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1 Leurgans’ Algorithm

For the sake of completeness, we present Leurgans’ algorithm for tensor decomposition. The algorithm essentially
uses simultaneous diagonalization (Lemma 2.2) at its core.

Algorithm 2 Leurgans’ algorithm for tensor decomposition

1: Input: Tensor X
2: Generate contraction vectors a, b ∈ Rn3 , c, d ∈ Rn1 uniformly randomly distributed on the unit sphere.
3: Compute mode 3 contractions X3

a and X3
b respectively.

4: Compute eigen-decomposition of M1 := X3
a(X3

b )† and M2 := (X3
b )†Xa. Let U and V denote the matrices

whose columns are the eigenvectors of M1 and MT
2 respectively corresponding to the non-zero eigenvalues, in

sorted order. (Let r be the (common) rank of M1 and M2.) The eigenvectors, thus arranged are denoted as
{ui}i=1,...,r and {vi}i=1,...,r.

5: Compute mode 1 contractions X1
c and X1

d respectively.
6: Compute eigen-decomposition of M3 := X1

c (X1
d)† and M4 := (X1

c )†X1
d . Let Ṽ and W̃ denote the matrices

whose columns are the eigenvectors of M3 and MT
4 respectively corresponding to the non-zero eigenvalues, in

sorted order. (Let r be the (common) rank of M3 and M4.)
7: Simultaneously reorder the columns of Ṽ , W̃ , also performing simultaneous sign reversals as necessary so that

the columns of V and Ṽ are equal, call the resulting matrix W with columns {wi}i=1,...,r.
8: Solve for λi in the linear system

X =

r∑
i=1

λiui ⊗ vi ⊗ wi.

9: Output: Decomposition X =
∑r
i=1 λi ui ⊗ vi ⊗ wi.

2 Proofs

Since our algorithmic approach reduces the tensor decomposition problem to that of sparse and low-rank matrix
decomposition, some of the proofs of the lemmas below reuse existing results. Rather than reproving the intermediate
results here, we simply refer the reader to the appropriate references.

Our first lemma establishes that given information about two contractions of a tensor, one may recover the the tensor
via linear algebraic operations.
Lemma 2.2. [4, 19] Suppose we are given an order 3 tensor X =

∑r
i=1 λi ui ⊗ vi ⊗ wi of size n1 × n2 × n3

satisfying the conditions of Assumption 1.1. Suppose the contractions X3
a and X3

b are computed with respect to unit
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vectors a, b ∈ Rn3 distributed independently and uniformly on the unit sphere Sn3−1 and consider the matrices M1

and M2 formed as:

M1 = X3
a(X3

b )† M2 = (X3
b )†X3

a .

Then the eigenvectors of M1 (corresponding to the non-zero eigenvalues) are {ui}i=1,...,r, and the eigenvectors of
MT

2 are {vi}i=1,...,r.

Proof. Suppose we are given an order 3 tensor X =
∑r
i=1 λi ui ⊗ vi ⊗ wi ∈ Rn1×n2×n3 . From the definition of

contraction (2), it is straightforward to see that

X3
a = UDaV

T Da = diag(λ1a
Tw1, . . . , λra

Twr)

X3
b = UDbV

T Db = diag(λ1b
Tw1, . . . , λrb

Twr).

In the above decompositions, U ∈ Rn1×r, V ∈ Rn2×r, and the matrices Da, Db ∈ Rr×r are diagonal and non-
singular almost surely (since a, b are random). Now,

M1 := X3
a(X3

b )†

= UDaV
T (V †)TD−1

b U†

= UDaD
−1
b U† (7)

and similarly we obtain
MT

2 = V D−1
b DaV

†. (8)

Since we have M1U = UDaD
−1
b and MT

2 V = V D−1
b Da, it follows that the columns of U and V are eigenvectors of

M1 and MT
2 respectively (with corresponding eigenvalues given by the diagonal matrices DaD

−1
b and D−1

b Da).

