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Abstract

In many neural systems, information about stimulus variables is often represented
in a distributed manner by means of a population code. It is generally assumed that
the responses of the neural population are tuned to the stimulus statistics, and most
prior work has investigated the optimal tuning characteristics of one or a small
number of stimulus variables. In this work, we investigate the optimal tuning for
diffeomorphic representations of high-dimensional stimuli. We analytically derive
the solution that minimizes the L2 reconstruction loss. We compared our solution
with other well-known criteria such as maximal mutual information. Our solution
suggests that the optimal weights do not necessarily decorrelate the inputs, and the
optimal nonlinearity differs from the conventional equalization solution. Results
illustrating these optimal representations are shown for some input distributions
that may be relevant for understanding the coding of perceptual pathways.

1 Introduction

There has been much work investigating how information about stimulus variables is represented by
a population of neurons in the brain [1]. Studies on motion perception [2, 3] and sound localization
[4, 5] have demonstrated that these representations adapt to the stimulus statistics on various time
scales [6, 7, 8, 9]. This raises the natural question of what encoding scheme is underlying this
adaptive process?

To address this question, several assumptions about the neural representation and its overall objective
need to be made. In the case of a one-dimensional stimulus, a number of theoretical approaches have
previously been investigated. Some work have focused on the scenario with a single neuron [10, 11,
12, 13, 14, 15], while other work focused on the population level [16, 17, 18, 19, 20, 21, 22, 23],
with different model and noise assumptions. However, the question becomes more difficult when
considering adaptation to high dimensional stimuli. An interesting class of solutions to this question
is related to independent component analysis (ICA) [24, 25, 26], which considers maximizing the
amount of information in the encoding given a distribution of stimulus inputs. The use of mutual
information as a metric to measure neural coding quality has also been discussed in [27].
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In this paper, we study Fisher-optimal population codes for the diffeomorphic encoding of stimuli
with multivariate Gaussian distributions. Using Fisher information, we investigate the properties of
representations that would minimize the L2 reconstruction error assuming an optimal decoder. The
optimization problem is derived under a diffeomorphic assumption, i.e. the number of encoding
neurons matches the dimensionality of the input and the nonlinearity is monotonic. In this case, the
optimal solution can be found analytically and can be given a geometric interpretation. Qualitative
differences between this solution and the previously studied information maximization solutions are
demonstrated and discussed.

2 Model and Methods

2.1 Encoding and Decoding Model

We consider a n dimensional stimulus input s = (s1, . . . , sn) with prior distribution p(s). In general,
a population with m neurons can have m individual activation functions, h1(s), . . . , hm(s) which
determines the average firing rate of each neuron in response to the stimulus. However, the encoding
process is affected by neural noise. Two commonly used models are Poisson noise model and
constant Gaussian model, for which the observed firing rate vector r = (r1, . . . , rm) follows the
probabilistic distribution p(r|s), where

rkT ∼ Poisson(hk(s)T ) (Poisson noise) (1)
rkT ∼ Gaussian(hk(s)T, V T ) (Gaussian noise) (2)

As opposed to encoding, the decoding process involves constructing an estimator ŝ(r), which de-
terministically maps the response r to an estimate ŝ of the true stimulus s. We choose a maximum
likelihood estimator ŝMLE(r) = arg maxs p(r|s) because it simplifies the calculation due to its nice
statistical properties as discussed in section 2.3.

2.2 Fisher Information Matrix

The Fisher information is a key concept widely used in optimal coding theory. For multiple dimen-
sions, the Fisher information matrix is defined element-wise for each s, as in [28],

IF (s)i,j =

〈
∂

∂si
log p(r|s) · ∂

∂sj
log p(r|s)

∣∣∣∣ s〉
r

(3)

In the supplementary section A we prove that the Fisher information matrix for a population of m
neurons is

IF (s) = T ·
m∑
k=1

hk(s)−1∇hk(s) · ∇hk(s)T (Poisson noise) (4)

IF (s) = T ·
m∑
k=1

V −1∇h̃k(s) · ∇h̃k(s)T (Gaussian noise) (5)

where T is length of the encoding time window and V represents the variance of the constant Gaus-
sian noise. The equivalence for two noise models can be established via the variance stabilizing
transformation h̃k = 2

√
hk [29]. Without loss of generality, throughout the paper we assume the

Gaussian noise model for mathematical convenience. Also we will simply assume V = 1, T = 1
because they do not change the optimal solution for any Fisher information-related quantities.

