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Abstract

Information diffusion in online social networks is affected by the underlying net-
work topology, but it also has the power to change it. Online users are constantly
creating new links when exposed to new information sources, and in turn these
links are alternating the way information spreads. However, these two highly in-
tertwined stochastic processes, information diffusion and network evolution, have
been predominantly studied separately, ignoring their co-evolutionary dynamics.
We propose a temporal point process model, COEVOLVE, for such joint dyna-
mics, allowing the intensity of one process to be modulated by that of the other.
This model allows us to efficiently simulate interleaved diffusion and network
events, and generate traces obeying common diffusion and network patterns ob-
served in real-world networks. Furthermore, we also develop a convex optimiza-
tion framework to learn the parameters of the model from historical diffusion and
network evolution traces. We experimented with both synthetic data and data ga-
thered from Twitter, and show that our model provides a good fit to the data as
well as more accurate predictions than alternatives.

1 Introduction
Online social networks, such as Twitter or Weibo, have become large information networks where
people share, discuss and search for information of personal interest as well as breaking news [1].
In this context, users often forward to their followers information they are exposed to via their
followees, triggering the emergence of information cascades that travel through the network [2],
and constantly create new links to information sources, triggering changes in the network itself
over time. Importantly, recent empirical studies with Twitter data have shown that both information
diffusion and network evolution are coupled and network changes are often triggered by information
diffusion [3, 4, 5].

While there have been many recent works on modeling information diffusion [2, 6, 7, 8] and network
evolution [9, 10, 11], most of them treat these two stochastic processes independently and separately,
ignoring the influence one may have on the other over time. Thus, to better understand information
diffusion and network evolution, there is an urgent need for joint probabilistic models of the two
processes, which are largely inexistent to date.

In this paper, we propose a probabilistic generative model, COEVOLVE, for the joint dynamics of
information diffusion and network evolution. Our model is based on the framework of temporal
point processes, which explicitly characterize the continuous time interval between events, and it
consists of two interwoven and interdependent components (refer to Appendix B for an illustration):

I. Information diffusion process. We design an “identity revealing” multivariate Hawkes pro-
cess [12] to capture the mutual excitation behavior of retweeting events, where the intensity of
such events in a user is boosted by previous events from her time-varying set of followees. Al-

1



though Hawkes processes have been used for information diffusion before [13, 14, 15, 16, 17, 18,
19], the key innovation of our approach is to explicitly model the excitation due to a particular
source node, hence revealing the identity of the source. Such design reflects the reality that infor-
mation sources are explicitly acknowledged, and it also allows a particular information source to
acquire new links in a rate according to her “informativeness”.

II. Network evolution process. We model link creation as an “information driven” survival process,
and couple the intensity of this process with retweeting events. Although survival processes have
been used for link creation before [20, 21], the key innovation in our model is to incorporate re-
tweeting events as the driving force for such processes. Since our model has captured the source
identity of each retweeting event, new links will be targeted toward the information sources, with
an intensity proportional to their degree of excitation and each source’s influence.

Our model is designed in such a way that it allows the two processes, information diffusion and
network evolution, unfold simultaneously in the same time scale and excise bidirectional influence
on each other, allowing sophisticated coevolutionary dynamics to be generated (e.g., see Figure 5).
Importantly, the flexibility of our model does not prevent us from efficiently simulating diffusion
and link events from the model and learning its parameters from real world data:

• Efficient simulation. We design a scalable sampling procedure that exploits the sparsity of the
generated networks. Its complexity is O(nd logm), where n is the number of samples, m is the
number of nodes and d is the maximum number of followees per user.
• Convex parameters learning. We show that the model parameters that maximize the joint like-

lihood of observed diffusion and link creation events can be found via convex optimization.

Finally, we experimentally verify that our model can produce coevolutionary dynamics of infor-
mation diffusion and network evolution, and generate retweet and link events that obey common
information diffusion patterns (e.g., cascade structure, size and depth), static network patterns (e.g.,
node degree) and temporal network patterns (e.g., shrinking diameter) described in related litera-
ture [22, 10, 23]. Furthermore, we show that, by modeling the coevolutionary dynamics, our model
provide significantly more accurate link and diffusion event predictions than alternatives in large
scale Twitter dataset [3].

2 Backgrounds on Temporal Point Processes
A temporal point process is a random process whose realization consists of a list of discrete events
localized in time, {ti} with ti ∈ R+ and i ∈ Z+. Many different types of data produced in online
social networks can be represented as temporal point processes, such as the times of retweets and
link creations. A temporal point process can be equivalently represented as a counting process, N(t),
which records the number of events before time t. Let the historyH(t) be the list of times of events
{t1, t2, . . . , tn} up to but not including time t. Then, the number of observed events in a small time
window dt between [t, t+dt) is dN(t) =

∑
ti∈H(t) δ(t−ti) dt, and hence N(t) =

∫ t

0
dN(s), where

δ(t) is a Dirac delta function. More generally, given a function f(t), we can define the convolution
with respect to dN(t) as

f(t) ⋆ dN(t) :=

∫ t

0

f(t− τ) dN(τ) =
∑

ti∈H(t)
f(t− ti). (1)

The point process representation of temporal data is fundamentally different from the discrete time
representation typically used in social network analysis. It directly models the time interval between
events as random variables, and avoid the need to pick a time window to aggregate events. It allows
temporal events to be modeled in a more fine grained fashion, and has a remarkably rich theoretical
support [24].

