
Algorithm 2: Gradient-Based Prediction Algorithm (GBPA) for Full Information Setting

Input: ˜

�, a differentiable convex function such that r˜

� 2 �

N and r
i

˜

� > 0 for all i.
Initialize G

0

= 0

for t = 1 to T do
Sampling: The learner chooses arm i

t

with probability p
i

(

ˆG
t�1

) = r
i

�

t

(

ˆG
t�1

)

Adversary chooses a loss vector g
t

2 [�1, 0]N and learner pays g
t,i

Update G
t

= G
t�1

+ g
t

A Proof of the GBPA Regret Bound (Lemma 2.1)

Lemma A.1. The expected regret of Algorithm 2 can be written as:
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B Relaxing Assumptions on the Distribution

B.1 Mirroring trick for extending the support

Let X have support on x > 0 with density f and CDF F . Let us define Y by mirroring the density
of X around zero, i.e., Y has density g(y) =

1

2

f(|y|) and CDF G(y) =

1

2

(1 + sign(y)F (|y|)).
Note that |Y | is distributed as X and hence,

E[max

i

Y
i

]  E[max

i

|Y
i

|] = E[max

i

X
i

].

The hazard h
Y

(y) for y � 0 is f(y)/(1�F (y)) and for y < 0 is f(�y)/(1+F (�y))  F (�y)/(1�
F (�y)). Therefore,

sup

y

h
Y

(y) = sup

x>0

h
X

(x).
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This proves the following lemma.
Lemma B.1. If a random variable X has support on the non-negative reals with density f(x) and
we define Y as the mirrored version with density g(y) = 1

2

f(|y|). Then, we have

E[max

i

Y
i

]  E[max

i

X
i

],

sup

y

h
Y

(y) = sup

x>0

h
X

(x)

where h
X

, h
Y

are hazard rates of X,Y respectively.

B.2 Conditioning trick for unbounded hazard rate near zero

Suppose F (x) is the CDF of a random variable X whose hazard rate is bounded for x � 1 but blows
up near zero. Then define Y as X conditioned on X � 1. That is, Y has CDF, for y > 0:

G(y) = P (X � 1 + y|X > 1) =

F (1 + y)� F (1)

1� F (1)

and density g(y) = f(1 + y)/(1 � F (1)), y > 0. So the hazard rate h
Y

(y) is g(y)/(1 � G(y)) =
f(1 + y)/(1� F (1 + y)) = h

X

(1 + y). Therefore,

sup

y>0

h
Y

(y) = sup

x>1

h
X

(x)

which makes the hazard rate of Y now bounded. This we have proved the lemma below.
Lemma B.2. If a hazard function of X is bounded for x > 1 and blows up only for small values
of x then we can condition on X > 1 to define a new random variable whose hazard rate is now
bounded.

The same technique can be applied for any arbitrary constant other than 1, but for the family of
random variables we considered, it suffices to condition on X � 1.

C Detailed derivation of extreme value behavior

C.1 Maximum of iid Gumbel

The CDF of the Gumbel distribution is exp(� exp(�x)) and the expected value is �
0

, the Euler
(Euler-Mascheroni) constant. Thus, the CDF of the maximum of n iid Gumbel random variables
is (exp(� exp(�x)))N = exp(� exp(�(x � logN))) which is also Gumbel but with the mean
increased by logN .

C.2 Maximum of iid Frechet

The CDF of Frechet is exp(�x�↵

) and it has mean �(1 � 1

↵

) as long as ↵ > 1 (otherwise it is
infinite). Hence, the CDF of the maximum of N iid Frechet random variables is

(exp(�x�↵

))

N

= exp(�Nx�↵

) = exp

 
�
✓

x

N
1
↵

◆�↵

!

which is also Frechet but with mean scaled by N1/↵.

C.3 Maximum of iid Weibull

Let X
i

have modified Weibull distribution with CDF 1� exp(�(x+1)

k

+1). Thus, P (max

i

X
i

>
t)  NP (X

1

> t) = N exp(�(t+ 1)

k

+ 1). For non-negative random variable X and any u > 0,
we have,

E[X] =

Z 1

0

P (X > x)dx  u+

Z 1

u

P (X > x)dx.
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Assume k = 1/m where m � 1 is a positive integer. Therefore,

E[max

i

X
i

]  u+

Z 1

u

N exp(�(x+ 1)

k

+ 1)dx

 u+ 3N

Z 1

u

exp(�(x+ 1)

k

)dx

= u+ 3N

Z 1

u+1

exp(�x1/m

)dx

= u+ 3Nm�(m, (1 + u)1/m)dx

where �(m,x) is the incomplete Gamma function that for a positive integer m and x > 1 simplifies
to

�(m,x) = (m� 1)!e�x

m�1X

k=0

xk

k!
 (m� 1)!e�x

m�1X

k=0

xm

k!

= (m� 1)!e�xxm

m�1X

k=0

1

k!
 (m� 1)!e�xxm

1X

k=0

1

k!

 3(m� 1)!e�xxm.

Plugging this back above, we get, for any u > 0,

E[max

i

X
i

]  u+ 9Nm!e�(1+u)

1/m

(1 + u).

Now choose u = log

m N + 1 to get

E[max

i

X
i

]  log

m N + 9Nm!

log

m N

N
 10m! log

m N.

C.4 Maximum of iid Gamma

Let Y be the maximum of N iid Gamma(↵,�) ramdom variables. Then, Y�dN
cN

follows Gumbel
distribution, where c

N

= ��1 and d
N

= ��1

(logN + (↵ � 1) log logN � log�(↵)). In the
language of extreme value theory, Gamma distribution belongs to the maximum domain of attraction
of Gumbel distribution with parameters (Embrechts et al., 1997). As mentioned in Section C.1,
Gumbel distribution has mean �

0

.