2.3 Cramer-Rao Lower Bound

Ideally, a good neural population code should produce estimates ŝ that are close to the true value of
the stimulus s. However multiple measures exist for how well an estimate matches the true value.
One possibility is the L2 loss which is related to the Fisher information matrix via the Cramer-Rao
lower bound [28]. For any unbiased estimator ŝ, including the MLE,

cov[ŝ− s] ≥ IF (s)−1 (6)
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in the sense that cov[ŝ− s]− IF (s)−1 is a positive semidefinite matrix. Being only a lower bound,
the Cramer-Rao bound can be attained by the MLE ŝ because it is asymptotically efficient. The local
L2 decoding error 〈‖ŝ− s‖2|s〉r = tr(cov(ŝ− s)) ≥ tr(IF (s)−1). In order to minimize the overall
L2 decoding error, one should minimize the attainable lower bound on the right side of Eq.(7), under
appropriate constraints on hk(·). 〈

‖ŝ− s‖2
〉
s
≥ 〈tr(IF (s)−1)〉s (7)

2.4 Mutual Information Limit

Another possible measurement of neural coding quality is the mutual information. This quantity
does not explicitly rely on an estimator ŝ(r) but directly measures the mutual information between
the response and the stimulus.

The link between mutual information and the Fisher information matrix was established in [16]. One
goal (infomax) is to maximize the mutual information I(r, s) = H(r)−H(r|s). Assuming perfect
integration, the first term H(r) asymptotically converges to a constant H(s) for long encoding
time because the noise is Gaussian. The second term H(r|s) = 〈H(r|s∗)〉s∗ because the noise is
independent. For each s∗, the conditional entropy H(r|s = s∗) ∝ 1

2 log det IF (s∗) since r|s∗ is
asymptotically a Gaussian variable with covariance IF (s∗). Therefore the mutual information is

I(r, s) = const+
1

2
〈log det IF (s)〉s (8)

2.5 Diffeomorphic Population

Before one can formalize the optimal coding problem, some assumptions about the neural population
need to be made. Under a diffeomorphic assumption, the number of neurons (m) in the population
matches the dimensionality (n) of the input stimulus. Each neuron projects the signal s onto its basis
wk and passes the one-dimensional projection tk = wT

k s through a sigmoidal tuning curve hk(·)
which is bounded 0 ≤ hk(·) ≤ 1. The tuning curve is

rk = hk(wT
k s). (9)

We would like to optimize for the nonlinear functions h1(·), . . . , hn(·) and the basis {wk}nk=1 si-
multaneously. We may assume ‖wk‖ = 1 since the scale can be compensated by the nonlinearity.
Such an encoding scheme is called diffeomorphic because the population establishes a smooth and
invertible mapping from the stimulus space s ∈ S to the rate space r ∈ R. An arbitrary observation
of the firing rate r can be first inverted to calculate the hidden variables tk = h−1

k (rk) and then
linearly decoded to obtain ŝMLE .

Fig.1a shows how the encoding scheme is implemented by a neural network. Fig.1b illustrates
explicitly how a 2D stimulus s is encoded by two neurons with basis w1,w2 and nonlinear mappings
h1, h2.

(a) (b)

s1 s2 s3 s4

r1 r2 r3 r4

input
stimulus

W

nonlinear
map hk(·)

output

s1

s2

w1w2

s

wT
1 s

r1 h1(w
T
1 s)

wT
2 s

r2 h2(w
T
2 s)

Figure 1: (a) Illustration of a neural network with diffeomorphic encoding. (b) The Linear-Nonlinear (LN)
encoding process of 2D stimulus for a stimulus s.
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3 Review of One Dimensional Solution

In the case of encoding an one-dimensional stimulus, the diffeomorphic population is just one neuron
with sigmoidal tuning curve r = h(w · s). The only two options w = ±1 is determined by whether
the sigmoidal tuning curve is increasing or decreasing. Here we simply assume w = 1.

