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Abstract

We introduce a unifying generalization of the Lovász theta function, and the as-
sociated geometric embedding, for graphs with weights on both nodes and edges.
We show how it can be computed exactly by semidefinite programming, and how
to approximate it using SVM computations. We show how the theta function can
be interpreted as a measure of diversity in graphs and use this idea, and the graph
embedding in algorithms for Max-Cut, correlation clustering and document sum-
marization, all of which are well represented as problems on weighted graphs.

1 Introduction

Embedding structured data, such as graphs, in geometric spaces, is a central problem in machine
learning. In many applications, graphs are attributed with weights on the nodes and edges – infor-
mation that needs to be well represented by the embedding. Lovász introduced a graph embedding
together with the famous theta function in the seminal paper [19], giving his celebrated solution to
the problem of computing the Shannon capacity of the pentagon. Indeed, Lovász’s embedding is a
very elegant and powerful representation of unweighted graphs, that has come to play a central role
in information theory, graph theory and combinatorial optimization [10, 8]. However, despite there
being at least eight different formulations of ϑ(G) for unweighted graphs, see for example [20], there
does not appear to be a version that applies to graphs with weights on the edges. This is surprising,
as it has a natural interpretation in the information theoretic problem of the original definition [19].

A version of the Lovász number for edge-weighted graphs, and a corresponding geometrical rep-
resentation, could open the way to new approaches to learning problems on data represented as
similarity matrices. Here we propose such a generalization for graphs with weights on both nodes
and edges, by combining a few key observations. Recently, Jethava et al. [14] discovered an inter-
esting connection between the original theta function and a central problem in machine learning,
namely the one class Support Vector Machine (SVM) formulation [14]. This kernel based method
gives yet another equivalent characterization of the Lovász number. Crucially, it is easily modified
to yield an equivalent characterization of the closely related Delsarte version of the Lovász number
∗This work was performed when the author was affiliated with CSE at Chalmers University of Technology.
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introduced by Schrijver [24] which is more flexible and often more convenient to work with. Using
this kernel characterization of the Delsarte version of Lovász number, we define a theta function and
embedding of weighted graphs, suitable for learning with data represented as similarity matrices.

The original theta function is limited to applications on small graphs, because of its formulation as a
semidefinite program (SDP). In [14], Jethava et al. showed that their kernel characterization can be
used to compute a number and an embedding of a graph that are often good approximations to the
theta function and embedding, and that can be computed fast, scaling to very large graphs. Here we
give the analogous approximate method for weighted graphs. We use this approximation to solve
the weighted maximum cut problem faster than the classical SDP relaxation.

Finally, we show that our edge-weighted theta function has a natural interpretation as a measure of
diversity in graphs. We use this intuition to define a centroid-based correlation clustering algorithm
that automatically chooses the number of clusters and initializes the centroids. We also show how to
use the support vectors, computed in the kernel characterization with both node and edge weights,
to perform extractive document summarization.

To summarize our main contributions:

• We introduce a unifying generalization of the famous Lovász number applicable to graphs
with weights on both nodes and edges.

• We show that via our characterization, we can compute a good approximation to our
weighted theta function and the corresponding embeddings using SVM computations.

• We show that the weighted version of the Lovász number can be interpreted as a measure
of diversity in graphs, and we use this to define a correlation clustering algorithm dubbed
ϑ-means that automatically a) chooses the number of clusters, and b) initializes centroids.

• We apply the embeddings corresponding to the weighted Lovász numbers to solve weighted
maximum cut problems faster than the classical SDP methods, with similar accuracy.

• We apply the weighted kernel characterization of the theta function to document summa-
rization, exploiting both node and edge weights.

2 Extensions of Lovász and Delsarte numbers for weighted graphs

Background Consider embeddings of undirected graphs G = (V,E). Lovász introduced an el-
egant embedding, implicit in the definition of his celebrated theta function ϑ(G) [19], famously an
upper bound on the Shannon capacity and sandwiched between the independence number and the
chromatic number of the complement graph.

