
A Normalizable distributions

Proof of Proposition 1 (distributions close to normalizable sets are approximately normalizable).

Let T (x, y) = T ∗(x, y) + T−(x, y), where T ∗(x, y) = argmin
T (x,y):x∈S

||T (X, y)− T (x, y)||2 .

Then,

E

(
log

(∫
eη

⊤T (X,y) dy

))2

= E

(
log

(∫
eη

⊤(T∗(X,y)+T−(X,y)) dy

))2

≤ E

(
log

(
eη

⊤T̃

∫
eη

⊤T∗(X,y) dy

))2

for T̃ = argmax
T (X,y)

||η⊤T (X, y)||2,

≤ E
(
log
(
eη

⊤T̃
))2

= (DB)2

B Normalization and likelihood

B.1 General bound

Lemma 5. If ||η||2 ≤ δ/R, then pη(y|x) is δ-approximately normalized about logµ(Y).

Proof. If
∫
eη

⊤T (X,y) dµ(y) ≥ logµ(Y),
(
log

∫

Y
eη

⊤T (X,y) dµ(y)− logµ(Y)

)2

≤
(
log

∫

Y
e||η||2R dµ(y)− logµ(Y)

)2

= ||η||22R2

≤ δ2

The case where
∫
eη

⊤T (X,y) dµ(y) ≤ logµ(Y) is analogous, instead replacing η⊤T (x, y) with
−||η||2R. The variance result follows from the fact that every log-partition is within δ of the mean.

Proof of Theorem 2 (loss of likelihood is bounded in terms of distance from uniform). Consider the
likelihood evaluated at αη̂, where α = δ/R||η̂||2. We know that 0 ≤ α ≤ 1 (if δ > Rη, then
the MLE already satisfying the normalizing constraint). Additionally, pαη̂(y|x) is δ-approximately
normalized. (Both follow from Lemma 5.)

Then,

∆ℓ =
1

n

∑

i

[
(η̂⊤T (xi, yi)−A(xi, η̂))− (αη̂⊤T (xi, yi)−A(xi,αη̂))

]

=
1

n

∑

i

[
(1− α)η̂⊤T (xi, yi)−A(xi, η̂) +A(xi,αη̂)

]

Because A(x,αη) is convex in α,

A(xi,αη̂) ≤ (1− α)A(xi,0) + αA(xi, η̂)

= (1− α)µ(Y) + αA(xi, η̂)
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Thus,

∆ℓ =
1

n

∑

i

[
(1− α)η̂⊤T (xi, yi)−A(xi, η̂) + (1− α) log µ(Y) + αA(xi, η̂)

]

= (1− α)
1

n

∑

i

[
η̂⊤T (xi, yi)−A(xi, η̂) + log µ(Y)

]

= (1− α)
1

n

∑

i

[log pη(y|x)− log Unif(y)]

≍ (1− α) EKL(pη(·|X) || Unif)

≤
(
1− δ

R||η̂||2

)
EKL(pη(·|X) || Unif)

B.2 All-nonuniform bound

We make the following assumptions:

• Labels y are discrete. That is, Y = {1, 2, . . . , k} for some k.

• x ∈ H(d). That is, each x is a {0, 1} indicator vector drawn from the Boolean hypercube
in q dimensions.

• Joint feature vectors T (x, y) are just the features of x conjoined with the label y. Then it is
possible to think of η as a sequence of vectors, one per class, and we can write η⊤T (x, y) =
η⊤y x.

• As in the body text, let all MLE predictions be nonuniform, and in particular let each
η̂⊤y∗x− η̂⊤y x > c||η̂|| for y ̸= y∗.

Lemma 6. For a fixed x, the maximum covariance between any two features xi and xj under the
model evaluated at some η in the direction of the MLE:

Cov[T (X,Y )i, T (X,Y )j |X = x] ≤ 2(k − 1)e−cδ (12)

Proof. If either i or j is not associated with the class y, or associated with a zero element of x, then
the associated feature (and thus the covariance at (i, j)) is identically zero. Thus we assume that i
and j are both associated with y and correspond to nonzero elements of x.

