
A Proofs

A.1 Proof of Lemma 6

Proof. Assume, without loss of generality, that x is the origin of Rd. Recall that the Dikin ellipsoid
at x is contained in K. By definition, K is itself contained in a Euclidean ball of radius D centered
at x. Therefore the Dikin ellipsoid at x is contained in the D-radius Euclidean ball. Therefore, the
gauge function (Minkowski functional) defined by this Dikin ellipsoid (which is exactly k · k

x

) is
greater or equal to the gauge function defined by the D-radius Euclidean ball (which is D�1k · k2).
We proved one direction of the bound in the claim:
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Plugging z0 = (r2R(x))�1/2z into the inequality above gives
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which concludes the proof.

A.2 Proof of Lemma 12

Proof. We prove claim (i) by complete induction on t. For t = 1, it holds by definition that ḡ1 =

ĝ1/(k + 1). Lemma 8 bounds kĝ
s

k
xs,⇤  d/�, and therefore kḡ1kxt,⇤  d/(�(k + 1)). The

assumption that k � 0 proves the claim.

Next, we deal with t > 1. Using the triangle inequality, we have

kḡ
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Lemma 8 gives us an upper bound on kĝ
t�i

k
xt�i,⇤, which is not the same norm as in Eq. (9).

Therefore, our proof strategy is to show that these two norms are only a factor of 2 apart.

Assume, by complete induction, that kḡ
s

k
xs,⇤  2d/� for all s < t. It follows that ⌘kḡ
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4 . Therefore, the condition of Lemma 7 holds and we have
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Again using the induction hypothesis, we have
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By our assumption that 12k⌘d  � it follows that the right-hand side above is at most 1/3, the
conditions of Theorem 4 are satisfied, and we have
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Recalling the definition of the dual local norm (see Definition 2), it follows that
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By applying this inequality recursively, we get that for any positive s 2 {t� k + 1, . . . , t}
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Next we show that (1 � 4⌘d/�)k is at least 1
2 . If k = 0, this is trivial. If k > 0 denote � =

4⌘d/� and notice that �  1
3 due to the assumption that 12k⌘d  �. Then, apply the inequality

1� � � exp(�2�), which is valid for any � 2 [0, 1
2 ], to bound (1� 4⌘d/�)k � exp(�8k⌘d/�) �

exp(� 2
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2 . Similarly, (1� 4⌘d/�)�k is at most 2. We conclude that
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which proves claim (ii). Combining this bound with Eq. (9) gives
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Applying the bound kĝ
t�i

k
xt�i,⇤  d/� from Lemma 8 concludes the inductive proof.

We prove a simple corollary of Lemma 12, which shows that the assumption 12k⌘d  � (which we
make throughout our analysis) implies the conditions of Lemma 7.
Corollary 15. If 12k⌘d  � then ⌘kḡ

t

k
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Proof. Lemma 12 states that kḡ
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assumption that 12k⌘d  � implies that the above is at most 1/6, and certainly less than 1/4.

A.3 f̂ t is L-Lipschitz and H-Smooth

An important property of the function ˆf
t

is that it retains the properties of f
t

.
Lemma 16. Let f : K 7! [0, 1] be differentiable L-Lipschitz, and H-smooth, and let ˆf

t

(x) =

E[f(x + �Av)], where � > 0, A is full-rank d ⇥ d matrix and v is a random vector. Then ˆf is also
L-Lipschitz and H-smooth.

Proof of Lemma 16. First, we prove that ˆf is L-Lipschitz. For any x, y 2 K, we have
ˆf(x)� ˆf(y) = E[f(x+ �Av)� f(y + �Av)]  E[Lkx� yk2] ,

where the inequality follows from the assumption that f itself is L-Lipschitz.

Next, we prove that ˆf is H-Smooth. For any x, y 2 K, we have
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We can switch the order of the expectation and the differentiation due to uniform boundedness, and
the right-hand side above becomes
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From Jensen’s inequality, the above is bounded by
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The term inside the square brackets is bounded by Hkx � yk2 due to the assumption that f is
H-smooth. This proves that ˆf is also H-smooth.

A.4 Proof of Lemma 13

Proof. From the definition of ḡ
t

and the triangle inequality, we bound
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We deal separately with each of the two terms on the right-hand side above. Using Eq. (6), we have
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Triangle inequality upper bounds the right-hand side above by D
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so the first term on the right-hand side of Eq. (11) is upper-bounded by 2D2L2.
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Using the definition of the local norm, we write the right-hand side above as
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Now note that the sequence h1, . . . , hT

is a martingale difference sequence, and therefore its incre-
ments are uncorrelated. Namely, for i > j it holds that
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Therefore, Eq. (12) equals
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Another application of Lemma 12 gives the bound
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The right-most term above is non-negative because (r2R(x
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Overall, we have shown that the second term on the right-hand side of Eq. (11) is upper-bounded by
32d2/(�2(k + 1)).

A.5 Proof of Lemma 14

Proof. Using triangle inequality, we get
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By Corollary 15, the conditions of Lemma 7 are met, so the right-hand side of Eq. (14) is bounded
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Using Jensen’s inequality, we have
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Plugging back into Eq. (15) gives
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The claim follows from the assumption that i  k.

A.6 Proof of Lemma 11

We begin with a technical lemma.
Lemma 17. Assume that the parameters k, ⌘, and � are chosen such that 12k⌘d  �, and for any
✏ 2 (0, 1) it holds that
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Proof. Let y be the analytic center of the convex body K and recall the definition of the shrunk set
K
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in Section 2.3. Define x0
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To replace x0 with x? in the above, we note that
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Since the diameter of K is D, it follows that kx0 � x?k2  ✏D. The norm kḡ
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We are ready to prove the main theorem.

Proof of Lemma 11. By the definition of ¯f
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in Eq. (7), it holds that
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Lemma 16 tells us that each ˆf
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is L-Lipschitz, and we know that its range is [0, 1]. Therefore, the
above can be upper-bounded by
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Moving on to Eq. (8b), we use the convexity of ¯f to bound
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Recalling that x
t

is the result of a dual averaging step using the gradient estimates ḡ1, . . . , ḡt�1,
Lemma 17 states that
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Using Lemma 13, we bound the above by
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It remains to bound the term
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t

�
· (x

t

� x?

)

#
. (16)

Using the definitions of ¯f
t

and ḡ
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, we rewrite it as
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Note that the random variable x
s

is determined by the randomness before time s, while ĝ
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is only
determined when we expose the randomness on round s. Therefore, This term equals
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Using Lemma 1 states that E
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The term kx
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� x?k2 is bounded by D. Lemma 16 states that ˆf
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is H-smooth; together with
Lemma 14 we have the bound
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Plugging these bounds back into Eq. (16) gives the desired bound of Eq. (8b).

Moving on to the last term,
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it is not hard to show that the sum inside the expectation is non-positive. Indeed, each ¯f
t

is a moving
average of the ˆf

t

’s, so that up to boundary effects the sum of the ¯f
t

(x?

) terms equals the sum of the
ˆf
t

(x?

) ones; considering the boundary effects, we see that the first sum can only be smaller than the
latter. This implies that Eq. (8c)  0, and concludes the proof.
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