1)) is within a
constant for all the topics in S̄.
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5 On common words

In this section, we show how one would modify the proofs from the previous section to handle common words
as well. We stress that common words are easy to handle if one were allowed to filter them out, but we want
to analyze under which conditions the variational inference updates could handle them on their own.

The difference in contrast to the previous sections is it’s not clear how to argue progress for the common
words: common words do not have lone documents. However, if we can’t argue progress for the common
words, then we can’t argue progress for the γ variables, so the entire argument seems to fail.

Formally, we consider the following scenario:

• On top of the assumptions we have either in Case Study 1 or Case Study 2, we assume that there are
words which show up in all topics, but their probabilities are within a constant κ from each other,
B ≥ κ ≥ 2. We will call these common words. (The κ ≥ 2 is without loss of generality. If the claim
holds for a smaller κ, then it certainly holds for κ = 2. The only difference is that the estimates to
follow could be strengthened, but we assume κ ≥ 2 to get cleaner bounds.)

• For each topic i, if C is the set of common words,
∑
j∈C β

∗
i,j ≤ 1

κ100 , i.e. there isn’t too much mass on
these words.

• Conditioned on topic i being dominant, there is a probability of 1− 1
κ100 that the proportion of topic

i is at least 1− 1
κ100 .

Then, recall the theorem we want to prove is:

Theorem 39 (Restatement of Theorem 5). If we additionally have common words satisfying the properties
specified above, after O(log(1/ε′) + logN) of KL-tEM updates in Case Study 2, or any of the tEM variants
in Case Study 1, and we use the same initializations as before, we recover the topic-word matrix and topic
proportions to multiplicative accuracy 1 + ε′, if 1 + ε′ ≥ 1

(1−ε)7 .

Our analysis here is fairly loose, since the result is anyway a little weak. (e.g. 1− 1
κ100 is not really the

best value for the proportion of the dominating topic, or the proportion of such documents required.) At
any rate, it will be clear from the proofs that the dependency of the dominating topic on κ has to be of the
form 1 − 1

κc , so it’s not clear one would gain too much from the tightest possible analysis. The reason we
are including this section is to show cases where our proof methods start breaking down.

We will do the proof for Case Study 1 first, after which Case Study 2 will easily follow.

5.1 Phase I with common words

The outline is the same as before. We prove the lower bounds on the γ and β variables first. Namely, we
prove:

Lemma 40. Suppose that the supports of β and γ are correct. Then, γtd,i ≥ 1
2γ
∗
d,i.

Proof. Similarly as before, multiplying both sides of 2.1 by γtd,i, we get that

γtd,i ≥
∑
Li

f∗d,j
f td,j

βti,jγ
t
d,i ≥ (1− o(1))(1− 1

κ100
)γ∗d,i ≥

1

2
γ∗d,i

where the second inequality follows since 1− 1
κ100 fraction of the words in topic i is discriminative.

Lemma 41. Suppose that the supports of the γ and β variables are correct. Additionally, if i is a large topic
in d, let 1

2γ
∗
d,i ≤ γtd,i ≤ 3γ∗d,i. Then, for a discriminative word j for topic i, βt+1

i,j ≥ 1
3β
∗
i,j.

Proof. Again, similarly as in Lemma 4,

βt+1
i,j ≥

∑
d∈Dl(1− ε)

γ∗d,iβ
∗
i,j

γtd,i·β
t
i,j
βti,jγ

t
d,i∑D

d=1 γ
t
d,i

=
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(1− ε)β∗i,j

∑D
d∈Dl γ

∗
d,i∑D

d=1 γ
t
d,i

In the documents where topic i is the largest, γtd,i ≤ 3γ∗d,i. So, we can conclude

βt+1
i,j ≥ (1− ε)β∗i,j

1

3

∑D
d∈Dl γ

∗
d,i∑D

d=1 γ
∗
d,i

Since
∑D
d∈Dl

γ∗d,i∑D
d=1 γ

∗
d,i

≥ (1− o(1)), as before, we get what we want.

Lemma 42. Let the β variables have the correct support. Let j be a discriminative word for topic i, and let
βti,j ≥ 1

Cm
β∗i,j, γ

t
d,i ≥ 1

Cm
γ∗d,i whenever β∗i,j 6= 0, γ∗d,i 6= 0. Let βti,j = Ctββ

∗
i,j, where Ctβ ≥ 4Cm, and Cm is a

constant. Then, in the next iteration, βt+1
i,j ≤ C

t+1
β β∗i,j, where Ct+1

β ≤ Ctβ
2 .