ϑ(G) = min
{ui},c

max
i

1

(c>ui)2
, u>i uj = 0, ∀(i, j) 6∈ E, ‖ui‖ = ‖c‖ = 1 . (1)

The vectors {ui}, c are so-called orthonormal representations or labellings, the dimension of which
is determined by the optimization. We refer to both {ui}, and the matrix U = [u1, . . . ,un] as an
embeddingG, and use the two notations interchangeably. Jethava et al. [14] introduced a characteri-
zation of the Lovász ϑ function that established a close connection with the one-class support vector
machine [23]. They showed that, for an unweighted graph G = (V,E),

ϑ(G) = min
K∈K(G)

ω(K), where (2)

K(G) := {K � 0 | Kii = 1,Kij = 0,∀(i, j) 6∈ E}, (3)

ω(K) := max
αi≥0

f(α;K), f(α;K) := 2
∑
i

αi −
∑
i,j

Kijαiαj (4)

is the dual formulation of the one-class SVM problem, see [16]. Note that the conditions on K only
refer to the non-edges of G. In the sequel, ω(K) and f(α;K) always refer to the definitions in (4).

2.1 New weighted versions of ϑ(G)

A key observation in proving (2), is that the set of valid orthonormal representations is equivalent
to the set of kernels K. This equivalence can be preserved in a natural way when generalizing the

2



definition to weighted graphs: any constraint on the inner product uTi uj may be represented as
constraints on the elements Kij of the kernel matrix.

To define weighted extensions of the theta function, we need to first pass to the closely related
Delsarte version of the Lovász number introduced by Schrijver [24]. In the Delsarte version, the
orthogonality constraint for non-edges is relaxed to uTi uj ≤ 0, (i, j) 6∈ E. With reference to the
formulation (2) it is easy to observe that the Delsarte version is given by

ϑ1(G) = min
K∈K1(G)

ω(K), where K1(G) := {K � 0 | Kii = 1,Kij ≤ 0,∀(i, j) 6∈ E} (5)

In other words, the Lovász number corresponds to orthogonal labellings of G with orthogonal vec-
tors on the unit sphere assigned to non–adjacent nodes whereas the Delsarte version corresponds to
obtuse labellings, i.e. the vectors corresponding to non–adjacent nodes are vectors on the unit sphere
meeting at obtuse angles. In both cases, the corresponding number is essentially the half-angle of
the smallest spherical cap containing all the vectors assigned to the nodes. Comparing (2) and (5) it
follows that ϑ1(G) ≤ ϑ(G). In the sequel, we will use the Delsarte version and obtuse labellings to
define weighted generalizations of the theta function.

We observe in passing, that for any K ∈ K1, and for any independent set I in the graph, taking
αi = 1 if i ∈ I and 0 otherwise,

ω(K) ≥ 2
∑
i

αi −
∑
i,j

αiαjKij =
∑
i

αi −
∑
i6=j

αiαjKij ≥
∑
i

αi = |I| (6)

since for each term in the second sum, either (i, j) is an edge, in which case either αi or αj is zero,
or (i, j) is a non–edge in which case Kij ≤ 0. Thus, like ϑ(G), the Delsarte version ϑ1(G) is also
an upper bound on the stability or independence number α(G).

Kernel characterization of theta functions on node-weighted graphs Lovász number has a
classical extension to graphs with node weights σ = [σ1, . . . , σn]>, see for example [17]. The
generalization, in the Delsarte version (note the inequality constraint), is the following

ϑ(G,σ) = min
{ui},c

max
i

σi
(c>ui)2

, u>i uj ≤ 0, ∀(i, j) 6∈ E, ‖ui‖ = ‖c‖ = 1 . (7)

By passing to the dual of (7), see section 2.1 and [16], we may, as for unweighted graphs, character-
ize ϑ(G,σ) by a minimization over the set of kernels,