Theorem 3.1. Suppose Z = X + Y , where X =
∑r
i=1 λiui ⊗ vi ⊗ wi, has rank r ≤ n1 and such that the factors

satisfy Assumption 1.1. Suppose Y has support Ω and the following condition is satisfied.

µ
(

Ω(3)
)
ζ (U, V ) ≤ 1

6
µ
(

Ω(1)
)
ζ (V,W ) <

1

6
.

Then Algorithm 1 succeeds in exactly recovering the component tensors, i.e. (X,Y ) = (X̂, Ŷ ) whenever νk are

picked so that ν3 ∈
(

ζ(U,V )

1−4ζ(U,V )µ(Ω(3))
,

1−3ζ(U,V )µ(Ω(3))
µ(Ω(3))

)
and ν1 ∈

(
ζ(V,W )

1−4ζ(V,W )µ(Ω(1))
,

1−3ζ(V,W )µ(Ω(1))
µ(Ω(1))

)
.

Specifically, choice of ν3 = (3ζ(U,V ))p

(µ(Ω(3)))
1−p and ν1 = (3ζ(V,W ))p

(µ(Ω(1)))
1−p for any p ∈ [0, 1] in these respective intervals

guarantees exact recovery.

Proof. Since Z = X + Y , we have Z3
a = X3

a + Y 3
a . By Lemma 2.1 X3

a is a low-rank matrix with row space
span(U) and column space span(V). Hence the incoherence parameter for X3

a is precisely ζ (U, V ). Since Y is sparse
with support Ω, Y 3

a is sparse with support Ω(3). By assumption, µ
(
Ω(3)

)
ζ (U, V ) ≤ 1

6 . By [10, Theorem 2], the
convex relaxation (6) with the prescribed regularization parameter exactly recovers the unique low-rank and sparse
components, i.e. X3

a , Y
3
a . Similarly, the procedure repeated with respect to the contraction vector b recovers X3

b . By
Lemma 2.2, step 6 of Algorithm 1 exactly recovers the U, V . The same procedure repeated with contractions along
the first mode with respect to c, d ensures recovery of V,W . Note that in Step 12 of Algorithm 1, the linear system
is full rank (since the factors are linearly independent by Assumption 1.1), overdetermined and thus has a unique and
correct solution.

Lemma 3.2. We have:
µ
(

Ω(k)
)
≤ deg(Y ), for all k.

Proof. Given a tensor Y with support Ω, the sparsity pattern of Y 3
a is contained within Ω(3). By the definition of the

degree of Y , we have deg(Y 3
a ) ≤ deg(Y ). By [10, Proposition 3] the result follows.
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Lemma 3.3. We have

ζ (U, V ) ≤ 2inc(X) ζ (V,W ) ≤ 2inc(X).

Proof. From [10, Proposition 4], we have ζ (U, V ) ≤ 2 max {β (span(U)) , β (span(V ))}. Similarly, we have
ζ (V,W ) ≤ 2 max {β (span(V )) , β (span(W )}). The result follows by applying the definition of inc(X).

Corollary 3.4. Let Z = X + Y , with X =
∑r
i=1 λiui ⊗ vi ⊗ wi and rank r ≤ n1, the factors satisfy Assumption

1.1 and incoherence inc(X). Suppose Y is sparse and has degree deg(Y ). If the condition

inc(X)deg(Y ) <
1

12

holds then Algorithm 1 successfully recovers the true solution, i.e. . (X,Y ) = (X̂, Ŷ ) when the parameters

ν3 ∈
(

2inc3(X)

1− 8deg3(Y )inc3(X)
,

1− 6deg3(Y )inc3(X)

deg3(Y )

)
ν1 ∈

(
2inc1(X)

1− 8deg1(Y )inc1(X)
,

1− 6deg1(Y )inc1(X)

deg1(Y )

)
.

Specifically, a choice of ν3 = (6inc3(X))p

(2deg3(Y ))1−p , ν1 = (6inc1(X))p

(2deg1(Y ))1−p for any p ∈ [0, 1] is a valid choice that guarantees
exact recovery.