Proof. The proof is exactly the same as Lemma 5.

Now, we finally get to the upper bound of the γ values.

Lemma 43. Fix a particular document d. Let’s assume the supports for the β and γ variables are correct.

Furthermore, let 1
Cm
≤ βti,j

β∗i,j
≤ Cm for some constant Cm. Then, γtd,i ≤ 2γ∗d,i.

Proof. Again, multiplying 2.1 by γtd,i, we get

γtd,i =
∑
j∈Li

f̃d,j + γtd,i
∑
j /∈Li

f̃d,j
f td,j

βti,j + γtd,i
∑
j∈C

f̃d,j
f td,j

βti,j

If α̃ =
∑
j∈Li β

∗
i,j , since γtd,i ≥ 1

Cm
γ∗d,i,

f̃d,j
f td,j
≤ (1 + ε)C2

m

If we denote Γ =
∑
j∈C β

∗
i,j , then

γtd,i ≤ (1 + ε)(α̃γ∗d,i + C3
m(1− Γ− α̃)γtd,i + Γκ4γtd,i)

Equivalently, γtd,i ≤
(1+ε)α̃

1−(1+ε)C3
m(1−Γ−α̃)−(1+ε)Γκ4 γ

∗
d,i

Then, we claim that (1+ε)α̃
1−(1+ε)C3

m(1−Γ−α̃)−(1+ε)Γκ4 ≤ 1 + 1
κ50 . Indeed, Γκ4 ≤ κ−96, and C3

m(1 − Γ − α̃) ≤
C3
m(1− α̃) = o(1). Hence,

(1 + ε)α̃

1− (1 + ε)C3
m(1− Γ− α̃)− (1 + ε)Γκ4

≤ (1 + ε)α̃

1− o(1)− κ−96
≤ (1 + ε)α̃

1− κ−95

Finally, we claim that (1+ε)α̃
1−κ−95 ≤ 1 + κ−50. Indeed, this is equivalent to

α̃ ≤ (1 + ε)(1 + κ−50)(1− κ−95) ≤ (1 + ε)(1 + κ−50)

But, since we assume κ ≥ 2, the claim we need follows easily.
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5.2 Phase II of analysis

Finally, we deal with the alternating minimization portion of the argument. How will we deal with the lack
of anchor documents? The almost obvious way: if a document has topic i with proportion 1 − 1

κ100 , it will
behave for all purposes like an anchor document, because the dynamic range of word β∗i,j is limited, and the
contribution from the other topics is not that significant.

Intuitively, we’ll show that
f∗d,j
ftd,j
≈ β∗i,j

βti,j
, so that these documents provide a ”push” for the value of βti,j in

the correct direction.

Lemma 44. Let’s assume that our current iterates βti,j satisfy 1
Ctβ
≤ βi,j∗

βti,j
≤ Ctβ for Ctβ ≥ 1

(1−ε)20 . Then,

after iterating the γ updates to convergence, we will get values γtd,i that satisfy (Ctβ)1/10 ≤ γd,i∗
γtd,i
≤ (Ctβ)1/10.

Proof. As before, we have that

γtd,i =
∑
j∈Li

f̃d,j + γtd,i
∑
j /∈Li

f̃d,j
f td,j

βti,j

Let’s denote as Ctγ = maxi(max(
γ∗d,i
γtd,i

,
γtd,i
γ∗d,i

)), and let, as before, assume that
γtd,i0
γ∗d,i0

= Ctγ .

By the definition of Ctγ ,

γtd,i0 =
∑
j∈Li0

f̃d,j + γtd,i0

∑
j /∈Li0

f̃d,j
f td,j

βti0,j ≤

(1 + ε)(α̃γ∗d,i0 + (1− α̃)(Ctβ)2(Ctγ)2γ∗d,i0)

We claim that
(1 + ε)(α̃+ (1− α̃)(Ctβ)2(Ctγ)2) ≤ (Ctγ)1/10 (5.1)

which will be a contradiction to the definition of Ctγ .

After a little rewriting, 5.1 translates to α̃ ≥ 1 −
(Ctγ )1/10

1+ε −1

(CtβC
t
γ)2−1

. By our assumption on Ctγ , Ctβ ≤ C10
γ , so

the right hand side above is upper bounded by 1−
(Ctγ )1/10

1+ε −1

(Ctγ)8−1 .