K(G,σ) := {K � 0 | Kii = 1/σi,Kij ≤ 0,∀(i, j) 6∈ E} (8)

and, just like in the unweighted case, ϑ1(G,σ) = minK∈K(G,σ) ω(K). When σi = 1,∀i ∈ V , this
reduces to the unweighted case. We also note that for any K ∈ K(G,σ) and for any independent
set I in the graph, taking αi = σi if i ∈ I and 0 otherwise,

ω(K) ≥ 2
∑
i

αi −
∑
i,j

αiαjKij = 2
∑
i∈I

σi −
∑
i∈I

σ2
i

σi
−
∑
i 6=j

αiαjKij ≥
∑
i∈I

σi , (9)

since Kij ≤ 0 ∀(i, j) 6∈ E. Thus, ϑ1(G,σ) ≥ ω(K) is an upper bound on the weight of the
maximum-weight independent set.

Extension to edge-weighted graphs The kernel characterization of ϑ1(G) allows one to define a
natural extension to data given as similarity matrices represented in the form of a weighted graph
G = (V, S). Here, S is a similarity function on (unordered) node pairs, and S(i, j) ∈ [0, 1] with +1
representing complete similarity and 0 complete dissimilarity. The obtuse labellings corresponding
to the Delsarte version are somewhat more flexible even for unweighted graphs, but is particularly
well suited for weighted graphs. We define

ϑ1(G,S) := min
K∈K(G,S)

ω(K) where K(G,S) := {K � 0 | Kii = 1,Kij ≤ Sij} (10)

In the case of an unweighted graph, where Sij ∈ {0, 1}, this reduces exactly to (5).
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Table 1: Characterizations of weighted theta functions. In the first row are characterizations follow-
ing the original definition. In the second are kernel characterizations. The bottom row are versions
of the LS-labelling [14]. In all cases, ‖ui‖ = ‖c‖ = 1. A refers to the adjacency matrix of G.

Unweighted Node-weighted Edge-weighted

min
{ui}

min
c

max
i

1

(c>ui)2

u>i uj ≤ 0, ∀(i, j) 6∈ E

min
{ui}

min
c

max
i

σi

(c>ui)2

u>i uj = 0, ∀(i, j) 6∈ E

min
{ui}

min
c

max
i

1

(c>ui)2

u>i uj ≤ Sij , i 6= j

KG = {K � 0 | Kii = 1,

Kij = 0, ∀(i, j) 6∈ E}
KG,σ = {K � 0 | Kii = 1/σi,

Kij = 0, ∀(i, j) 6∈ E}
KG,S = {K � 0 | Kii = 1,

Kij ≤ Sij , i 6= j}

KLS =
A

|λn(A)|
+ I Kσ

LS =
A

σmax|λn(A)|
+diag(σ)−1 KS

LS =
S

|λn(S)|
+ I

Unifying weighted generalization We may now combine both node and edge weights to form a
fully general extension to the Delsarte version of the Lovász number,

ϑ1(G,σ, S) = min
K∈K(G,σ,S)

ω(K), K(G,σ, S) :=

{
K � 0 | Kii =

1

σi
,Kij ≤

Sij√
σiσj

}
(11)

It is easy to see that for unweighted graphs, Sij ∈ {0, 1}, σi = 1, the definition reduces to the
Delsarte version of the theta function in (5). ϑ1(G,σ, S) is hence a strict generalization of ϑ1(G).
All the proposed weighted extensions are defined by the same objective, ω(K). The only difference
is the set K, specialized in various ways, over which the minimum, minK∈K ω(K), is computed.
It also is important to note, that with the generalization of the theta function comes an implicit
generalization of the geometric representation of G. Specifically, for any feasible K in (11), there
is an embedding U = [u1, . . . ,un] such that K = U>U with the properties u>i uj

√
σiσj ≤ Sij ,

‖ui‖2 = 1/
√
σi, which can be retrieved using matrix decomposition. Note that u>i uj

√
σiσj is

exactly the cosine similarity between ui and uj , which is a very natural choice when Sij ∈ [0, 1].