C.5 Maximum of iid Pareto

Let X
i

have modified Pareto distribution with CDF 1 � 1/(1 + x)↵. Thus, P (max

i

X
i

> t) 
NP (X

1

> t) = N/(1 + x)↵. For non-negative random variable X and any u > 0, we have,

E[X] =

Z 1

0

P (X > x)dx  u+

Z 1

u

P (X > x)dx.

Therefore, for ↵ > 1,

E[max

i

X
i

]  u+

Z 1

u

N

(1 + x)↵
dx

= u+

N

(↵� 1)(1 + u)↵�1

.

Setting u = N1/↵ � 1 gives the bound

E[max

i

X
i

]  ↵

↵� 1

N1/↵.
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D Hazard Functions of Modified Distributions and the Frechet Case

D.1 Pareto distribution

Using the conditioning trick, we consider, for ↵ > 1 (otherwise mean is infinite), the modified
Pareto distribution with pdf f(x) =

↵

(x+1)

↵+1 supported on (0,1). Its CDF is 1 � 1/(x + 1)

↵.
Its hazard function is h(x) = ↵

x+1

which decreases in x and is bounded by ↵. Expected maximum
of N iid Pareto random variables is bounded by ↵N1/↵/(↵ � 1) (see Appendix C.5). This gives a
regret bound of

p
NT

p
↵2N1/↵/(↵� 1).

D.2 Frechet distribution

The CDF of Frechet is exp(�x�↵

), x > 0 where ↵ > 0 is a shape parameter. The hazard function
of Frechet distribution is h(x) = ↵x�↵�1

exp(�x

�↵
)

1�exp(�x

�↵
)

which is hard to optimize analytically but
can be upper bounded, for ↵ > 1, via elementary calculations given below, by 2↵. The CDF of the
maximum of N iid Frechet random variables is exp(�(x/N1/↵

)

�↵

) which is also Frechet (but with
mean scaled by N1/↵) with expected value N1/↵

�(1� 1

↵

) (as long as ↵ > 1, otherwise expectation

is infinite). Thus, the regret bound we get is O
⇣p

NT
q
↵N1/↵

�(1� 1

↵

)

⌘
. Setting ↵ = logN

makes the regret bound O(

p
TN logN). Our choice of ↵ is larger than 1 as soon as N > 2.

D.2.1 Elementary calculations for bounding Frechet distribution’s hazard rate

For ↵ > 1, we want to show that sup
x>0

h(x)  2↵ where

h(x) = ↵x�↵�1

exp(�x�↵

)

1� exp(�x�↵

)

.

First, consider the case x � 1. In this case, define y = x↵ and note that y � 1. Then, we have

h(x) =
↵

xy

exp(�1/y)

1� exp(�1/y)
 ↵

y

exp(�1/y)

1� exp(�1/y)

 ↵

y

1

1� (1� 1/(2y))
= 2↵.

The first inequality holds because x � 1. The second holds because exp(�1/y) < 1 and
exp(�1/y)  1� 1/(2y) for y � 1.

Next, consider the case x < 1. Define y = 1/x and note that y > 1. Then, we have

h(x) =
↵

x↵+1

exp(�x�↵

)

1� exp(�x�↵

)

 ↵

x↵+1

exp(�x�↵

)

1� exp(�1)

=

↵

1� e�1

y↵+1

exp(�y↵)  2↵y↵+1

exp(�y↵).

To show an upper bound of 2↵, it therefore suffices to show that sup
y>1

g(y)  1 where g(y) =

y↵+1

exp(�y↵). We will show this now. Note that

g0(y) = (↵+ 1)y↵ exp(�y↵)� y↵+1↵y↵�1

exp(�y↵) = y↵ exp(�y↵) ((↵+ 1)� ↵y↵) ,

which means that g(y) is monotonically increasing on the interval (1, y
0

) and monotonically de-
creasing on the interval (y

0

,+1) where y
0

=

�
↵+1

↵

�
1/↵. We therefore have,

sup

y>1

g(y) = g(y
0

) =

✓
1 +

1

↵

◆
(1+1/↵)

exp (�(1 + 1/↵))  2

2

exp(�2) = 4/e2  1,

where the first inequality above holds because ↵ > 1. Note that, for ↵ > 1, the function ↵ 7!�
1 +

1

↵

�
(1+1/↵)

exp (�(1 + 1/↵)) decreases monotonically.
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D.3 Weibull distribution

The CDF of Weibull is 1�exp(�xk

) for x > 0 (and 0 otherwise) where k > 0 is a shape parameter.
The density is kxk�1

exp(�xk

) and hazard rate is kxk�1. For k > 1, hazard rate monotonically
increases and is therefore unbounded for large x. When k < 1, the hazard rate is unbounded for
small values of x. Note that Weibull includes exponential as a special case when k = 1.

Let k = 1/m for some positive integer m � 1 and using the conditioning trick, consider a modified
Weibull with CDF 1� exp(�(x+1)

k

+1). Density is k(x+1)

k�1

exp(�(x+1)

k

+1) and hazard
is k(x+1)

k�1 which is bounded by k. When k < 1 we get tails heavier than the exponential but not
as heavy as a Pareto or a Frechet. The expected value of the maximum of N iid (modified) Weibull
random variables with parameter k = 1/m scales as O(m!(logN)

m

) (see Appendix C.3). Thus,
we get the regret bound O(

p
NT

p
m!(log n)m). Thus, the entire modified Weibull family yields

O(

p
Npolylog(N)

p
T ) regret bounds. The best bound is obtained when m = 1, i.e. when the

Weibull becomes an exponential.
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