But, Lemma 43 implies that certainly Ctγ ≤ C0
γ . The function

f(c) =
c1/10

1+ε − 1

c8 − 1

can be easily seen to be monotonically decreasing on the interval of interest, and hence is lower bounded by
(C0
γ )1/10

1+ε −1

(C0
γ)8−1 . Since α̃ = (1− o(1))(1− 1

κ100 ) and C0
γ ≤ 3, the claim we want is clearly true.

The case where
γ∗d,i0
γtd,i0

= Ctγ is not much more difficult. An analogous calculation as in Lemma 8 gives that

to get a contradiction to the definition of Ctγ , the condition required is that 1 −
1− 1

(1−ε)(Ctγ )1/10

1− 1
(Ctγ )8

. As before,

if f(c) =
1− 1

(1−ε)c1/10

1−c8 , it s easy to check that f(c) is monotonically increasing in the interval of interest, so
lower bounded by

1− 1
(1−ε)( 1

(1−ε)20 )1/10

1− 1
(( 1

1−ε )20)8

=

1− (1− ε)
1− (1− ε)160

≥ 1

160

But, α̃ ≥ (1− 1
κ100 )(1− o(1)) ≥ 1− 1

160 , so we get what we want.
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Next, we show the following lemma.

Lemma 45. Suppose at time step t, 1
Ctγ
γ∗d,i ≤ γtd,i ≤ Ctγγ

∗
d,i and 1

Ctβ
β∗i,j ≤ βti,j ≤ Ctββ

∗
i,j, such that Ctγ ≤

(Ctβ)1/10 for Ctβ ≥ 1
(1−ε)20 . Then, at time step t+ 1, 1/Ct+1

β β∗i,j ≤ βti,j ≤ C
t+1
β β∗i,j, where Ct+1

β = (Ctβ)3/4

Proof. Let’s assume a document d has a dominating topic of proportion at least 1− 1/κ100.

Then, we claim that
f∗d,j
ftd,j
≥ 1

(Ctβ)1/4

β∗i,j
βti,j

. We will do a sequence of rearrangements to get this condition to

a simpler form:

f∗d,j
f td,j
≥ 1

(Ctβ)1/4

β∗i,j
βti,j
⇔

f∗d,j
β∗i,j
≥ 1

(Ctβ)1/4

f td,j
βti,j
⇔

γ∗d,i +
∑
i′

γ∗d,i′
β∗i′,j
β∗i,j

>
1

(Ctβ)1/4
(γtd,i +

∑
i′

γtd,i′
βti′,j
βti,j

)

Let’s upper bound the right hand side by some simpler quantities. We have:

1

(Ctβ)1/4
(γtd,i +

∑
i′

γtd,i′
βti′,j
βti,j

) ≤

1

(Ctβ)1/4
Ctγ(γ∗d,i +

∑
i′

γ∗d,i′
βti′,j
βti,j

) ≤

1

(Ctβ)1/4
Ctγ(γ∗d,i + (Ctβ)2

∑
i′

γ∗d,i′
β∗i′,j
β∗i,j

)

Hence, it is sufficient to prove

γ∗d,i +
∑
i′

γ∗d,i′
β∗i′,j
β∗i,j

≥ 1

(Ctβ)1/4
Ctγ(γ∗d,i + (Ctβ)2

∑
i′

γ∗d,i′
β∗i′,j
β∗i,j

)⇔

γ∗d,i(1−
Ctγ

(Ctβ)1/4
) ≥

∑
i′

γ∗d,i′(
Ctγ

(Ctβ)1/4
(Ctβ)2 − 1)

β∗i′,j
β∗i,j

Again, we can upper bound the right hand side by

∑
i′

γ∗d,i′(
Ctγ

(Ctβ)1/4
(Ctβ)2 − 1)κ =

(1− γ∗d,i)(
Ctγ

(Ctβ)1/4
(Ctβ)2 − 1)κ

So, it is sufficient to prove:

(1− γ∗d,i)(
Ctγ

(Ctβ)1/4
(Ctβ)2 − 1)κ ≤ γ∗d,i(1−

Ctγ
(Ctβ)1/4

)⇔

γ∗d,i(1−
Ctγ

(Ctβ)1/4
+ (

Ctγ
(Ctβ)1/4

(Ctβ)2 − 1)κ) ≥ (
Ctγ

(Ctβ)1/4
(Ctβ)2 − 1)κ⇔

γ∗d,i ≥ 1−
1− Ctγ

(Ctβ)1/4

1− Ctγ
(Ctβ)1/4 + (

Ctγ
(Ctβ)1/4 (Ctβ)2 − 1)κ
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It’s easy to check that the expression on the right hand side as a function of Ctγ is decreasing. Hence, the
RHS is upper bounded by