Proof. Follows immediately from Lemma 3.2, Lemma 3.3, and the conditions of Theorem 3.1 being satisfied.

We consider, for the sake of simplicity, tensors of uniform dimension, i.e. X,Y ,Z ∈ Rn×n×n. We define the random
sparsity model to be one where each entry of the tensor Y is non-zero independently and with identical probability ρ.
We make no assumption about the mangitude of the entries of Y , only that its non-zero entries are thus sampled.

Lemma 3.5. Let X =
∑r
i=1 λiui ⊗ vi ⊗ wi, where ui, vi, wi ∈ Rn are uniformly randomly distributed on the unit

sphere Sn−1. Then the incoherence of the tensor X satisifies:

inc(X) ≤ c1

√
max {r, log n}

n

for some constants c1, c2, with probability exceeding 1− c2n−3 log n.

Proof. Since ui are picked uniformly randomly on the unit sphere, the subspace span(U) is a uniformly random
subspace. Equivalently, span(U) = span(Ũ) for some random matrix Ũ which is uniformly distributed with respect
to the set of partial isometries in Rn×k. By [7, Lemma 2.2] we have that

β (span(U)) ≤ c1

√
max {r, log n}

n

with probability exceeding 1 − k0n
−3 log n for some constant k0. The same results hold for the incoherences of

span(V ), span(W ). By the definition of inc(X), we have the required result. required result.

Lemma 3.6. Suppose the entries of Y are sampled according to the random sparsity model, and

ρ = O

((
n

3
2 max(log n, r)

)−1
)
.

Then the tensor Y satisfies:

deg(Y ) ≤
√
n

12c1 max(log n, r)

with probability exceeding 1− exp
(
−c3

√
n

max(logn,r)

)
for some constant c3 > 0.
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Proof. To bound deg(Y ) we must bound the degree of any matrix supported on Ω(k) for k = 1, 2, 3. To this end we
introduce the following sets of random variables:

• Let Bijk ∼ Bernoulli(ρ) be the random variable such that Bijk = 1 when (i, j, k) ∈ Ω and 0 otherwise.

• Let C be a matrix such that Cij = 1 if (i, j) ∈ Ω(3) and 0 otherwise.

We have that

Cij ≤
n∑
k=1

Bijk.

Hence, for any column of C (say jth column), we have that the number of non-zeroes in the column (let us denote this
by deg(Cj)) is given by:

deg(Cj) =

n∑
i=1

Cij ≤
n∑
i=1

n∑
k=1

Bijk. (9)

Since (9) is a sum of i.i.d. Bernoulli random variables, we have by the (multiplicative form of) Chernoff-Hoeffding
inequality:

P
(
deg(Cj) > 2n2ρ

)
≤ exp

(
−c0

√
n

max(log n, r)

)
for some constant c0. In other words,

P
(

deg(Cj) >

√
n

12c1 max(log n, r)

)
≤ exp

(
−c0

√
n

max(log n, r)

)
.

The same argument applies for all the rows and columns of C, and thus the same bound applies. By taking a union
bounds over these rows and columns we have that:

P
(

deg(C) >

√
n

12c1 max(log n, r)

)
≤ 2n exp

(
−c2

√
n

max(log n, r)

)
for some constant c2. Note that deg(C) is an upper bound on deg3(X). In an identical manner, we can bound the
degrees along the first and second mode, and taking union bounds over the three modes we get the result.

Corollary 3.7. Let Z = X +Y where X is low rank with random factors as per the conditions of Lemma 3.5 and Y

is sparse with random support as per the conditions in Lemma 3.6. Provided r ∼ o
(
n

1
2

)
, Algorithm 1 successfully

recovers the correct decomposition, i.e. (X̂, Ŷ ) = (X,Y ) with probability exceeding 1− n−α for some α > 0.

Proof. The result follows immediately from Lemma 3.5, Lemma 3.6, and Corollary 3.4.
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