The original definition of the (Delsarte) theta function and its extensions, as well as their kernel
characterizations, can be seen in table 1. We can prove the equivalence of the embedding (top) and
kernel characterizations (middle) using the following result.

Proposition 2.1. For any embedding U ∈ Rd×n with K = U>U , and f in (4), the following holds

min
c∈Sd−1

max
i

1

(c>ui)2
= max
αi≥0

f(α;K) . (12)

Proof. The result is given as part of the proof of Theorem 3 in Jethava et al. [14]. See also [16].

As we have already established in section 2 that any set of geometric embeddings have a characteri-
zation as a set of kernel matrices, it follows that the minimizing the LHS in (12) over a (constrained)
set of orthogonal representations, {ui}, is equivalent to minimizing the RHS over a kernel set K.

3 Computation and fixed-kernel approximation

The weighted generalization of the theta function, ϑ1(G,σ, S), defined in the previous section, may
be computed as a semidefinite program. In fact ϑ1(G,σ, S) = 1/(t∗)2 for t∗, the solution to the
following problem. For details, see the supplementary material [16].

minimize
X

t subject to X � 0, X ∈ R(n+1)×(n+1)

Xi,n+1 ≥ t, Xii = 1/σi, i ∈ [n]
Xij ≤ Sij/

√
σiσj , i 6= j, i, j ∈ [n]

(13)
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While polynomial in time complexity [13], solving the SDP is too slow in many cases. To address
this, Jethava et al. [14] introduced a fast approximation to (the unweighted) ϑ(G), dubbed SVM-
theta. They showed that in some cases, the minimization over K in (2) can be replaced by a fixed
choice of K, while causing just a constant-factor error. Specifically, for unweighted graphs with
adjacency matrix A, Jethava et al. [14] defined the so called LS-labelling, KLS(G) = A/|λn(A)|+
I , and showed that for large families of graphs ϑ(G) ≤ ω(KLS(G)) ≤ γϑ(G), for a constant γ.

We extend the LS-labelling to weighted graphs. For graphs with edge weights, represented by
a similarity matrix S, the original definition may be used, with S substituted for A. For node
weighted graphs we also must satisfy the constraint Kii = 1/σi, see (8). A natural choice, still
ensuring positive semidefiniteness is,

KLS(G,σ) =
A

σmax|λn(A)|
+ diag(σ)−1 (14)

where diag(σ)−1 is the diagonal matrix Σ with elements Σii = 1/σi, and σmax = maxni=1 σi. Both
weighted versions of the LS-labelling are presented in table 1. The fully generalized labelling, for
graphs with weights on both nodes and edges, KLS(G,σ, S) can be obtained by substituting S for
A in (14). As with the exact characterization, we note that KLS(G,σ, S) reduces to KLS(G) for
the uniform case, Sij ∈ {0, 1}, σi = 1. For all versions of the LS-labelling of G, as with the exact
characterization, a geometric embedding U may be obtained from KLS using matrix decompotion.

3.1 Computational complexity

Solving the full problem in the kernel characterization (11), is not faster than the computing the
SDP characterization (13). However, for a fixed K, the one-class SVM can be solved in O(n2)
time [12]. Retrieving the embedding U : K = UTU may be done using Cholesky or singular value
decomposition (SVD). In general, algorithms for these problems have complexity O(n3). However,
in many cases, a rank d approximation to the decomposition is sufficient, see for example [9]. A thin
(or truncated) SVD corresponding to the top d singular values may be computed in O(n2d) time [5]
for d = O(

√
n). The remaining issue is the computation of K. The complexity of computing the

LS-labelling discussed in the previous section is dominated by the computation of the minimum
eigenvalue λn(A). This can be done approximately in Õ(m) time, where m is the number of edges
of the graph [1]. Overall, the complexity of computing both the embedding U and ω(K) is O(dn2).