1−
1− 1

(Ctβ)3/20

1− 1
(Ctβ)3/20 + κ((Ctβ)37/20 − 1)

Now, let’s analyze this expression. If we let f(x) = 1−
1− 1

x3/20

1− 1

x3/20
+κ(x37/20−1)

, I claim f(x) is an increasing

function of x. Indeed, we can calculate it’s derivative fairly easily:

f ′(x) = −
3
20x
− 23

20 (1− 1
x3/20 + κ(x37/20 − 1))− (1− 1

x3/20 )(− 3
20x
− 23

20 + 37
20κx

17
20 )

(1− 1
x3/20 + κ(x37/20 − 1))2

=

−
3
20x
− 23

20κ(x
37
20 − 1)− 37

20κx
17
20 (1− x− 3

20 )

(1− 1
x3/20 + κ(x37/20 − 1))2

=
κ
20 (40x14/20 − (3x−23/40 + 37x17/20))

(1− x3/20 + 1
κ ( 1

x37/20 − 1))2

By the AM-GM inequality, 3x−23/40 + 37x17/20 ≥ 40((x17/20)37(x−23/20)3)1/40 = 40x14/20, so f ′(x) is
positive, so the RHS, as a function of Ctβ , is (x) is increasing.

So, it is sufficient to satisfy the inequality when Ctβ = C0
β . One can check however that by Lemma 41

and 42 this is true.
Proceeding to the lower bound, a similar calculation as before gives that the necessary condition for

progress is:

γ∗d,i ≥ 1−
1− (Ctβ)1/4

Ctγ

1− (Cβ)1/4

Ctγ
+ 1

κ (
(Ctβ)1/4

Ctγ

1
(Ctβ)2 − 1)

Again, the right hand side expression is decreasing in Cγ , so it is certainly upper bounded by

1−
1− (Ctβ)3/20

1− (Ctβ)3/20 + 1
κ ( 1

(Ctβ)37/20 − 1)

Now, the claim is that this expression is increasing in Ctβ . Again, denoting f(x) = 1− 1−x3/20

1−x3/20+ 1
κ ( 1

x37/20
−1)

f ′(x) = −
− 3

20x
−17/20(1− x3/20 + 1

κ ( 1
x37/20 − 1))− (1− x3/20)(− 3

20x
−17/20 − 1

κ
37
20x
−57/20)

(1− x3/20 + 1
κ ( 1

x37/20 − 1))2
=

−
− 3

20x
−17/20 1

κ ( 1
x37/20 − 1) + (1− x3/20) 1

κ
37
20x
−57/20

(1− x3/20 + 1
κ ( 1

x37/20 − 1))2
=

1
20κ (−40x−54/20 + (3x−17/40 + 37x−57/20))

(1− x3/20 + 1
κ ( 1

x37/20 − 1))2

By the AM-GM inequality, 3x−17/40 + 37x−57/20 ≥ 40((x−17/20)37(x−57/20)37)1/40 = 40x−54/20, so f ′(x)
is negative, so the RHS, as a function of Ctβ , is decreasing. So it suffices to check the inequality when

Ctβ = (1− ε)20. In this case, we want to check that

1− 1

κ100
≥ 1−

1− 1
(1−ε)3

1− 1
(1−ε)3 + 1

κ ((1− ε)37 − 1)

Since 1−
1− 1

(1−ε)3

1− 1
(1−ε)3

+ 1
κ ((1−ε)37−1)

≤ 1− 3κ
37+3κ , and κ ≥ 2, this is easily seen to be true.