An important way to characterize temporal point processes is via the conditional intensity function
— a stochastic model for the time of the next event given all the times of previous events. For-
mally, the conditional intensity function λ∗(t) (intensity, for short) is the conditional probability of
observing an event in a small window [t, t+ dt) given the historyH(t), i.e.,

λ∗(t)dt := P {event in [t, t+ dt)|H(t)} = E[dN(t)|H(t)], (2)
where one typically assumes that only one event can happen in a small window of size dt,
i.e., dN(t) ∈ {0, 1}. Then, given a time t′ ⩾ t, we can also characterize the conditional proba-
bility that no event happens during [t, t′) and the conditional density that an event occurs at time t′
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as S∗(t′) = exp(−
∫ t′

t
λ∗(τ) dτ) and f∗(t′) = λ∗(t′)S∗(t′) respectively [24]. Furthermore, we can

express the log-likelihood of a list of events {t1, t2, . . . , tn} in an observation window [0, T ) as

L =
n∑

i=1

log λ∗(ti)−
∫ T

0

λ∗(τ) dτ, T ⩾ tn. (3)

This simple log-likelihood will later enable us to learn the parameters of our model from observed
data.

Finally, the functional form of the intensity λ∗(t) is often designed to capture the phenomena of
interests. Some useful functional forms we will use later are [24]:

(i) Poisson process. The intensity is assumed to be independent of the historyH(t), but it can be
a time-varying function, i.e., λ∗(t) = g(t) ⩾ 0;
(ii) Hawkes Process. The intensity models a mutual excitation between events, i.e.,

λ∗(t) = µ+ ακω(t) ⋆ dN(t) = µ+ α
∑

ti∈H(t)
κω(t− ti), (4)

where κω(t) := exp(−ωt)I[t ⩾ 0] is an exponential triggering kernel, µ ⩾ 0 is a baseline
intensity independent of the history. Here, the occurrence of each historical event increases the
intensity by a certain amount determined by the kernel and the weight α ⩾ 0, making the intensity
history dependent and a stochastic process by itself. We will focus on the exponential kernel in
this paper. However, other functional forms for the triggering kernel, such as log-logistic function,
are possible, and our model does not depend on this particular choice; and,
(iii) Survival process. There is only one event for an instantiation of the process, i.e.,

λ∗(t) = g∗(t)(1−N(t)), (5)
where λ∗(t) becomes 0 if an event already happened before t.

3 Generative Model of Information Diffusion and Network Co-evolution
In this section, we use the above background on temporal point processes to formulate our proba-
bilistic generative model for the joint dynamics of information diffusion and network evolution.

3.1 Event Representation

We model the generation of two types of events: tweet/retweet events, er, and link creation events,
el. Instead of just the time t, we record each event as a triplet

er or el := ( u
↑

destination

,
source

↓
s, t

↑
time

). (6)

For retweet event, the triplet means that the destination node u retweets at time t a tweet originally
posted by source node s. Recording the source node s reflects the real world scenario that infor-
mation sources are explicitly acknowledged. Note that the occurrence of event er does not mean
that u is directly retweeting from or is connected to s. This event can happen when u is retweeting
a message by another node u′ where the original information source s is acknowledged. Node u
will pass on the same source acknowledgement to its followers (e.g., “I agree @a @b @c @s”).
Original tweets posted by node u are allowed in this notation. In this case, the event will simply be
er = (u, u, t). Given a list of retweet events up to but not including time t, the history Hr

us(t) of
retweets by u due to source s isHr

us(t) = {eri = (ui, si, ti)|ui = u and si = s} . The entire history
of retweet events is denoted asHr(t) := ∪u,s∈[m]Hr

us(t).

For link creation event, the triplet means that destination node u creates at time t a link to source
node s, i.e., from time t on, node u starts following node s. To ease the exposition, we restrict
ourselves to the case where links cannot be deleted and thus each (directed) link is created only
once. However, our model can be easily augmented to consider multiple link creations and deletions
per node pair, as discussed in Section 8. We denote the link creation history asHl(t).

3.2 Joint Model with Two Interwoven Components

Given m users, we use two sets of counting processes to record the generated events, one for infor-
mation diffusion and the other for network evolution. More specifically,
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I. Retweet events are recorded using a matrix N(t) of size m×m for each fixed time point t. The
(u, s)-th entry in the matrix, Nus(t) ∈ {0} ∪ Z+, counts the number of retweets of u due to
source s up to time t. These counting processes are “identity revealing”, since they keep track of
the source node that triggers each retweet. This matrix N(t) can be dense, since Nus(t) can be
nonzero even when node u does not directly follow s. We also let dN(t) := ( dNus(t) )u,s∈[m].