For the L2-minimization problem, we want to minimize 〈tr(IF (s)−1)〉 = 〈h′(s)−2〉 because of
Eq.(5) and (7). Now apply Holder’s inequality [30] to non-negative functions p(s)/h′(s)2 and h′(s),(∫

p(s)

h′(s)2
ds

)
︸ ︷︷ ︸

overall L2 loss

·
(∫

h′(s) ds

)2

︸ ︷︷ ︸
=1

≥
(∫

p(s)1/3 ds

)3

(10)

The minimum L2 loss is attained by the optimal h∗(s) ∝
∫ s
−∞ p(t)1/3dt. For one dimensional

Gaussian with variance Var[s], the right side of Eq.(10) is 6
√

3πVar[s]. This preliminary result
will be useful for the high dimensional case discussed in Section 4 and 5.

On the other hand, for the infomax problem we want to maximize I(r, s) because of Eq.(5) and (8).
Note that 〈log det IF (s)〉 = 2〈log h′(s)〉. By treating the sigmoidal activation function h(s) as a
cumulative probability distribution [10], we have∫

p(s) log h′(s) ds ≤
∫
p(s) log p(s) ds (11)

because the KL-divergence DKL(p||h′) =
∫
p(s) log p(s) ds−

∫
p(s) log h′(s) ds is non-negative.

The optimal solution is h∗(s) =
∫ s
−∞ p(t)dt and the optimal value is 2H(p), where H(p) is the

differential entropy of the distribution p(s). This h∗(s) is exactly obtained by equalizing the output
probability to maximize the entropy. For a one dimensional Gaussian with variance Var[s], the
optimal value is logVar[s] + const.

4 Optimal Diffeomorphic Population

In the case of encoding high-dimensional random stimulus using a diffeomorphic population code,
n neurons encode n stimulus dimensions. The gradient of the k-th neuron’s tuning curve is ∇k =
h′k(wT

k s)wk and the Fisher information matrix is thus

IF (s) =

n∑
k=1

∇k∇Tk =

n∑
k=1

h′k(wT
k s)

2wkw
T
k = WH2WT (12)

where W = (w1, . . . ,wn) and H = diag(h′1(wT
1 s), . . . , h

′
n(wT

n s)). Using the fact that
tr(AB) = tr(BA) for any matrices A,B, we know tr(IF (s)−1) = tr((WT )−1H−2W−1) =
tr((WTW )−1H−2). Because H−2 is diagonal, the L2-min problem is simplified as

minimize
{wk,hk(·)},k=1...n

L(W,H) = 〈tr(IF (s)−1)〉 =

n∑
k=1

[(WTW )−1]kk

∫
p(s)

h′k(wT
k s)

2
ds (13)

If we define the marginal distribution

pk(t) =

∫
p(s)δ(t−wT

k s) ds (14)

then the optimization over wk and hk can be decoupled in the following way. For any fixed W ,
the integral term can be evaluated by marginalizing out all those directions perpendicular to wk. As
discussed in section 3, the optimal value (

∫
pk(t)1/3 dt)3 is attained when h∗k

′(t) ∝ pk(t)1/3. The
optimization problem is now

minimize
{wk},k=1...n

Lh∗(W ) =

n∑
k=1

[(WTW )−1]kk

(∫
pk(t)1/3 dt

)3

(15)

In general, analytically optimizing such a term for arbitrary prior distribution p(s) is intractable.
However if p(s) is multivariate Gaussian then the optimization can be further simplified and solved
analytically, as discussed in the following section.