Now, we’ll split the β update into two parts: documents where topic i is at least 1− 1/κ100, and the rest

of them. In the first group, as we showed above,
f∗d,j
ftd,j
≥ 1

(Ctβ)1/2 . In the second group, we can certainly claim

that
f∗d,j
ftd,j
≥ 1

CtγC
t
β

from the inductive hypothesis. If we denote the set of documents where topic i is at least

1− 1/κ100 as D1, we get that
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βt+1
i,j = βti,j

∑
d

f∗d,j
ftd,j

γtd,i∑D
i=1 γ

t
d,i

≥

∑
d∈D1

1
(Ctβ)1/2Ctγ

β∗i,jγ
∗
d,i +

∑
d∈D\D1

1
(Ctβ)2(Ctγ)2 β

∗
i,jγ
∗
d,i

(Ctγ)
∑
d∈D γ

∗
d,i

If we denote µ =
∑
d∈D1

γ∗d,i∑
d∈D γ

∗
d,i

, then

βt+1
i,j ≥ µ

β∗i,j
(Ctβ)1/4(Ctγ)2

+ (1− µ)
β∗i,j

(Ctβ)2(Ctγ)3

So, to prove βt+1
i,j ≥ 1

C
3/4
β

β∗i,j , it’s sufficient to show

µ
β∗i,j

(Ctβ)1/4(Ctγ)2
+ (1− µ)

β∗i,j
(Ctβ)2(Ctγ)3

≥ 1

C
3/4
β

⇔

µ >

1
(Ctβ)1/2 − 1

(Ctβ)2(Ctγ)3

1
(Ctβ)1/4(Ctγ)2 − 1

(Ctβ)2(Ctγ)3

Given that Ctγ ≤ (Ctβ)1/10, it’s sufficient to show

µ >

1
(Ctβ)1/2 − 1

(Ctβ)23/10

1
(Ctβ)9/20 − 1

(Ctβ)23/10

= 1−
1

(Ctβ)9/20 − 1
(Ctβ)1/2

1
(Ctβ)9/20 − 1

(Ctβ)23/10

Completely analogously as before, 1−
1

(Ct
β

)9/20
− 1

(Ct
β

)1/2

1

(Ct
β

)9/20
− 1

(Ct
β

)23/10

is a decreasing function of Ctβ , so it’s sufficient

to check that µ > 1−
1

(Ct
β

)9/20
− 1

(Ct
β

)1/2

1

(Ct
β

)9/20
− 1

(Ct
β

)23/10

when Ctβ = ( 1
1−ε )

20, which is easily checked to be true.

In the same way, one can prove that βt+1
i,j ≤ (Ctβ)3/4β∗i,j

Putting lemmas 44 and 45 together, we get that the analogue of Lemma 10:

Lemma 46. Suppose it holds that 1
Ct ≤

βi,j∗
βti,j
≤ Ct, Ct ≥ 1

(1−ε)20 . Then, after one KL minimization step

with respect to the γ variables and one β iteration, we get new values βt+1
i,j that satisfy 1

Ct+1 ≤ βi,j∗
βt+1
i,j

≤ Ct+1,

where Ct+1 = (Ct)3/4

As a corollary,

Corollary 47. Phase III requires O(log( 1
log(1+ε) )) = O(log( 1

ε )) iterations to estimate each of the topic-word

matrix and document proportion entries to within a multiplicative factor of 1
(1−ε)7

This finished the proof of Theorem 39 for Case Study 1.

5.3 Generalizing Case Study 2

Finally, the proof for Case Study 2 is quite simple. Because the dynamic range κ ≤ B for the common words,
Lemmas 33 and 34 still hold, and hence we again determine the dominant topic correctly. Because of this,
it’s also easy to see that the lower bounds and upper bounds on the βti,j values for the common words are
maintained to be a constant, since the proof of Lemmas 30 and 31 holds for the common words verbatim.
This means that the anchor words and discriminative words will be correctly determined just as before. But
after that point, the analysis of Case Study 2 is exactly the same as the one for Case Study 2 — which we
already covered in the above section. This finishes the proof of Theorem 39.
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6 Estimates on number of documents

Finally, we state a few helper lemmas to estimate how many documents will be needed. The properties we
need are that the empirical marginals of a dominating topic in the documents where it’s dominating are
close to the actual ones, and similarly that the empirical marginals of the dominating topic, conditioned on
the set of topics that a discriminative word belongs to not being present are close to the actual ones.

The former statement is the following:

Lemma 48. Let Ei = E[γ∗d,i|γ∗d,i is dominating]. If the total number of documents is D = Ω(K log2 K
ε2 ), and

Di is the number of documents where i is the dominant topic, then with high probability, for all topics i,

(1− ε)Ei ≤
1

Di

∑
d∈Di

γ∗d,i ≤ (1 + ε)Ei

Proof. Since documents are generated independently, Pr[ 1
Di

∑
d∈Di γ

∗
d,i > (1+ε)Ei] ≤ e−

ε2DiEi
3 by Chernoff.