Cov[Ti, Tj |X = x] =
∑

y

pη(y|x)− pη(y|x)2

Suppose y is the majority class. Then,

pη(y|x)− pη(y|x)2 =
eη

⊤
y x

∑
y′ e

η⊤
y′x

− e2η
⊤
y x

(∑
y′ e

η⊤
y′x
)2

=
eη

⊤
y x
(∑

y′ e
η⊤
y′x
)
− e2η

⊤
y x

(∑
y′ e

η⊤
y′x
)2

≤
eη

⊤
y x
(∑

y′ e
η⊤
y′x
)
− e2η

⊤
y x

e2η
⊤
y x

=
∑

y′ ̸=y

e(η
′
y−ηy)

⊤x

≤ (k − 1)e−c||η||
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Now suppose y is not in the majority class. Then,

pη(y|x)− pη(y|x)2 ≤ p(y|x)

=
eη

⊤
y x

∑
y′ e

η⊤
y′x

≤ e−c||η||

Thus the covariance
∑

y

pη(y|x)− pη(y|x)2 ≤ 2(k − 1)e−c||η|||

Lemma 7. Suppose η = βη̂ for some β < 1. Then for a sequence of observations (x1, . . . , xn),
under the model evaluated at ξ, the largest eigenvalue of the feature covariance matrix

1

n

∑

i

[
Eξ[TT

⊤|X = xi]− (Eθ[T |X = xi])(Eξ[T |X = xi])
⊤] (13)

is at most
q(k − 1)e−cβ||η̂|| (14)

Proof. From Lemma 6, each entry in the covariance matrix is at most (k − 1)e−c||η|| = (k −
1)e−cβ||η̂||. At most q features are nonzero active in any row of the matrix. Thus by Gershgorin’s
theorem, the maximum eigenvalue of each term in Equation 13 is q(k − 1)e−cβ||η̂||, which is also
an upper bound on the sum.

Proof of Proposition 3 (loss of likelihood goes as e−δ). As before, let us choose η̂δ = αη̂, with α =
δ/R||η̂||2. We have already seen that this choice of parameter is normalizing.

Taking a second-order Taylor expansion about η, we have

log pη̂δ (y|x) = log pη(y|x) + (η̂δ − η̂)⊤∇ log pη̂(y|x) + (η̂δ − η̂)⊤∇∇⊤ log pξ(y|x)(η̂δ − η̂)

= log pη̂(y|x) + (η̂δ − η̂)⊤∇∇⊤ log pξ(y|x)(η̂δ − η̂)

where the first-order term vanishes because η̂ is the MLE. It is a standard result for exponential
families that the Hessian in the second-order term is just Equation 13. Thus we can write

≥ log pη̂(y|x)− ||η̂δ − η̂||2q(k − 1)e−cβ||η||

≥ log pη̂(y|x)− (1− α)2||η̂||2q(k − 1)e−cα||η||

= log pη̂(y|x)− (||η̂||− δ/R)2q(k − 1)e−cδ/R

The proposition follows.

C Variance lower bound

Let
U0 = {β ∈ RKd : ∃β̃ ∈ Rd,βkj = β̃j , 1 ≤ k ≤ K, 1 ≤ j ≤ d}.

Lemma 8. If span (X ) = Rd, then equivalence of natural parameters is characterized by

η ∼ η′ ⇐⇒ η − η′ ∈ U0.

Proof. For x ∈ X , denote by Pη(x) ∈ ∆K the distribution over Y . Now, suppose that η ∼ η′ and
fix x ∈ X . By the definition of equivalence, we have

Pη(x)k
Pη(x)k′

=
Pη′(x)k
Pη′(x)k′

,
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which immediately implies
(ηk − ηk′)T x = (η′k − η′k′)

T
x,

whence
[(ηk − η′k)− (ηk′ − η′k′)]

T
x = 0.

Since this holds for all x ∈ X and span(X ) = Rd, we get

ηk − η′k = ηk′ − η′k′ .

That is, if we define
β̃j = η1j − η′1j ,

we get
ηkj − η′kj = η1d − η′1j = β̃j ,

and η − η′ ∈ U0, as required.

Conversely, if η − η′ ∈ U0, choose an appropriate β̃. We then get

ηTk x = (η′)
T
x+ β̃Tx.

It follows that
A(η′, x) = A(η, x) + β̃Tx,

so that

ηTT (k, x)−A(η, x) = (η′)
T
x+ β̃Tx−

[
A(η′, x) + β̃Tx

]
= (η′)

T
x−A(η′, x)

and the claim follows.

The key tool we use to prove the theorem reinterprets V ∗(η) as the norm of an orthogonal projection.
We believe this may be of independent interest. To set it up, let S = L2

(
Q, RD

)
be the Hilbert

space of square-integrable functions with respect to the input distribution p(x), define

wj(x) = xj − Ep(x) [Xj ]

and
C = span (wj)1≤j≤d .

We then have
Lemma 9. Let Ã(η, x) = A(η, x)− Ep(x) [A(η, X)]. Then

V ∗(η) =
∣∣∣
∣∣∣Ã(η, ·)−ΠCÃ(η, ·)

∣∣∣
∣∣∣
2

2
.

