A Normalizable distributions

Proof of Proposition 1 (distributions close to normalizable sets are approximately normalizable).

Let T'(z,y) = T*(x,y) + T~ (x,y), where T"(z,y) = argmin |[T(X,y) — T(z,y)||2 .
T(z,y):xz€S

2 2
E <log (/ 677TT(X7’!/) dy)) —F (1og (/ enT(T*(X,y)-i-T’(X,y)) dy))
T T 2
<E <1og (e" T/e’7 " (X.9) dy))

Then,

for T = arg max ||77TT(X7 W2,
T(X,y)

<& o (1))
= (DB)? O
B Normalization and likelihood

B.1 General bound

Lemma 5. If ||n||2 < §/R, then p,(y|x) is d-approximately normalized about log pu(Y).

Proof. 1f [ e TCX0) dpu(y) > log u(Y).

2 2
<1og/ e T dp(y) —logu(y)> < <10g/ elll2 1 dp(y) —10gu(y)>
Yy Yy
= [Inl[3R*
< 6

The case where fe”TT(X’y) du(y) < logu() is analogous, instead replacing n' T'(z,y) with
—||n||2R. The variance result follows from the fact that every log-partition is within ¢ of the mean.
O

Proof of Theorem 2 (loss of likelihood is bounded in terms of distance from uniform). Consider the
likelihood evaluated at o), where o = §/R||7}||2. We know that 0 < « < 1 (if 6 > Rn, then
the MLE already satisfying the normalizing constraint). Additionally, p,;(y|x) is d-approximately
normalized. (Both follow from Lemma 5.)

Then,
A= %Z (7T (s, 3:) — Az, 1)) — (i T2, 9:) — Az, )]
= %Z [(1 — )i T(zi, y;) — Azi, 1) + A(a:i,aﬁ)]

Because A(z, an) is convex in a,

Az, an) < (1 - a)A(xi, 0) + aA(z;, 1)
= (1 - a)pu(Y) + aA(z;, )
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Thus,

Ao =2 30 [(1= )0 Twi,) = Al i) + (1 = ) log () + aA(wi, )]

(=) 3 [0 i) — Alai, i) + log p(Y)]

%

= (1-0)1- 3 llogp, (yl) — log Unif(y)]

K2

= (1= a) EKL(p, (-|) || Unif)

1) .
< (1 - R|n||> EKL(p, () || Unif) O

B.2 All-nonuniform bound
We make the following assumptions:

e Labels y are discrete. Thatis, Y = {1,2, ..., k} for some k.

e x € H(d). That s, each x is a {0, 1} indicator vector drawn from the Boolean hypercube
in g dimensions.

e Joint feature vectors T'(x, y) are just the features of  conjoined with the label y. Then it is
possible to think of 7 as a sequence of vectors, one per class, and we can write ' T'(x, y) =
77;r x.
e As in the body text, let all MLE predictions be nonuniform, and in particular let each
Ayt — 7y x> ¢ 7] fory # y*.
Lemma 6. For a fixed x, the maximum covariance between any two features x; and x; under the
model evaluated at some 1) in the direction of the MLE:

CovT(X,Y);, T(X,Y),;|X =2] <2(k— 1)6765 12)

Proof. If either ¢ or j is not associated with the class y, or associated with a zero element of z, then
the associated feature (and thus the covariance at (%, j)) is identically zero. Thus we assume that 4
and j are both associated with y and correspond to nonzero elements of x.

Cov[T;, T;|X = 2] = > py(ylz) — py(ylz)?

Suppose y is the majority class. Then,

e'r];rw 627’];.’,8
Zy' enyT,x : (Zy/ 6"31)2
- e’r/;r;c (ZU/ emj/i) _ 6271;1'
! (Zy’ 67,;,x) 2
677;1 (Zy/ eﬂy—rxm) _ eQan

eZnJa:
Z e(n;*ﬂy)Tf
y'#y
< (k- 1)6—0|Inll

pn(ylz) — py(yla)® =

IN
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Now suppose ¥ is not in the majority class. Then,
Payle) = py(ylz)® < p(yle)
e @
>y e

< ¢—cllnll

Thus the covariance

an(y\w) —pn(y|x)2 <2(k— 1)e—c||nm

O
Lemma 7. Suppose n = [1) for some B < 1. Then for a sequence of observations (x1,...,Zy,),
under the model evaluated at &, the largest eigenvalue of the feature covariance matrix
1
- S EATT (X = 23] — (Eo[T|X = ) (Ee[T|X = 2:]) "] (13)
is at most X
q(k — 1)6—06\\77\\ (14)
Proof. From Lemma 6, each entry in the covariance matrix is at most (k — 1)e~cll"l = (& —