II. Link events are recorded using an adjacency matrix A(t) of size m×m for each fixed time point
t. The (u, s)-th entry in the matrix, Aus(t) ∈ {0, 1}, indicates whether u is directly following s.
That is Aus(t) = 1 means the directed link has been created before t. For simplicity of exposition,
we do not allow self-links. The matrix A(t) is typically sparse, but the number of nonzero entries
can change over time. We also define dA(t) := ( dAus(t) )u,s∈[m].

Then the interwoven information diffusion and network evolution processes can be characterized
using their respective intensities E[dN(t) |Hr(t) ∪ Hl(t)] = Γ∗(t) dt and E[dA(t) |Hr(t) ∪
Hl(t)] = Λ∗(t) dt, where Γ∗(t) = ( γ∗

us(t) )u,s∈[m] and Λ∗(t) = ( λ∗
us(t) )u,s∈[m]. The sign

∗ means that the intensity matrices will depend on the joint history, Hr(t) ∪ Hl(t), and hence their
evolution will be coupled. By this coupling, we make: (i) the counting processes for link creation to
be “information driven” and (ii) the evolution of the linking structure to change the information dif-
fusion process. Refer to Appendix B for an illustration of our joint model. In the next two sections,
we will specify the details of these two intensity matrices.

3.3 Information Diffusion Process

We model the intensity, Γ∗(t), for retweeting events using multivariate Hawkes process [12]:

γ∗
us(t) = I[u = s] ηu + I[u ̸= s]βs

∑
v∈Fu(t)

κω1(t) ⋆ (Auv(t) dNvs(t)) , (7)

where I[·] is the indicator function and Fu(t) := {v ∈ [m] : Auv(t) = 1} is the current set of follo-
wees of u. The term ηu ⩾ 0 is the intensity of original tweets by a user u on his own initiative,
becoming the source of a cascade and the term βs

∑
v∈Fu(t)

κω(t) ⋆ (Auv(t) dNvs(t)) models the
propagation of peer influence over the network, where the triggering kernel κω1(t) models the decay
of peer influence over time.

Note that the retweet intensity matrix Γ∗(t) is by itself a stochastic process that depends on the time-
varying network topology, the non-zero entries in A(t), whose growth is controlled by the network
evolution process in Section 3.4. Hence the model design captures the influence of the network
topology and each source’s influence, βs, on the information diffusion process. More specifically,
to compute γ∗

us(t), one first finds the current set Fu(t) of followees of u, and then aggregates
the retweets of these followees that are due to source s. Note that these followees may or may
not directly follow source s. Then, the more frequently node u is exposed to retweets of tweets
originated from source s via her followees, the more likely she will also retweet a tweet originated
from source s. Once node u retweets due to source s, the corresponding Nus(t) will be incremented,
and this in turn will increase the likelihood of triggering retweets due to source s among the followers
of u. Thus, the source does not simply broadcast the message to nodes directly following her but
her influence propagates through the network even to those nodes that do not directly follow her.
Finally, this information diffusion model allows a node to repeatedly generate events in a cascade,
and is very different from the independent cascade or linear threshold models [25] which allow at
most one event per node per cascade.

3.4 Network Evolution Process

We model the intensity, Λ∗(t), for link creation using a combination of survival and Hawkes process:
λ∗
us(t) = (1−Aus(t))(µu + αu κω2

(t) ⋆ dNus(t)) (8)
where the term 1 − Aus(t) effectively ensures a link is created only once, and after that, the corre-
sponding intensity is set to zero. The term µu ⩾ 0 denotes a baseline intensity, which models when a
node u decides to follow a source s spontaneously at her own initiative. The term αuκω2(t)⋆dNus(t)
corresponds to the retweets of node u due to tweets originally published by source s, where the trig-
gering kernel κω2(t) models the decay of interests over time. Here, the higher the corresponding
retweet intensity, the more likely u will find information by source s useful and will create a direct
link to s.
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The link creation intensity Λ∗(t) is also a stochastic process by itself, which depends on the retweet
events, and is driven by the retweet count increments dNus(t). It captures the influence of retweets
on the link creation, and closes the loop of mutual influence between information diffusion and
network topology.

Note that creating a link is more than just adding a path or allowing information sources to take
shortcuts during diffusion. The network evolution makes fundamental changes to the diffusion
dynamics and stationary distribution of the diffusion process in Section 3.3. As shown in [14],
given a fixed network structure A, the expected retweet intensity µs(t) at time t due to source
s will depend of the network structure in a highly nonlinear fashion, i.e., µs(t) := E[Γ∗

·s(t)] =
(e(A−ω1I)t + ω1(A − ω1I)

−1(e(A−ω1I)t − I))ηs, where ηs ∈ Rm has a single nonzero entry
with value ηs and e(A−ω1I)t is the matrix exponential. When t → ∞, the stationary intensity
µ̄s = (I −A/ω)−1 ηs is also nonlinearly related to the network structure. Thus given two network
structures A(t) and A(t′) at two points in time, which are different by a few edges, the effect of
these edges on the information diffusion is not just simply an additive relation. Depending on how
these newly created edges modify the eigen-structure of the sparse matrix A(t), their effect can be
drastic to the information diffusion.