The second key observation, which we again believe is of independent interest, is that under certain
circumstances, we can completely replace the normalizer A(η, ·) by maxy∈Y ηTT (y, x). For this,
we define

E∞(η)(x) = max
k

ηTT (k, x) = max
k

ηTk x

and correspondingly let Ē∞(η) = Ep(x) [E∞(η)(x)].

Proof. By Lemma 8, we have

V ∗(η) = inf
β∈Rd

∫

RKd

[
A(η, x)− Ā(η)−

(
βTx− βTEp(x) [X]

)]2
dp(x).

But now, we observe that this can be rewritten with the aid of the isomorphism Rd ≃ C defined by
the identity

βTx− βTEp(x) [X] =
∑

j

βjwj(x)

to read

V ∗(η) = inf
f∈C

∫

Rd

[
A(η, x)− Ā(η)− f

]2
dp(x) =

∣∣∣
∣∣∣Ã(η, ·)−ΠCÃ(η, ·)

∣∣∣
∣∣∣
2

2
,

as required.
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Lemma 10. Suppose for each x ∈ X , there is a unique k∗ = k∗(x) such that k∗(x) =
argmaxk η

T
k x and such that for k ̸= k∗, ηTk x ≤ ηTk∗x−∆ for some ∆ > 0. Then

sup
x∈X

∣∣A(η, x)− Ā(η)−
[
E∞(η)(x)− Ē∞(η)

]∣∣ ≤ Ke−∆α.

Proof. Denote by Ẽ∞ the centered version of E∞. Using the identity 1 + t ≤ et, we immediately
see that

E∞(αη)(x) ≤ A(αη, x) = αE∞(η)(x)+log

⎛

⎝1 +
∑

k ̸=k∗(x)

e[η
T
k x−E∞(η)(x)]

⎞

⎠ ≤ E∞(αη)(x)+Ke−∆α.

It follows that

Ep(x) [E∞(αη)(X)] ≤ Ep(x) [A(αη, X)] ≤ Ep(x) [E∞(αη)(X)] +Ke−∆α.

We thus have
−Ke−∆α ≤ Ã(αη, x)− Ẽ∞(αη)(x) ≤ Ke−∆α, x ∈ X .

The claim follows.

If we let
V ∗
E (η) = inf

η′∼η
Varp(x)

[
Ẽ∞(η′, X)

]
.

Corollary 11. For α > log 2K
∆ , we have

V ∗(αη) ≥ V ∗
E (η)α

2 − (1 + V ∗
E (η))α.

Proof. For this, observe first that if η′ ∼ η, then

Ã(η′, x)2 ≥ Ẽ∞(αη′)(x)2 − 2
∣∣∣Ẽ∞(αη′)(x)

∣∣∣
∣∣∣Ã(η′, x)− Ẽ∞(η′)(x)

∣∣∣ .

By linearity of E∞(η′) in its η argument, and by Lemma 10, we therefore deduce

Ã(η′, x)2 ≥ Ẽ∞(η′)(x)2α2 − 2Ke−∆α
∣∣∣Ẽ∞(η′)(x)

∣∣∣α.

Then using the inequality Ep(x) [|f(X)|] ≤ 1+Varp(x) [f(X)], valid for any f ∈ L2
(
Q, RD

)
with

Ep(x) [f ] = 0, we thus deduce

Varp(x) [A(αη
′, X)] ≥ Varp(x) [E∞(η′)(X)]α2 − 2Ke−∆α

(
1 + Varp(x) [E∞(η′)(X)]

)
α.

Taking the infimum over both sides, we get

V ∗(η) ≥ V ∗
E (η)− 2Ke−∆α (1 + V ∗

E (η))α.

We are now prepared to give the explicit example. It is defined by ηk = 0 if k > 2 and

η1j =

{
−a if d = 1,
a

d−1 o.w.
(15)

and for all j,
η2j =

a

d(d− 1)
, (16)

where

a =

√
1− 1

d
.

For convenience, also define
b(x) =

∑

d

xd
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and observe that

E∞(η)(x) =

{
ab(x)
d(d−1) if xj = 1,
ab(x)
d−1 o.w.

,

Our goal will be to prove that

1 ≥ V ∗
E (η) ≥

1

32d(d− 1)
.

The claim will then follow by the above corollary.

To see that V ∗
E (η) ≤ 1, we simply note that

max
k

∣∣ηTk x
∣∣ ≤ a < 1,

whence Varp(x)
[
ηTx

]
≤ 1 as well and we are done.

The other direction requires more work. To prove it, we first prove the following lemma
Lemma 12. With η defined as in (15)-(16), we have

inf
η′∼η

Ep(x)
[
E∞(η′)(X)2

]
≥ 1

16d(d− 1)
.