4 The theta function as diversity in graphs: ϑ-means clustering

In section 2, we defined extensions of the Delsarte version of the Lovász number, ϑ1(G) and the
associated geometric embedding, for weighted graphs. Now we wish to show how both ϑ(G) and
the geometric embedding are useful for solving common machine learning tasks. We build on an
intuition of ϑ(G) as a measure of diversity in graphs, illustrated here by a few simple examples. For
complete graphs Kn, it is well known that ϑ(Kn) = 1, and for empty graphs Kn, ϑ(Kn) = n.
We may interpret these graphs as having 1 and n clusters respectively. Graphs with several disjoint
clusters make a natural middle-ground. For a graphG that is a union of k disjoint cliques, ϑ(G) = k.

Now, consider the analogue of (6) for graphs with edge weights Sij . For any K ∈ K(G,S) and for
any subset H of nodes, let αi = 1 if i ∈ H and 0 otherwise. Then, since Kij ≤ Sij ,

2
∑
i

αi −
∑
ij

αiαjKij =
∑
i

αi −
∑
i 6=j

αiαjKij ≥ |H| −
∑

i 6=j,i,j∈H

Sij .

Maximizing this expression may be viewed as the trade-off of finding a subset of nodes that is both
large and diverse; the objective function is the size of the set subjected to a penalty for non–diversity.

In general support vector machines, non-zero support values αi correspond to support vectors, defin-
ing the decision boundary. As a result, nodes i ∈ V with high values αi may be interpreted as an
important and diverse set of nodes.

4.1 ϑ-means clustering

A common problem related to diversity in graphs is correlation clustering [3]. In correlation clus-
tering, the task is to cluster a set of items V = {1, . . . , n}, based on their similarity, or correlation,

5



Algorithm 1 ϑ-means clustering

1: Input: Graph G, with weight matrix S and node weights σ.
2: Compute kernel K ∈ K(G,σ, S)

3: α∗i ← arg maxαi
f(α;K), as in (4)

4: Sort alphas according to ji such that αj1 ≥ αj2 ≥ ... ≥ αjn
5: Let k = dϑ̂e where ϑ̂← ω(K) = f(α∗;K)

6: either a)
7: Initialize labels Zi = arg maxj∈{j1,...,jk}Kij

8: Output: result of kernel k-means with kernel K, k = dϑ̂e and Z as initial labels
9: or b)

10: Compute U : K = UTU , with columns Ui, and let C ← {Uji : i ≤ k}
11: Output: result of k-means with k = dϑ̂e and C as initial cluster centroids

S : V × V → Rn×n, without specifying the number of clusters beforehand. This is naturally posed
as a problem of clustering the nodes of an edge-weighted graph. In a variant called overlapping
correlation clustering [4], items may belong to several, overlapping, clusters. The usual formulation
of correlation clustering is an integer linear program [3]. Making use of geometric embeddings, we
may convert the graph clustering problem to the more standard problem of clustering a set of points
{ui}ni=1 ∈ Rd×n, allowing the use of an arsenal of established techniques, such as k-means cluster-
ing. However, we remind ourselves of two common problems with existing clustering algorithms.

Problem 1: Number of clusters Many clustering algorithms relies on the user making a good
choice of k, the number of clusters. As this choice can have dramatic effect on both the accuracy
and speed of the algorithm, heuristics for choosing k, such as Pham et al. [22], have been proposed.

Problem 2: Initialization Popular clustering algorithms such as Lloyd’s k-means, or expectation-
maximization for Gaussian mixture models require an initial guess of the parameters. As a result,
these algorithms are often run repeatedly with different random initializations.

We propose solutions to both problems based on ϑ1(G). To solve Problem 1, we choose k =
dϑ1(G)e. This is motivated by ϑ1(G) being a measure of diversity. For Problem 2, we propose
initializing parameters based on the observation that the non-zero αi are support vectors. Specifi-
cally, we let the initial clusters by represented by the set of k nodes, I ⊂ V , with the largest αi. In
k-means clustering, this corresponds to letting the initial centroids be {ui}i∈I . We summarize these
ideas in algorithm 1, comprising both ϑ-means and kernel ϑ-means clustering.

