1 Appendix: Notational equivalence to the Yu and colleagues flanker model

Yu et al. use the following notation for their update:

p(st | s2, M)p(sa, M | X4_1)
Zsé,Mp(Sé | s?vM)p(s/%M | thl)

P(sy, M | X;) = (1)

In their notation, the stimulus array is indexed such that s, is the target and s 3 are the flankers.
Therefore, their sq is simply our GG. Their M is a trial compatibility or congruence variable, taking
on the values of I(ncongruent) and C(ongruent). This gives a straightforward remapping from their
joint probability space over target identity and congruence into our space of context and target:

Stimulus C G==s59, M

SSS SS S Congruent
HHH HH H Congruent
SHS SSS H Incongruent
HSH HH S Incongruent

Their prior P(s2, M | X;_1) is equivalent to our prior (it is simply the posterior from the previous
timestep). Their input x; is an input vector concatenating the input vectors from the target and two
flankers, [x1, x2, 3], such that:

21(t) ~ (N) (a1 1 + npin, 02 + 02) )
za(t) ~ (N)(a1pe + agps + agps, 07 + 205) 3)
3(t) ~ (N)(aips + asps, 0% + o) @)

Since the two flanker stimuli are always identical in this experiment, we can define p. 1= p1 = us
and pig := po. Next, we divide the means by oy, and map g—f := aunu to make x2(t) equivalent to
e, Since the three likelihoods are multiplied and the two flanker likelihoods are identical, updating
jointly on [z, x3] will be equivalent to updating twice on two draws of e©.

Yu and colleagues also summarize their prior by defining 3 to be the prior probability of a congruent
trial. We can define the priors in the following way to reflect this:

PO(CZC(LGZQO):? (5)
PO(CZCmG:gl):# (6)
PO(CZChG:go):# (7
PO(CZChG:gl):g (8)

2  Full derivation of AX-CPT log likelihood expressions

In the internal context AX-CPT, t.on # t40on, SO we index context samples using £ and target samples
using t. We therefore define l;(t,) = P(ef | G = g,) and ly(c;) = P(ef | C = ¢;) for
the likelihoods, with = € {0,1} indexing stimuli. We can write the log likelihood for the two
responses to the symmetric AX-CPT, divide numerator and denominator by the product of ¢g; and
c1 likelihoods, and then rewrite the log likelihood ratios into the z term that evolve as biased Wiener
processes in the continuum limit. Note that here the context and target walks start at different times.



g1 Po(C = co, G = g0) [Ti—son Le(co) TTi—son 1t(90) + Po(C = c1, G = g1) [Tomyon Le(er) TTi—pon le(91)
0, =10 T T T T
& T R(C =0, G = g) Tigan le(co) Tz 1(91) + Po(C = c1,G = 90) Iy—qam Le(e1) I U(90)

9)
1 PO(C: G gO)H[ tmb% t=tgn étE 0; +P0(C:ChG:gl) (10)
= 10og Le(c t
Py(C =c0.G = mﬂhﬁ”@3+%w:qv—wwnumwﬁ
l T l
o Po(C = c0,G = g0) Xoi_yon 108 {42 27400 log (122 + Po(C = e1.G = g1)
Py(C = co,G = g1) 3-y_yon log ZEE?; + Po(C = c1,G = go) X2y log %
(11)
Py(C = = ¢ ey = =
_ lOg O(C COaG gO)e €9 +PO(C Cl,G gl) (12)

Po(C S Co,G = gl)ezg + Po(c = Cl,G = go)ez
We can do the same for the asymmetric variant.
Py(C = ¢, G = g9) H;Ztgn le(co) H;tgn 1:(g0)

logZ =1o = — =
S Po(C =co,G = g1) [Ti—ion le(co) [Tizign le(91) + Po(C' = €1, G = go) [Ti—sen Le(er) TTi—son 11(90)
+ Po(C =c1,G = g1) [T1_yon Le(cr) Ht ron l(91)

13)
le(c 1
1 Po(C =0, G = go) [Te— ton 12 o) Ht o ltgg(l))
Py(C = co,G=g1)[I;— ton Z(c?) + Py(C = ¢1,G = go) [;- o ﬁt(io) + Py(C=¢1,G=g1)
(14)
T le(c I
= log Py(C = cp,G = go) Zg:tzn log li(c(l)) Zt —ton log - EZ?%
Py(C =co,G=g1) ZZ:tgn log ZEE?% + Py(C=c1,G=g0) )i ton log lt(gog FR(C =G =g1)
15)
P, = — 2l 2]
= log O(C CO,G go)e e“g (16)

Py(C =cy,G = g1)e* + Py(C =c¢1,G = go)e*s + Py(C =c¢1,G = g1)
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