Proof. Suppose ηk − η′k = β ∈ Rd. We can then write

inf
η′∼η

Ep(x)
[
E∞(η′)(X)2

]
= inf

β∈Rd

1

2d

∑

x∈H

∑

x∈H

[
E∞(η)(x)− βTx

]2

and we therefore define

L(β) =
∑

x∈H

∑

x∈H

[
E∞(η)(x)− βTx

]2

=
∑

x : x1=0

[(
β1 + βTx− a

d (d− 1)

)2

+

(
ab(x)

d− 1
− βTx

)2
]
,

noting that
inf L = 2d · inf

η′∼η
Ep(x)

[
E∞(η′)(X)2

]
.

We therefore need to prove

L ≥ 2d−4

d(d− 1)
.

Holding β2:d fixed, we note that the optimal setting of β1 is given by

β1 = −1

2

∑

j≥2

βj +
a

d (d− 1)
.

We can therefore work with the objective

L(β) =
∑

x : x1=0

[(
βTx− βTx¬)2

4
+

(
ab(x)

d− 1
− βTx

)2
]
,

where we have defined

x¬
j =

{
0 if j = 1,
1− xj o.w.

Grouping into {x, x¬} pairs, we end up with

L(β2:d) =
∑

x : x1=x2=0

[(
βTx− βTx¬)2

2
+

(
ab(x)

d− 1
− βTx

)2

+

(
ab(x¬)

d− 1
− βTx¬

)2
]
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Now, supposing b(x) ≤ d−1
2 − 3

2 or b(x) ≥ D−1
2 + 3

2 , we have

|b(x¬)− b(x)| = |d− 1− 2b(x)| ≥ 3.

We will bound the terms that satisfy this property. Indeed, supposing we fix such an x, at least one
of the following must be true: either

max

((
ab(x)

d− 1
− βTx

)2

,

(
ab(x¬)

d− 1
− βTx¬

)2
)

≥ a2

(d− 1)2
,

or
(
βTx− βTx¬)2 ≥ a2

(d− 1)2
.

Indeed, suppose the first condition does not hold. Then necessarily
∣∣∣∣
ab(x)

d− 1
− βTx

∣∣∣∣ <
a

d− 1

and ∣∣∣∣
ab(x¬)

d− 1
− βTx¬

∣∣∣∣ <
a

d− 1
,

so that
a (b(x)− 1)

d− 1
≤ βTx ≤ a (b(x) + 1)

d− 1
and

a (b(x¬)− 1)

d− 1
≤ βTx ≤ a (b(x¬) + 1)

d− 1
.

Now, if b(x) ≥ b(x¬) + 3, this immediately implies

βTx− βTx¬ ≥ a

d− 1

and, symmetrically, if b(x¬) ≥ b(x) + 3, we get

βTx¬ − βTx ≥ a

d− 1
.

Either way, the second inequality holds, whence the claim. Since there are at least 2d−1− 3·2d√
3d
2 +1

≥

2d−2 choices of x satisfying the requirements of our line of reasoning, we get 2d−3 pairs, whence

L(β2:d) ≥
2d−4a2

(d− 1)2
=

2d−4

d (d− 1)
,

as claimed.

We can apply this lemma to derive a variance bound, viz.
Lemma 13. With η as in (15)-(16), we have

V ∗
E (η) ≥

1

32d(d− 1)
.

Proof. For this, observe that, with η′ being the value corresponding to η′k − ηk = β, we have

V ∗
E (η) = inf

β

1

2d

∑

x∈H
Ẽ∞(η′)(x)2 ≥ inf

β

1

2d

∑

x∈H : x1=1

Ẽ∞(η′)(x)2.

Applying the previous result to the (D − 1)-dimensional hypercube on which x1 = 1, we deduce

V ∗
E (η) ≥

1

2
· 1

16(d− 1)(d− 2)
=

1

32(d− 1)(d− 2)
≥ 1

32d(d− 1)
.
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Proof of Theorem 4 from Lemma 13. Putting everything together, we see first that

V ∗(αη) ≥ V ∗
E (η)α

2 − 4e−∆αα,

where ∆ =
√

1− 1
d

2(d−1) . But then this implies

V ∗(αη) ≥ α2

32d(d− 1)
− 4e−∆αα.

On the other hand, ||η||22 ≤ 2, so α2 =
||αη||22
||η||22

≥ ||αη||22
2 , whence

V ∗(αη) ≥
||αη||22

64d(d− 1)
− 4e−

√
1− 1

d
||αη||2

2(d−1) ||αη||2 ,

which is the desired result.
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