4



5 Stimulus with Gaussian Prior

We consider the case when the stimulus prior is Gaussian N (0,Σ). This assumption allows us to
calculate the marginal distribution along any direction wk as an one-dimensional Gaussian with
mean zero and variance wT

k Σwk = (WTΣW )kk. By plugging in the Gaussian density pk(t) and
using the fact we derived in Section 3, we can further simplify the L2-optimization problem as

minimize
{wk},k=1...n

Lh∗(W ) = 6
√

3π ·
n∑
k=1

[(WTW )−1]kk(WTΣW )kk (16)

5.1 Geometric Interpretation

In the above optimization problem, (WTΣW )kk has a clear and simple meaning – it is the variance
of the marginal distribution pk(t). For term [(WTW )−1]kk, notice that WTW is the inner product
matrix of the basis {wk}nk=1, i.e. (WTW )ij = wT

i wj . Using the adjoint method we can calculate
the diagonal elements of (WTW )−1,

[(WTW )−1]kk =
det(WT

k Wk)

det(WTW )
(17)

where WT
k Wk is the inner product matrix of leave-wk-out basis {w1, . . . ,wk−1,wk+1, . . . ,wn}.

Let θk be the angle between wk and the hyperplane spanned by all other basis vectors (see Fig.2).
The diagonal element is just [(WTW )−1]kk = (detWk/ detW )2 = (sin θk)−2 simply because

Volume ({w1, . . . ,wn})︸ ︷︷ ︸
n dim parallelogram

= Volume ({w1, . . . ,wk−1,wk+1, . . . ,wn})︸ ︷︷ ︸
n−1 dim base parallelogram

· |wk| · sin θk︸ ︷︷ ︸
height

, (18)

s1

s2

s3

θ3

w3

w1

w2 Figure 2: Illustration of θk. In this example, w1

and w2 are on the s1-s2 plane. θ3 is just the angle
between w3 and its projection on the s1-s2 plane.

The optimization involves two competing parts. Minimizing (WTΣW )kk makes all those direc-
tions with small variance favorable. Meanwhile, minimizing [(WTW )−1]kk = (sin θk)−2 strongly
penalizes neurons having similar tuning directions with the rest of population. To qualitatively sum-
marize, the optimal population would tend to encode those directions with small variance while
keeping certain degree of population diversity.

5.2 General Solution

Due to space limitations, we will only present the optimal solution here and the derivation can be
found in Appendix C in the supplementary notes. For any covariance matrix Σ, the optimal solution
for Eq.(16) is

W ∗ = Σ−1/4U, where UTU = I and (UTΣ1/2U)kk =
1

n
tr(Σ1/2) for all k = 1, . . . , n (19)

Such unitary matrix U is guaranteed to exist yet may not be unique. See Appendix D for a detailed
discussion. In general for dimension n, the solution has a manifold structure with dimension not
less than (n − 1)(n − 2)/2. For n = 2 the solution can be easily derived. Let Σ = diag(σ2

x, σ
2
y).

Then optimal solution is given by

U =
1√
2

(
1 −1
1 1

)
, W ∗L2 = Σ−1/4U =

1√
2

(
1√
σx

− 1√
σx

1√
σy

1√
σy

)
(20)

This 2D solution is special and is unique under reflection and permutation unless the prior distribu-
tion is spherically symmetric i.e. Σ = aI .
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6 Comparison with Infomax Solution

Previous studies have focused on finding solutions that maximize the mutual information (infomax)
between the stimulus and the neural population response. This is related to independent component
analysis (ICA) [24]. Mutual information can be maximized if and only if each neuron encodes
an independent component of the stimulus and uses the proper nonlinear tuning curve. Ideally,
the joint distribution p(s) can be decomposed as the product of n one dimensional components∏n
k=1 pk(Wk(s)). For a Gaussian prior with covariance Σ, the infomax solution is

W ∗info = Σ−1/2U ⇒ cov(W ∗Tinfos) = UTΣ−1/2 · Σ · Σ−1/2U = I (21)

where Σ−1/2 is the whitening matrix and U is an arbitrary unitary matrix. The derivation can be
found in Appendix E. In the same 2D example where Σ = diag(σ2

x, σ
2
y), the family of optimal

solutions is parametrized by an angular variable φ

U(φ) =
1√
2

(
cosφ − sinφ
sinφ cosφ

)
, W ∗info(φ) = Σ−1/2 · U(φ) =

(
cosφ
σx

− sinφ
σx

sinφ
σy

cosφ
σy

)
(22)

In Fig.3 we compare W ∗info(φ) and W ∗L2 for different prior covariances. One observation is that, L2

optimal neurons do not fully decorrelate input signals unless the Gaussian prior is spherical. By
correlating the input signal and encoding redundant information, the channel signal to noise ratio
(SNR) can be balanced to reduce the vulnerability of those independent channels with low SNR.
As a consequence, the overall L2 performance is improved at the cost of transferring a suboptimal
amount of information. Another important observation is that the infomax solution allows a greater
degree of symmetry – Eq.(21) holds for arbitrary unitary matrices while Eq.(19) holds only for a
subset of them.