Remark 1. In our model, each user is exposed to information through a time-varying set of neigh-
bors. By doing so, we couple information diffusion with the network evolution, increasing the
practical application of our model to real-network datasets. The particular definition of exposure
(e.g., a retweet’s neighbor) will depend on the type of historical information that is available. Re-
markably, the flexibility of our model allows for different types of diffusion events, which we can
broadly classify into two categories. In a first category, events corresponds to the times when an
information cascade hits a person, for example, through a retweet from one of her neighbors, but
she does not explicitly like or forward the associated post. In a second category, the person decides
to explicitly like or forward the associated post and events corresponds to the times when she does
so. Intuitively, events in the latter category are more prone to trigger new connections but are also
less frequent. Therefore, it is mostly suitable to large event dataset for examples those ones gener-
ated synthetically. In contrast, the events in the former category are less likely to inspire new links
but found in abundance. Therefore, it is very suitable for real-world sparse data. Consequently, in
synthetic experiments we used the latter and in the real one we used the former. It’s noteworthy that
Eq. (8) is written based on the latter category, but, Fig. 7 in appendix is drawn based on the former.

4 Efficient Simulation of Coevolutionary Dynamics

We can simulate samples (link creations, tweets and retweets) from our model by adapting Ogata’s
thinning algorithm [26], originally designed for multidimensional Hawkes processes. However, a
naive implementation of Ogata’s algorithm would scale poorly, i.e., for each sample, we would
need to re-evaluate Γ∗(t) and Λ∗(t), thus, to draw n samples, we would need to perform O(m2n2)
operations, where m is the number of nodes.

We designed a sampling procedure that is especially well-fitted for the structure of our model. The
algorithm is based on the following key idea: if we consider each intensity function in Γ∗(t) and
Λ∗(t) as a separate Hawkes process and draw a sample from each, it is easy to show that the mini-
mum among all these samples is a valid sample from the model [12]. However, by drawing samples
from all intensities, the computational complexity would not improve. However, when the network
is sparse, whenever we sample a new node (or link) event from the model, only a small number
of intensity functions, in the local neighborhood of the node (or the link), will change. As a con-
sequence, we can reuse most of the samples from the intensity functions for the next new sample
and find which intensity functions we need to change in O(logm) operations, using a heap. Fi-
nally, we exploit the properties of the exponential function to update individual intensities for each
new sample in O(1): let ti and ti+1 be two consecutive events, then, we can compute λ∗(ti+1) as
(λ∗(ti)− µ) exp(−ω(ti+1 − ti)) + µ without the need to compare all previous events.

The complete simulation algorithm is summarized in Algorithm 2 in Appendix C. By using Algo-
rithm 2, we reduce the complexity from O(n2m2) to O(nd logm), where d is the maximum number
of followees per node. That means, our algorithm scales logarithmically with the number of nodes
and linearly with the number of edges at any point in time during the simulation. We also note that
the events for link creations, tweets and retweets are generated in a temporally intertwined and inter-
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Figure 1: Coevolutionary dynamics for synthetic data. a) Spike trains of link and retweet events. b)
Link and retweet intensities. c) Cross covariance of link and retweet intensities.
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Figure 2: Degree distributions when network sparsity level reaches 0.001 for fixed α = 0.1.

leaving fashion by Algorithm 2. This is because every new retweet event will modify the intensity
for link creation, and after each link creation we also need to update the retweet intensities.

5 Efficient Parameter Estimation from Coevolutionary Events
Given a collection of retweet events E = {eri } and link creation events A = {eli} recorded within
a time window [0, T ), we can easily estimate the parameters needed in our model using maximum
likelihood estimation. Here, we compute the joint log-likelihood L({µu} , {αu} , {ηu} , {βs}) of
these events using Eq. (3), i.e.,∑
eri∈E

log
(
γ∗
uisi(ti)

)
−

∑
u,s∈[m]

∫ T

0

γ∗
us(τ) dτ︸ ︷︷ ︸

tweet / retweet

+
∑
eli∈A

log
(
λ∗
uisi(ti)

)
−

∑
u,s∈[m]

∫ T

0

λ∗
us(τ) dτ︸ ︷︷ ︸

links

. (9)

For the terms corresponding to retweets, the log term only sums over the actual observed events,
but the integral term actually sums over all possible combination of destination and source pairs,
even if there is no event between a particular pair of destination and source. For such pairs with
no observed events, the corresponding counting processes have essentially survived the observation
window [0, T ), and the term −

∫ T

0
γ∗
us(τ)dτ simply corresponds to the log survival probability.