1)676ﬁ||ﬁ”. At most ¢ features are nonzero active in any row of the matrix. Thus by Gershgorin’s

theorem, the maximum eigenvalue of each term in Equation 13 is ¢(k — 1)e~ A7l which is also
an upper bound on the sum. O

Proof of Proposition 3 (loss of likelihood goes as e~°). As before, let us choose 75 = af), with v =
0/ R||7||2. We have already seen that this choice of parameter is normalizing.
Taking a second-order Taylor expansion about 7, we have
log pa, (yla) = log py(ylz) + (s — 7) TV log ps(yle) + (s — 1) V'V log pe(yl) (s — 1)
=logps(yle) + (s —7) " V'V " log pe(yl) (s — 1)

where the first-order term vanishes because 7) is the MLE. It is a standard result for exponential
families that the Hessian in the second-order term is just Equation 13. Thus we can write

> log py (ylz) — |[s — il *q(k — 1)e~AIIl!
> log s (ylx) — (1 — a)?||7]>q(k — 1)ecelml
=log ps(ylx) — (|lAl] — 6/R)*q(k — 1)e~ /7

The proposition follows. -

C Variance lower bound

Let ~ _
Up={BeRF":3IBeR By =5, 1<k<K, 1<j<d}

Lemma 8. [fspan (X) = RY, then equivalence of natural parameters is characterized by

n~n <= n-—n €l

Proof. For x € X, denote by P, (x) € Ak the distribution over V. Now, suppose that 7 ~ 7’ and
fix x € X. By the definition of equivalence, we have
P77 (CL’)k _ P77’ (CL’)k

Py(z)p  Py(x)p’
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which immediately implies
T / 1 \T
(e —mi)” @ = (N — M) @,
whence
/ r 17T
(e = m3) = (e — )] @ = 0.
Since this holds for all x € X and span(X) = R, we get
Mo = My = N — M-
That is, if we define _
Bi = mj —
we get B
Nkj — My = Ma — M = By,
and n — n’ € U, as required.
Conversely, if n — 1’ € Uy, choose an appropriate /3. We then get
T -
mx =) =+ e
It follows that ~
Al z) = A(n, 2) + BTz,
so that

0Tk, 2) = A, @) = () @+ 8% — [AGr, @)+ 32| = ()" @ - A, 2)

and the claim follows. O

The key tool we use to prove the theorem reinterprets V* (1) as the norm of an orthogonal projection.
We believe this may be of independent interest. To set it up, let S = L2 (Q, RP ) be the Hilbert
space of square-integrable functions with respect to the input distribution p(z), define

wj(x) = x5 — Bpa) [X;]
and

C = span (w;) ;<4
We then have
Lemma9. Let A(n, z) = A(n, ) — Ep(z) [A(n, X)]. Then
2

V) = [ A ) —TeAe, )| -

The second key observation, which we again believe is of independent interest, is that under certain
circumstances, we can completely replace the normalizer A(n, -) by maxyey n” T'(y, ). For this,
we define

Eso(n)(z) = maxn" T(k, x) = maxn; z

and correspondingly let Eo (1) = E, () [Foo (1) ()]

Proof. By Lemma 8, we have

Vi) = nt, [ (A @)= A = (870 = 5By [X)] dola).

But now, we observe that this can be rewritten with the aid of the isomorphism R? ~ C defined by
the identity

BT = B Ep) [X] =) Bjw;(x)
J
to read

Vi = inf [ A6 @)= A - 117 dpta) = [|[An, )~ TeAr, |

as required. [
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Lemma 10. Suppose for each x € X, there is a unique k* = k*(z) such that k*(x) =
arg max,, 1 « and such that for k # k*, nf z < nl.x — A for some A > 0. Then

sup [A(n, ) = A(n) = [Beo(n)(2) — Exc(n)]] < Ke™2.

Proof. Denote by E. the centered version of E.. Using the identity 1 4 ¢ < e, we immediately
see that

Eoo(an)(z) < Alan, 2) = aB(n)(@)+log [ 1+ Y elme=B=@] ) < B_(an)(e)+Kee.
k#£k* (z)

It follows that
[Ep(rc) [EOO(Cm)(X)] < [Ep(x) [A(OHY» X)] < [Ep(f) [EOO(O”])(XH + Ke_Aa'

We thus have _ ~
—Ke 2% < A(an, ) — Ex(am)(z) < Ke ™%, z€ X.

The claim follows. O

If we let
V() = inf Var, ., |Es (', X)|.
= (n) o p(zx) [ (n )}

Corollary 11. For o > %, we have

V*(an) = VE(m)a? — (1 + Vg () o
Proof. For this, observe first that if ’ ~ 7, then
A, @) = Eulon)@)? = 2| Eu(on)@)| | A0, 2) = Boc(0/)(@)|.
By linearity of E (7') in its ) argument, and by Lemma 10, we therefore deduce
Ew(i)(@)| .

