Sparse and Low-Rank Tensor Decomposition:
Supplementary Material
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Leurgans’ Algorithm

For the sake of completeness, we present Leurgans’ algorithm for tensor decomposition. The algorithm essentially
uses simultaneous diagonalization (Lemma 2.2) at its core.

Algorithm 2 Leurgans’ algorithm for tensor decomposition

1:

Input: Tensor X

2: Generate contraction vectors a,b € R"3, ¢, d € R™ uniformly randomly distributed on the unit sphere.
3:
4: Compute eigen-decomposition of M; := X2(X2) and My = (X;})TX,. Let U and V denote the matrices

Compute mode 3 contractions X3 and X respectively.

whose columns are the eigenvectors of M; and MJ respectively corresponding to the non-zero eigenvalues, in
sorted order. (Let r be the (common) rank of M; and Ms.) The eigenvectors, thus arranged are denoted as
{ui}izl,.“ﬂ‘ and {Ui}i:L...,T'

Compute mode 1 contractions X! and X} respectively.

Compute eigen-decomposition of Mz := X!(X})t and M, := (X})TX}. Let V and W denote the matrices
whose columns are the eigenvectors of M3 and M respectively corresponding to the non-zero eigenvalues, in
sorted order. (Let  be the (common) rank of M35 and M,.)

: Simultaneously reorder the columns of V', W, also performing simultaneous sign reversals as necessary so that

the columns of V and V are equal, call the resulting matrix 1/ with columns {wit,— -

: Solve for ); in the linear system

T
i=1
Output: Decomposition X = Y7 | X u; ® v; @ w;.

2

Proofs

Since our algorithmic approach reduces the tensor decomposition problem to that of sparse and low-rank matrix
decomposition, some of the proofs of the lemmas below reuse existing results. Rather than reproving the intermediate
results here, we simply refer the reader to the appropriate references.

Our first lemma establishes that given information about two contractions of a tensor, one may recover the the tensor
via linear algebraic operations.

Lemma 2.2. [4, 19] Suppose we are given an order 3 tensor X = 22’21 Aiu; ® v; @ w; of size Ny X ng X ng
satisfying the conditions of Assumption 1.1. Suppose the contractions X2 and X ;;3 are computed with respect to unit



vectors a,b € R™ distributed independently and uniformly on the unit sphere S™*~1 and consider the matrices M
and M formed as:

My = X3(X)0 My = (X5)'XE.

Then the eigenvectors of My (corresponding to the non-zero eigenvalues) are {u;} and the eigenvectors of

i=1,...,1’

Proof. Suppose we are given an order 3 tensor X = Y || \ju; ® v; @ w; € R™*"2X"3_ From the definition of
contraction (2), it is straightforward to see that

x3=vubD,vT D, = diag(AaTwy, ..., \aTw,)

X2 =UD, V" Dy = diag( A\ b wy, ..., \bTw,).

In the above decompositions, U € R™*" V ¢ R"™2*" and the matrices D,, D, € R"™™" are diagonal and non-
singular almost surely (since a, b are random). Now,

My = X}?(XE)T
=UD,VT(vT D, 'UT
=UD,D,'U" (7

and similarly we obtain
M =VD,'D, V" 8)

Since we have MU = UDaD;1 and MQTV = VD,:lDa, it follows that the columns of U and V' are eigenvectors of
M and M respectively (with corresponding eigenvalues given by the diagonal matrices D,D, ! and D, 'Dy. O

Theorem 3.1. Suppose Z = X +Y, where X = 22:1 Aty ® v; ® w;, has rank r < ny and such that the factors
satisfy Assumption 1.1. Suppose Y has support 2 and the following condition is satisfied.

MCRCATES p(9®)cvw) < o

Then Algorithm 1 succeeds in exactly recovering the component tensors, i.e. (X,Y) = (X' , Y) whenever vy, are

. (U, V) 1-3¢(UV)u(Q®) C(V, W) 1-3¢(V,W)u(QD)
picked so that v € <14C(U7V)M(Q(3))7 MEE)) and v € T3 (Vv W)p(am)’ H(0) .
Specifically, choice of v3 = W and v, = % Sfor any p € [0,1] in these respective intervals

guarantees exact recovery.

Proof. Since Z = X + Y, we have Z2 = X2 + Y?2. By Lemma 2.1 X3 is a low-rank matrix with row space
span(U) and column space span(V). Hence the incoherence parameter for X is precisely ¢ (U, V). Since Y is sparse
with support €, ¥} is sparse with support Q(3). By assumption, (9(3)) U, V) < %. By [10, Theorem 2], the
convex relaxation (6) with the prescribed regularization parameter exactly recovers the unique low-rank and sparse
components, i.e. X2, Y,2. Similarly, the procedure repeated with respect to the contraction vector b recovers X;. By
Lemma 2.2, step 6 of Algorithm 1 exactly recovers the U, V. The same procedure repeated with contractions along
the first mode with respect to ¢, d ensures recovery of V, W. Note that in Step 12 of Algorithm 1, the linear system
is full rank (since the factors are linearly independent by Assumption 1.1), overdetermined and thus has a unique and
correct solution. O

Lemma 3.2. We have:
I (Q(k)) < deg(Y), forall k.