Terms corresponding to links have a similar structure to those for retweet.

Since γ∗
us(t) and λ∗

us are linear in the parameters (ηu, βs) and (µu, αu) respectively, then log(γ∗
us(t))

and log(λ∗
us) are concave functions in these parameters. Integration of γ∗

us(t) and λ∗
us still results

in linear functions of the parameters. Thus the overall objective in Eq. (9) is concave, and the global
optimum can be found by many algorithms. In our experiments, we adapt the efficient algorithm
developed in previous work [18, 19]. Furthermore, the optimization problem decomposes in m
independent problems, one per node u, and can be readily parallelized.

6 Properties of Simulated Co-evolution, Networks and Cascades∗
In this section, we perform an empirical investigation of the properties of the networks and infor-
mation cascades generated by our model. In particular, we show that our model can generate co-
evolutionary retweet and link dynamics and a wide spectrum of static and temporal network patterns
and information cascades. Appendix D contains additional simulation results and visualizations.
Appendix E contains an evaluation of our model estimation method in synthetic data.

Retweet and link coevolution. Figures 1(a,b) visualize the retweet and link events, aggregated
across different sources, and the corresponding intensities for one node and one realization, picked
at random. Here, it is already apparent that retweets and link creations are clustered in time and often
follow each other. Further, Figure 1(c) shows the cross-covariance of the retweet and link creation
intensity, computed across multiple realizations, for the same node, i.e., if f(t) and g(t) are two
intensities, the cross-covariance is a function of the time lag τ defined as h(τ) =

∫
f(t+ τ)g(t) dt.

It can be seen that the cross-covariance has its peak around 0, i.e., retweets and link creations are
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highly correlated and co-evolve over time. For ease of exposition, we illustrated co-evolution using
one node, however, we found consistent results across nodes.
Degree distribution. Empirical studies have shown that the degree distribution of online social
networks and microblogging sites follow a power law [9, 1], and argued that it is a consequence of
the rich get richer phenomena. The degree distribution of a network is a power law if the expected
number of nodes md with degree d is given by md ∝ d−γ , where γ > 0. Intuitively, the higher the
values of the parameters α and β, the closer the resulting degree distribution follows a power-law;
the lower their values, the closer the distribution to an Erdos-Renyi random graph [27]. Figure 2
confirms this intuition by showing the degree distribution for different values of β.
Small (shrinking) diameter. There is empirical evidence that the diameter of online social networks
and microblogging sites exhibit relatively small diameter and shrinks (or flattens) as the network
grows [28, 9, 22]. Figures 3(a-b) show the diameter on the largest connected component (LCC)
against the sparsity of the network over time for different values of α and β. Although at the
beginning, there is a short increase in the diameter due to the merge of small connected components,
the diameter decreases as the network evolves. Here, nodes arrive to the network when they follow
(or are followed by) a node in the largest connected component.
Cascade patterns. Our model can produce the most commonly occurring cascades structures as
well as heavy-tailed cascade size and depth distributions, as observed in historical Twitter data [23].
Figure 4 summarizes the results. The higher the α value, the shallower and wider the cascades.

7 Experiments on Real Dataset
In this section, we validate our model using a large Twitter dataset containing nearly 550,000 tweet,
retweet and link events from more than 280,000 users [3]. We will show that our model can capture
the co-evolutionary dynamics and, by doing so, it predicts retweet and link creation events more
accurately than several alternatives. Appendix F contains detailed information about the dataset and
additional experiments.
Retweet and link coevolution. Figures 5(a, b) visualize the retweet and link events, aggregated
across different sources, and the corresponding intensities given by our trained model for one node,
picked at random. Here, it is already apparent that retweets and link creations are clustered in time
and often follow each other, and our fitted model intensities successfully track such behavior. Fur-
ther, Figure 5(c) compares the cross-covariance between the empirical retweet and link creation
intensities and between the retweet and link creation intensities given by our trained model, com-
puted across multiple realizations, for the same node. The similarity between both cross-covariances
is striking and both has its peak around 0, i.e., retweets and link creations are highly correlated and
co-evolve over time. For ease of exposition, as in Section 6, we illustrated co-evolution using one
node, however, we found consistent results across nodes (see Appendix F).
Link prediction. We use our model to predict the identity of the source for each test link event,
given the historical (link and retweet) events before the time of the prediction, and compare its
performance with two state of the art methods, denoted as TRF [3] and WENG [5]. TRF measures

∗ Implementation codes are available at https://github.com/farajtabar/Coevolution
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Figure 6: Prediction performance in the Twitter dataset by means of average rank (AR) and success
probability that the true (test) events rank among the top-1 events (Top-1).

the probability of creating a link from a source at a given time by simply computing the proportion
of new links created from the source with respect to the total number of links created up to the given
time. WENG considers different link creation strategies and makes a prediction by combining them.