In section 3.1, we showed that computating the approximate weighted theta function and embedding,
can be done in O(dn2) time for a rank d = O(

√
n) approximation to the SVD. As is well-known,

Lloyd’s algorithm has a very high worst-case complexity and will dominate the overall complexity.

5 Experiments

5.1 Weighted Maximum Cut

The maximum cut problem (Max-Cut), a fundamental problem in graph algorithms, with applica-
tions in machine learning [25], has famously been solved using geometric embeddings defined by
semidefinite programs [9]. Here, given a graph G, we compute an embedding U ∈ Rd×n, the
SVM-theta labelling in [15], using the LS-labelling, KLS . To reduce complexity, while preserving
accuracy [9], we use a rank d =

√
2n truncated SVD, see section 3.1. We apply the Goemans-

Williamson random hyperplane rounding [9] to partition the embedding into two sets of points,
representing the cut. The rounding was repeated 5000 times, and the maximum cut is reported.

Helmberg & Rendl [11] constructed a set of 54 graphs, 24 of which are weighted, that has since
often been used as benchmarks for Max-Cut. We use the six of the weighted graphs for which there
are multiple published results [6, 21]. Our approach is closest to that of the SDP-relaxation, which
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Table 2: Weighted maximum cut. c is the weight of the produced cut.

SDP [6] SVM-ϑ Best known [21]
Graph c Time c Time c Time
G11 528 165s 522 3.13s 564 171.8s
G12 522 145s 518 2.94s 556 241.5s
G13 542 145s 540 2.97s 580 227.5s
G32 1280 1318s 1286 35.5s 1398 900.6s
G33 1248 1417s 1260 36.4s 1376 925.6s
G34 1264 1295s 1268 37.9s 1372 925.6s

Table 3: Clustering of the (mini) newsgroup dataset. Average (and std. deviation) over 5 splits. k̂ is
the average number of clusters predicted. The true number is k = 16.

F1 k̂ Time
VOTE/BOEM 31.29± 4.0 124 8.7m
PIVOT/BOEM 30.07± 3.4 120 14m
BEST/BOEM 29.67± 3.4 112 13m
FIRST/BOEM 26.76± 3.8 109 14m
k-MEANS+RAND 17.31± 1.3 2 15m
k-MEANS+INIT 20.06± 6.8 3 5.2m
ϑ-MEANS+RAND 35.60± 4.3 25 45s
ϑ-MEANS 36.20± 4.9 25 11s

has time complexity O(mn log2 n/ε3) [2]. In comparison, our method takes O(n2.5) time, see sec-
tion 3.1. The results are presented in table 2. For all graphs, the SVM approximation is comparable
to or better than the SDP solution, and considerably faster than the best known method [21].1

5.2 Correlation clustering

We evaluate several different versions of algorithm 1 in the task of correlation clustering, see sec-
tion 4.1. We consider a) the full version (ϑ-MEANS), b) one with k = dϑ̂e but random initialization
of centroids (ϑ-MEANS+RAND), c) one with α-based initialization but choosing k according to Pham
et al. [22] (k-MEANS+INIT) and d) k according to [22] and random initialization (k-MEANS+RAND).
For the randomly initialized versions, we use 5 restarts of k-means++. In all versions, we cluster the
points of the embedding defined by the fixed kernel (LS-labelling) K = KLS(G,S).

Elsner & Schudy [7] constructed five affinity matrices for a subset of the classical 20-newsgroups
dataset. Each matrix, corresponding to a different split of the data, represents the similarity between
messages in 16 different newsgroups. The task is to cluster the messages by their respective news-
group. We run algorithm 1 on every split, and compute the F1-score [7], reporting the average and
standard deviation over all splits, as well as the predicted number of clusters, k̂. We compare our
results to several greedy methods described by Elsner & Schudy [7], see table 3. We only compare
to their logarithmic weighting schema, as the difference to using additive weights was negligible [7].

The results are presented in table 3. We observe that the full ϑ-means method achieves the highest
F1-score, followed by the version with random initialization (instead of using embeddings of nodes
with highest αi, see algorithm 1). We note also that choosing k by the method of Pham et al. [22]
consistently results in too few clusters, and with the greedy search methods, far too many.