Since there are at most T topics per document, Ei ≥ 1
T , so Pr[ 1

Di

∑
d∈Di γ

∗
d,i > (1 + ε)Ei] ≤ e−

ε2Di
3T

An analogous statement holds for Pr[ 1
Di

∑
d∈Di γ

∗
d,i < (1− ε)Ei]

Then, if Di = log2 K
ε2 , by union bounding, we get that with high probability, for all topics, (1 − ε)Ei ≤

1
Di

∑
d∈Di γ

∗
d,i ≤ (1 + ε)Ei

However, the probability of a topic being dominating is Ci/K for some constant Ci. So, by another
Chernoff bound,

Pr[Di < (1− ε)CiD/K] ≤ e−
ε2CiD

3K (6.1)

So, if we take D = K
ε2 log2K, with high probability, for all topics, Di = Θ(D/K).

Putting everything together, we get that if D = K log2 K
ε2 , with high probability,

(1− ε)Ei ≤
1

Di

∑
d∈Di

γ∗d,i ≤ (1 + ε)Ei

Next, we calculate how many documents are needed to match the marginals of the dominating topics,
conditioned on a small subset (of size o(K)) of the topics not being included in a document. More formally,

Lemma 49. For the discriminative word j, let jS be the set of topics it belongs to. For a topic i ∈ jS, let
Let Ei,jS = E[γ∗d,i|γ∗d,i is dominating, γ∗d,i′ = 0,∀i′ ∈ jS]. Let Di,jS be the number of documents where i is
dominating, and γ∗d,i′ = 0,∀i′ ∈ jS.

If the number of documents D ≥ K log2 N
ε2 , then with high probability, for all topics i and discriminative

words j, (1− ε)Ei,jS ≤ 1
Di,jS

∑
d∈Di,jS γ

∗
d,i ≤ (1 + ε)Ei,jS

Proof. Since Ei,jS = (1±o(1))Ei, by the weak topic correlation property, an analogous proof as above shows

that if we get that if Di,jS = log2 K
ε2 , with high probability, (1− ε)EiS ≤ 1

DiS

∑
d∈DiS γ

∗
d,i ≤ (1 + ε)EiS .

But by the independent topic inclusion property, the probability of generating a document D with i being
the dominating topic, s.t. no topics in jS appear in it is Θ(1/K). So, again by Chernoff,

Pr[Di,jS < (1− ε)CiD/K] ≤ e−
ε2CiD

3K (6.2)

If we take D = K
ε2 log2N , Pr[Di,jS < (1− ε)CiD/K] ≤ e− log2 N . However, since the total number of i, jS

pairs is at most N2, union bounding, we get that with high probability, for all pairs i, jS,

(1− ε)Ei,jS ≤
1

Di,jS

∑
d∈Di,jS

γ∗d,i ≤ (1 + ε)Ei,jS
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Finally, the following short lemma to estimate the number of documents in which a word j belongs only
to the dominating topic is implicit in the proof above:

Lemma 50. Let Di,jS be the number of documents where i is dominating, and γ∗d,i′ = 0,∀i′ ∈ jS. If the

number of documents D ≥ K log2 N
ε2 , then with high probability, for all topics i and discriminative words j,

Di,jS ≥ Di(1− ε)(1− o(1))

References

M. Telgarsky. Dirichlet draws are sparse with high probability. Manuscript, 2013.

35


	Notation throughout supplementary material
	Case study 1: Sparse topic priors, support initialization
	Provable convergence of tEM
	Determining largest topic
	Lower bounds on the td,i and ti,j variables
	Upper bound on the i,jt values
	Upper bounds on the  values
	Phase II: Alternating minimization - upper and lower bound evolution

	Iterative tEM updates, incomplete tEM updates
	Initialization
	Constructing a no-false-positives test
	Finding the topic supports from identifying pairs
	Finding the identifying pairs
	Finding the document supports


	Case study 2: Dominating topics, seeded initialization
	Estimates on the dominating topic
	Phase I: Determining the anchor words
	Lower bounds on the ti,j values
	Decreasing ti',j values

	Discriminative words
	Bounds on the ti,j values
	Decreasing ti',j values

	Determining dominant topic and parameter range
	Getting the supports correct
	Alternating minimization

	Justification of prior assumptions
	Sparsity
	Weak topic correlations
	Dominant topic equidistribution
	Independent topic inclusion

	On common words
	Phase I with common words
	Phase II of analysis
	Generalizing Case Study 2

	Estimates on number of documents