We evaluate the performance by computing the probability of all potential links using different
methods, and then compute (i) the average rank of all true (test) events (AvgRank) and, (ii) the
success probability (SP) that the true (test) events rank among the top-1 potential events at each test
time (Top-1). We summarize the results in Fig. 6(a-b), where we consider an increasing number of
training retweet/tweet events. Our model outperforms TRF and WENG consistently. For example,
for 8 · 104 training events, our model achieves a SP 2.5x times larger than TRF and WENG.

Activity prediction. We use our model to predict the identity of the node that is going to generate
each test diffusion event, given the historical events before the time of the prediction, and compare
its performance with a baseline consisting of a Hawkes process without network evolution. For
the Hawkes baseline, we take a snapshot of the network right before the prediction time, and use
all historical retweeting events to fit the model. Here, we evaluate the performance the via the
same two measures as in the link prediction task and summarize the results in Figure 6(c-d) against
an increasing number of training events. The results show that, by modeling the co-evolutionary
dynamics, our model performs significantly better than the baseline.

8 Discussion
We proposed a joint continuous-time model of information diffusion and network evolution, which
can capture the coevolutionary dynamics, mimics the most common static and temporal network
patterns observed in real-world networks and information diffusion data, and predicts the network
evolution and information diffusion more accurately than previous state-of-the-arts. Using point
processes to model intertwined events in information networks opens up many interesting future
modeling work. Our current model is just a show-case of a rich set of possibilities offered by a point
process framework, which have been rarely explored before in large scale social network mode-
ling. For example, we can generalize our model to support link deletion by introducing an intensity
matrix Ξ∗(t) modeling link deletions as survival processes, i.e., Ξ∗(t) = (g∗us(t)Aus(t))u,s∈[m],
and then consider the counting process A(t) associated with the adjacency matrix to evolve as
E[dA(t)|Hr(t) ∪ Hl(t)] = Λ∗(t) dt − Ξ∗(t) dt. We also can consider the number of nodes vary-
ing over time. Furthermore, a large and diverse range of point processes can also be used in the
framework without changing the efficiency of the simulation and the convexity of the parameter
estimation, e.g., condition the intensity on additional external features, such as node attributes.
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A Further related work

The works most closely related to ours are empirical studies of information diffusion and network
evolution [33, 34, 5, 3, 4]. Among them, [5] was the first to show experimental evidence the likeli-
hood that a user u starts following a user s increases with the number of messages from s seen by u.
[3] investigated the temporal and statistical characteristics of retweet-driven connections within the
Twitter network and then identified the number of retweets as a key factor to infer such connections.
Finally, [4] showed that the Twitter network can be characterized by steady rates of change, inter-
rupted by sudden bursts of new connections, triggered by retweet cascades. They also developed a
method to predict which retweets are more likely to trigger these bursts.

However, there are fundamental differences between the above mentioned studies and our work.
First, they only characterize the effect that information diffusion has on the network dynamics, but
not the bidirectional influence. In contrast, our probabilistic generative model takes into account
the bidirectional influence between information diffusion and network dynamics. Second, previous
studies are mostly empirical and only make binary predictions on link creation events. For exam-
ple, [5, 3] predict whether a new link will be created based on the number of retweets; [4] predict
whether a burst of new links will occur based on the number of retweets and users’ similarity. In
contrast, our model can learn parameters from real world data, and predict the precise timing of both
diffusion and new link events.
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B Illustration of the joint dynamics of information diffusion and network
evolution

Figure 7 demonstrates the coevolution schematically in a toy social network. Consider node A as
a source of information and node G as a potential follower. Node G is first exposed to a piece of
information originated from A via a retweet from B at time t1 (Figure 7(a)). The intensity λ∗

GA(t)
of G establishing a link to A increases. Then at time t2, when B retweets another tweet posted by
A, node G again is exposed to information from A and the intensity λ∗

GA(t) increases again (Figure
7(b)). After G observes sufficient information from A, she finds her a valuable source and thus G
decides to follow A directly. This is how information diffusion affects network formation.

On the other side, network evolution will affect information diffusion. After G decides to follow
A directly, she opens a new path of information for her downstream nodes. Now, when G retweets
tweets originally posted by A, node I will be exposed and may retweet them too. Here, the exposure
at time t3 and t4 is sufficient for I to retweet a tweet originated by A (Figures 7(c) and 7(d)).
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Figure 7: Joint dynamics of information diffusion and network evolution. Blue links form the
diffusion paths. Green and blue circles are nodes which see the information. Green circles are those
who re-share and propagate the information. Orange circles are nodes unaware of A’s post.
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C Model Simulation

Algorithm 1 Efficient Intensity Computation
Global Variabels:
Last time of intensity computation: t
Last value of intensity computation: I
Initialization:
t = 0, I = µ
function get intensity(t′)
I ′ = (I − µ) exp(−ω(t′ − t)) + µ
t = t′, I = I ′

return I
end function

Algorithm 2 Efficient Simulation
Initialization:
Initialize the priority queue Q
for ∀ u, s ∈ [m] do