5.3 Overlapping Correlation Clustering

Bonchi et al. [4] constructed a benchmark for overlapping correlation clustering based on two
datasets for multi-label classification, Yeast and Emotion. The datasets consist of 2417 and 593
items belonging to one or more of 14 and 6 overlapping clusters respectively. Each set can be repre-
sented as an n× k binary matrix L, where k is the number of clusters and n is the number of items,

1Note that the timing results for the SDP method are from the original paper, published in 2001.
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Table 4: Clustering of the Yeast and Emotion datasets. †The total time for finding the best solution.
The times for OCC-ISECT for a single k was 2.21s and 80.4s respectively.

Emotion Yeast
Prec. Rec. F1 Time Prec. Rec. F1 Time

OCC-ISECT [4] 0.98 1 0.99 12.1† 0.99 1.00 1.00 716s†
ϑ-means (no k-means) 1 1 1 0.34s 0.94 1 0.97 6.67s

such that Lic = 1 iff item i belongs to cluster c. From L, a weight matrix S is defined such that Sij
is the Jaccard coefficient between rows i and j of L. S is often sparse, as many of the pairs do not
share a single cluster. The correlation clustering task is to reconstruct L from S.

Here, we use only the centroids C = {uj1 , ...,ujk} produced by algorithm 1, without running k-
means. We let each centroid c = 1, ..., k represent a cluster, and assign a node i ∈ V to that cluster,
i.e. L̂ic = 1, iff uTi ujc > 0. We compute the precision and recall following Bonchi et al. [4]. For
comparison with Bonchi et al. [4], we run their algorithm called OCC-ISECT with the parameter k̄,
bounding the number of clusters, in the interval 1, ..., 16 and select the one resulting in lowest cost.

The results are presented in table 4. For Emotion and Yeast, ϑ-means estimated the number of
clusters, k to be 6 (the correct number) and 8 respectively. For OCC-Isect, the k with the lowest
cost were 10 and 13. We note that while very similar in performance, the ϑ-means algorithms is
considerably faster than OCC-ISECT, especially when k is unknown.

5.4 Document summarization

Finally, we briefly examine the idea of using αi to select a both relevant and diverse set of items, in a
very natural application of the weighted theta function – extractive summarization [18]. In extractive
summarization, the goal is to automatically summarize a text by picking out a small set of sentences
that best represents the whole text. We may view the sentences of a text as the nodes of a graph, with
edge weights Sij , the similarity between sentences, and node weights σi representing the relevance
of the sentence to the text as a whole. The trade-off between brevity and relevance described above
can then be viewed as finding a set of nodes that has both high total weight and high diversity. This is
naturally accomplished using our framework by computing [α∗1, . . . , α

∗
n]> = arg maxαi>0 f(α;K)

for fixed K = KLS(G,σ, S) and picking the sentences with the highest α∗i .

We apply this method to the multi-document summarization task of DUC-042. We let Sij be the
TF-IDF sentence similarity described by Lin & Bilmes [18], and let σi = (

∑
j Sij)

2. State-of-the-
art systems, purpose-built for summarization, achieve around 0.39 in recall and F1 score [18]. Our
method achieves a score of 0.33 on both measures which is about the same as the basic version
of [18]. This is likely possible to improve by tuning the trade-off between relevance and diversity,
such as a making a more sophisticated choice of S and σ. However, we leave this to future work.

6 Conclusions

We have introduced a unifying generalization of Lovász’s theta function and the corresponding
geometric embedding to graphs with node and edge weights, characterized as a minimization over
a constrained set of kernel matrices. This allows an extension of a fast approximation of the Lovász
number to weighted graphs, defined by an SVM problem for a fixed kernel matrix. We have shown
that the theta function has a natural interpretation as a measure of diversity in graphs, a useful
function in several machine learning problems. Exploiting these results, we have defined algorithms
for weighted maximum cut, correlation clustering and document summarization.
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