Proof. Given a tensor Y with support €2, the sparsity pattern of Y, is contained within Q). By the definition of the
degree of Y, we have deg(Y,?) < deg(Y). By [10, Proposition 3] the result follows. O



Lemma 3.3. We have

¢ (U, V) < 2inc(X) C(V, W) < 2inc(X).
Proof. From [10, Proposition 4], we have ¢ (U,V) < 2max {8 (span(U)), S (span(V))}. Similarly, we have
¢C(V,W) < 2max {8 (span(V)), S (span(W)}). The result follows by applying the definition of inc(X). O

Corollary 34. Let Z = X + Y, with X = >_._, \ju; ® v; ® w; and rank v < ny, the factors satisfy Assumption
1.1 and incoherence inc(X). Suppose Y is sparse and has degree deg(Y ). If the condition

inc(X)deg(Y) < %

holds then Algorithm 1 successfully recovers the true solution, i.e. . (X,Y) = (X,Y) when the parameters

e e 2inc3(X) 1 — 6deg;(Y )incs3(X)
s 1 — 8degs (Y )inc3(X)’ deg;(Y')
c 2incy (X)) 1 — 6deg, (Y )inc1(X)
v .
! 1 — 8deg, (Y )inci1(X)’ deg,(Y)
(6inc3(X))P _ (6inc1 (X))P

Specifically, a choice of vs =
exact recovery.

(odeg, (V)7 V1 = Tadeg, (v)) =7 JOT @Y D € [0, 1] is a valid choice that guarantees

Proof. Follows immediately from Lemma 3.2, Lemma 3.3, and the conditions of Theorem 3.1 being satisfied. O

We consider, for the sake of simplicity, tensors of uniform dimension, i.e. X,Y, Z € R**"*"™ We define the random
sparsity model to be one where each entry of the tensor Y is non-zero independently and with identical probability p.
‘We make no assumption about the mangitude of the entries of Y, only that its non-zero entries are thus sampled.

Lemma 3.5. Let X = 2221 Ai; @ v; @ wy, where u;, v, w; € R™ are uniformly randomly distributed on the unit
sphere S*™ L. Then the incoherence of the tensor X satisifies:

ine(X) < 1 /max {r,log n}
n

for some constants cy, ca, with probability exceeding 1 — con ™3 log n.

Proof. Since u; are picked uniformly randomly on the unit sphere, the subspace span(U) is a uniformly random

subspace. Equivalently, span(U) = span(U) for some random matrix U which is uniformly distributed with respect
to the set of partial isometries in R”**. By [7, Lemma 2.2] we have that

B (span(U)) < cl\/W

with probability exceeding 1 — kon~3log n for some constant kq. The same results hold for the incoherences of
span(V'), span(WW). By the definition of inc(X'), we have the required result. required result. O

Lemma 3.6. Suppose the entries of Y are sampled according to the random sparsity model, and

p=0 ((n max(log n, 7’))_1> .

Then the tensor'Y satisfies:

deg(Y') < vin
12¢; max(logn, )

with probability exceeding 1 — exp (—03 — Vi

W) fOr some constant c3 > 0.



Proof. To bound deg(Y") we must bound the degree of any matrix supported on Q(*) for k = 1,2, 3. To this end we
introduce the following sets of random variables:

o Let B;;; ~ Bernoulli(p) be the random variable such that B;;; = 1 when (4, j, k) € 2 and 0 otherwise.

e Let C be a matrix such that C;; = 1if (4,5) € Q) and 0 otherwise.

‘We have that .
Cij <> Bijk.
k=1

Hence, for any column of C' (say 5 column), we have that the number of non-zeroes in the column (let us denote this
by deg(C})) is given by:

n n

deg(Cy) = > Cij <> Bijk ©)
i=1

i=1 k=1
Since (9) is a sum of i.i.d. Bernoulli random variables, we have by the (multiplicative form of) Chernoff-Hoeffding

inequality:
vn )

P ) > 2n?p) < —cg—————
(dea(Cy) > 2n%p) < exp( “ max(logn, r)

for some constant cq. In other words,

vn Vn
P : < A L L—
(deg(C7) ~ 12¢1 max(logn,r) ) — P T max(logn,r)

The same argument applies for all the rows and columns of C, and thus the same bound applies. By taking a union
bounds over these rows and columns we have that:

v v
< vV
F (deg(C’) ~ 12¢; max(logn,r) )/ — 2nexp | ¢ max(logn, r)

for some constant co. Note that deg(C) is an upper bound on deg;(X). In an identical manner, we can bound the
degrees along the first and second mode, and taking union bounds over the three modes we get the result. O

Corollary 3.7. Let Z = X +Y where X is low rank with random factors as per the conditions of Lemma 3.5 and Y

is sparse with random support as per the conditions in Lemma 3.6. Provided r ~ o (n%) Algorithm 1 successfully

recovers the correct decomposition, i.e. (X , Y) = (X, Y) with probability exceeding 1 — n=% for some o > 0.

Proof. The result follows immediately from Lemma 3.5, Lemma 3.6, and Corollary 3.4. O
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