Sample next link event elus from Aus (Algorithm 3)
Q.insert(elus)
Sample next retweet event erus from Nus (Algorithm 3)
Q.insert(erus)

end for
General Subroutine:
t← 0
while t < T do

e← Q.extract min()
if e = (u, s, t′) is a retweet event then

Update the historyHr
us(t

′) = Hr
us(t) ∪ {e}

for ∀ v s.t. u⇝ v do
Update event intensity: γvs(t′) = γvs(t

′−) + β
Sample retweet event ervs from Nvs (Algorithm 3)
Q.update key(ervs)
if NOT s⇝ v then

Update link intensity: λvs(t
′) = λvs(t

′−) + α
Sample link event elvs from Avs (Algorithm 3)
Q.update key(elvs)

end if
end for

else
Update the historyHl

us(t
′) = Hl

us(t) ∪ {e}
λus(t)← 0 ∀ t > t′

end if
t← t′

end while

Algorithm 3 Sampling
Input: Current time: t
Output: Next event time: s
Set s← t and λ̂← λ(s) (Algorithm 1)
while s < T do

Generate g ∼ exp(λ̂) set s← s+ g
Set λ̄← λ(s) (Algorithm 1)
Rejection test: Generate d ∼ U(0, 1)
if d× λ̂ < λ̄ then return s else λ̂ = λ̄

end while
return s
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D Additional Experiments on Co-Evolution, Network Properties and
Cascade Patterns

Simulation settings. Throughout this section, we simulate the evolution of a 8,000-node network
as well as the propagation of information over the network by sampling from our model using
Algorithm 2. We set the exogenous intensities of the link event and diffusion event intensities
to µu = µ = 4 × 10−6 and ηu = η = 1.5 respectively, and the triggering kernel parameter
to ω1 = ω2 = 1. The parameter µ determines the independent growth of the network, roughly
speaking, the expected number of links each user establishes spontaneously before time T is µT .
Whenever we investigate a static property, we choose the same sparsity level of 0.001.

Degree Distribution. Figure 8 shows the degree distribution against the sparsity of the network over
time for different values of α. For sufficiently high values of α, the degree distribution follows a
power-law. The lower the α values, the closer the network is to an Erdos-Renyi random graph [27],
and as a consequence the closer is the degree distribution to a Poisson. In fact, it is easy to show that
our model outputs Erdos-Renyi graphs for α = 0.
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Figure 8: Degree distributions when network sparsity level reaches 0.001 for different α values and
fixed β = 0.1.

Cascade Patterns. Figure 9 shows the distribution of the seven most common cascade structure,
the cascade size and the cascade depth for different values of β. The model create the most com-
monly occurring cascades structures as well as heavy-tailed cascade size and depth distributions, as
observed in real diffusion data [23]. The larger the value of β, the more shallow and wider cascades
are.
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Figure 9: Distribution, size and depth of cascade structures for different β values and fixed α = 0.8.

Clustering coefficient. Triadic closure [29, 11, 30] has been often presented as a plausible link
creation mechanism. However, different social networks and microblogging sites present different
levels of triadic closure [31]. Importantly, our method is able to generate networks with different
levels of triadic closure, as shown by Figure 10(a-b), where we plot the clustering coefficient [32],
which is proportional to the frequency of triadic closure, for different values of α and β.

Network Visualization. Figure 11 visualizes several snapshots of the largest connected component
(LCC) of two 300-node networks for two particular realizations of our model, under two different
values of β. In both cases, we used µ = 2 × 10−4, α = 1, and η = 1.5. The top two rows
correspond to β = 0 and represent one end of the spectrum, i.e., Erdos-Renyi random network.
Here, the network evolves uniformly. The bottom two rows correspond to β = 0.8 and represent the
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Figure 10: Clustering coefficient for network sparsity 0.001. Panels (a) and (b) show the clustering
coefficient (CC) against β and α, respectively.

other end, i.e., scale-free networks. Here, the network evolves locally, and clusters emerge naturally
as a consequence of the local growth. They are depicted using a combination of forced directed and
Fruchterman Reingold layout with Gephi1. This figure clearly illustrates that by careful choice of
parameters we can generate networks with a very different structure.

Furthermore, the retweet events (from others as source) of two nodes, A and B, are demonstrated
at the bottom row. These two nodes arrive almost at the same time and establish links to two
other nodes. However, node A’s followees are more central, therefore, A is being exposed to more
retweets. As an expected consequence node A will perform more retweets than B does.

1http://gephi.github.io/
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Figure 11: Evolution of a network with β = 0 (1st and 2nd rows) and β = 0.8 (3rd and 4th rows)
and spike trains of nodes A and B (5th row). Node A is connected to more central nodes, therefore,
will perform more retweets (originated by others) than B does.
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E Experiments on Parameter Estimation

Experimental Setup. Throughout this section, we experiment with our model considering m=400
nodes. We set the model parameters for each node in the network by drawing samples from
µ∼U(0, 0.0004), α∼U(0, 0.1), η∼U(0, 1.5) and β∼U(0, 0.1). We then sample up to 60,000 link
and information diffusion events from our model using Algorithm 2 and average over 8 different
simulation runs.