Then using the inequality E,,(,) [| f(X)|] < 1+ Vary,) [f(X)], valid for any f € L? (Q, R”) with
Ep(z) [f] = 0, we thus deduce

A(rf, 2)2 > B () (2)%0® — 2Ke™ 2

Var, ) [A(on’, X)] > Vary g [Ex(n')(X)] a? —2Ke A« (1 + Var,(,) [Eoo(n')(X)]) a.
Taking the infimum over both sides, we get

V*(n) 2 Vi (n) — 2Ke™ 2 (1+ Vi (n)) e

O
We are now prepared to give the explicit example. It is defined by 7, = 0 if £ > 2 and
—a ifd=1
_ ’ 15
Mj { dil O.W. (15)
and for all j,
a
16
where
1 1
a= - =
d
For convenience, also define
b(z) = Z Zq



and observe that

ab(@)  p g —1
Ew (77) (‘T) = { Zl()((jz_)l) o WJ )

Our goal will be to prove that

1> VE* > .
- (n) — 32d (d — ].)
The claim will then follow by the above corollary.

To see that Vi (n) < 1, we simply note that

ml?x ’n,{x} <a<l,

whence Var,,,) [n7z] < 1 as well and we are done.

The other direction requires more work. To prove it, we first prove the following lemma
Lemma 12. With 1 defined as in (15)-(16), we have

1
inf [E E NX)? > ————.
7]1’1’1”7 p(x) [ 00(77 )( ) ] = 16d(d— 1)

Proof. Suppose 0, — 1, = 3 € R%. We can then write

it v [P0 (X)7) = it 53 3 3 [Becl)(0) = 572]°

7
~ eRd
men ceH zeH

and we therefore define

£B) =33 [Exm)(z) - 7]

reH x€H
a 2 ab(x) 2
T T
(845 gamy) + (71 -7) ]

inf £ =2¢. infn Ep) [Eso(n')(X)?].

noting that

x: x1=0
n'~

We therefore need to prove
2d—4
L>——.

d(d-1)
Holding f2.4 fixed, we note that the optimal setting of 3; is given by
1 a
=32 it gy
Jj=2
We can therefore work with the objective

Ty — pT27)? ab(x 2
L=y [(5 v M(dbff—ﬁ%)],

x: x1=0

where we have defined

L0 ifj=1,
o=

€T.
1—z; ow.
Grouping into {x, x ™} pairs, we end up with

ing= 3 [CEE (0 ()]

x: x1=x2=0
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Now, supposing b(z) < 42 — 2 or b(z) > 2-1 + 2, we have
b(z7) = b(x)| = |d — 1 — 2b(z)| > 3.

We will bound the terms that satisfy this property. Indeed, supposing we fix such an z, at least one
of the following must be true: either

max ((bezl) - ﬂTx)Q, (aj(f? - ﬂTxﬁ>2> > (di21)2’

or )
2 a
Blae—pTa™)" > —.
( T
Indeed, suppose the first condition does not hold. Then necessarily
ab(x ) T
d— —he d -1
and b( )
a T 4 a
d— —he d -1
so that
a(ble) 1) _ gr _albla) +1)
d—1 d—1
and

abla) =) _ gr _alia) +1)
d—1 d—1
Now, if b(x) > b(x™) + 3, this immediately implies
ﬁTﬁE - ﬂTxﬁ > %
and, symmetrically, if b(x™) > b(x) + 3, we get
pla” - plae>

a
Td-1

. . . . . d—1 3.94 >
Either way, the second inequality holds, whence the claim. Since there are at least 2 VT 2
292 choices of z satisfying the requirements of our line of reasoning, we get 2%~ pairs, whence
2d—4a2 2d—4
(d—1)% d(d—-1)

as claimed. O

‘C(ﬁQ:d) 2

‘We can apply this lemma to derive a variance bound, viz.
Lemma 13. With 1 as in (15)-(16), we have

VE()—W)

Proof. For this, observe that, with r’ being the value corresponding to 0, — n, = B, we have
Vi ( mf 5d Z Eo 2> Hgf — Z Eoo(n)(z)%
TEH rEH: x1=1

Applying the previous result to the (D — 1)-dimensional hypercube on which z; = 1, we deduce

1 1 1 1
Ve(m) = 5 6(d—1)[d—2)  32d-1)d—2) — 32d[d—1)’
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Proof of Theorem 4 from Lemma 13. Putting everything together, we see first that
V= (an) > Vi (n)a? — 42,

11
where A = ¥4 But then this implies

2(d=1)"
V*( ) > OZQ 4 — A«
a — e R,
M= 32d(d—1)
2 2
On the other hand, ||77||§ <2,s00% = ”‘m“k > 0”27”2 , whence
2
: A T
V*(an) > W—Ql) —de” =D [an|l,

which is the desired result.
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