Model Estimation. We evaluate the accuracy of our model estimation procedure via two measures:
(i) the relative mean absolute error (i.e., E[|x− x̂|/x], MAE) between the estimated parameters (x)
and the true parameters (x̂), (ii) the Kendall’s rank correlation coefficient between each estimated
parameter and its true value, and (iii) test log-likelihood. Figure 12 shows that as we feed more
events into the estimation procedure, the estimation becomes more accurate.
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Figure 12: Performance of model estimation for a 400-node synthetic network.
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F Additional Experiments on Real Data

Dataset Description.

We use a dataset that contains both link events as well as tweets/retweets from millions of Twitter
users [3]. In particular, the dataset contains data from three set of users in 20 days; nearly 8 million
tweet, retweet, and link events by more than 8 million users. The first set of users (8,779 users) are
source nodes s, for whom all their tweet times were collected. The second set of users (77,200 users)
are the followers of the first set of users, for whom all their retweet times (and source identities) were
collected. The third set of users (6,546,650 users) are the users that start following at least one user
in the first set during the recording period, for whom all the link times were collected.

In our experiments, we focus on all events (and users) during a 10-day period (Sep. 21 2012 - Sep.
30 2012) and used the information before Sep 21 to construct the initial social network (original
links between users). We model the co-evolution in the second 10-day period using our framework.
More specifically, in the coevolution modeling, we have 5,567 users in the first layer who post
221,201 tweets. In the second layer 101,465 retweets are generated by the whole 77,200 users in
that interval. And in the third layer we have 198,518 users who create 219,134 links to 1978 users
(out of 5567) in the first layer.

Experimental setup. We split events into a training set (covering 85% of the retweet and link
events) and a test set (covering the remaining 15%) according to time, i.e., all events in the training
set occur earlier than those in the test set. We then use our model estimation procedure to fit the
parameters from an increasing proportion of events from the training data.

Coevolution Behavior. Figure 13 demonstrates the link and retweet behavior of four typical users
chosen randomly in the real-world dataset. For each user, the left panel (real activity) contains the
links to a user and retweets her posts receive in 50 hours, and the right panel (real intensity) shows
the corresponding intensity learned in the model. By visual inspection, it is already apparent a
links or a retweets usually follow each other, but there are some link or retweet events triggered by
exogenous causes.
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Figure 13: Link and retweet behavior of 4 typical users in the real-world dataset

Retweet and Link Event Co-evolution. Figure 14 shows the cross correlation of retweet and link
intensity for 4 typical users chosen randomly from the Twitter dataset. If f(t) and g(t) are the
intensity of the retweets of a user’s post and links created to her then the cross-correlation is a
function of the time lag τ defined as h(τ) =

∫
t
f(t + τ)g(t) dt. The empirical cross-correlation is

drawn by interpolating the real events. The estimated cross-correlation is computed by simulating
from the model using the parameters learned from the real dataset. As expected, the cross-correlation
has its peak around 0, i.e., links and activity are highly correlated, and the empirical cross-correlation
coincide with the cross-correlation derived from the intensities in the learned model.
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Figure 14: Empirical and simulated crosscorrelation for 4 typical users

To further verify that our model can capture the coevolution, we compute the average value of the
empirical cross covariance function, denoted by mcc, per user. Intuitively, one could expect that our
model estimation method should assign higher α and/or β values to users with high mcc. Figure 15
confirms this intuition on 1,000 users, picked at random users. Whenever a user has high α and/or
β value, she exhibits a high cross covariance between her created links and retweets.
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Figure 15: Empirical cross correlation versus the learned parameters

Link and Activity Prediction. Figure 16 shows the success probability that the true (test) events
rank among the top-10 potential events at each test time for both link and activity prediction in the
Twitter dataset.
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Figure 16: Prediction performance in the Twitter dataset by means of the success probability that
the true (test) events rank among the top-10 events.

Test log-likelihood. We compute the link test log-likelihood using our trained models on the third
set of users. Figure 17 summarizes the results, where we consider an increasing number of training
retweet/tweet events from the first and second set.

Model Checking. Given all ti and ti+1 subsequent event times generated using a Hawkes process,
then, by the time changing theorem [12], the intensity integrals

∫ ti+1

ti
λ(t) dt should conform to

the unit-rate exponential distribution. Figure 18 presents the quantiles of the intensity integrals
computed using the intensities with the parameters estimated from the real Twitter data against the
quantiles of the unit-rate exponential distribution. It clearly shows that the points approximately lie
on the same line, giving empirical evidence that a Hawkes process is the right model to capture the
real dynamics.
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Figure 17: Test link log-likelihood in the Twitter dataset.
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Figure 18: Quantile plots of the intensity integrals from the real link and retweet event time
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