(a) (b) (c) (d)

σ
x

=
1σ

y
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s2
slope = 1

w1w2

w′
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w′
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0 90 180
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β
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e)
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slope = 1
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w′
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w′
2
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0
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180

α (degree)

β
(d
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e)

σ
x

=
2σ

y
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s2
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√
2

w1w2

0 90 180
0
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180

α (degree)

β
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e)
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s2
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w1w2
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0 90 180
0
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180

α (degree)
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(d
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re
e)

σ
x

=
3σ

y

s1

s2
slope =

√
3

w1w2

0 90 180
0

90

180

α (degree)

β
(d

eg
re
e)

s1

s2
slope = 3

w1w2

w′
1

w′
2

0 90 180
0

90

180

α (degree)

β
(d

eg
re
e)

L2-min infomax

Figure 3: Comparison of L2-min and infomax optimal solution for 2D case. Each row represents the result
for different ratio σx/σy for the prior distribution. (a) The optimal pair of basis vectors w1,w2 for L2-min
with the prior covariance ellipse is unique unless the prior distribution has rotational symmetry. (b) The loss
function with ”+” marking the optimal solution shown in (a). (c) One pair of optimal basis vector w1,w2 for
infomax with the prior covariance ellipse. (d) The loss function with ”+” marking the optimal solution shown
in (c).
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7 Application – 16-by-16 Gaussian Images

In this section we apply our diffeomorphic coding scheme to an image representation problem. We
assume that the intensity values of all pixels from a set of 16-by-16 images follow a 256-D Gaussian
distribution. Instead of directly defining the pairwise covariance between pixels of s, we calculate
its real Fourier components ŝ

s̃ = FT s ⇔ s = F ŝ (23)

where the real Fourier matrix is F = (f1, . . . , f256) with each filter fa and its spatial frequency ~ka.
The covariance of those Fourier components s̃ is typically assumed to be diagonal and the power
decays following some power law

cov(s̃) = D = diag(σ2
1 , . . . , σ

2
n), where σ2

a ∝ |~ka|−β , β > 0 (24)

Therefore the original stimulus s has covariance cov(s) = Σ = FDFT . Such image statistics are
called stationary because the covariance between pair of pixels is fully determined by their relative
position. For the stimulus s with covariance Σ, one naive choice of L2 optimal filter is simply

W ∗L2 = Σ−1/4 · I = FD−1/4FT (25)

because Σ1/2 = FD1/2FT has constant diagonal terms (See Appendix F for detailed calculation)
and U = I qualifies for Eq.(19). The covariance matrix and one sample image generated from Σ is
plotted in Fig. 4(a)-(c) below.

(a) (b) (c)

Figure 4: For β = 2.5 in the power law: (a) The 256 × 256 covariance matrix Σ. (b) One column of Σ
reshaped to 16 × 16 matrix representing the covariance between any pixels and a fixed pixel in the center. (c)
A random sample from the Gaussian distribution with covariance Σ.

In addition, we have numerically computed the L2 loss using a family of filters

Wγ = FD−γFT , γ ∈ [0, 1/2] (26)

Note that when γ = 0, we have the naive filter W0 = FFT = I which does nothing to the input
stimulus; when γ = 1/4 or 1/2, we revisit the L2 optimal filter or the infomax filter, respectively. As
we can see from Fig. 5(a)-(d), the L2 optimal filter half-decorrelates the input stimulus channels to
keep the balance between the simplicity of the filters and the simplicity of the correlation structure.

In each simulation run, a set of 10,000 16-by-16 images is randomly sampled from the multivariate
Gaussian distribution with zero mean and covariance matrix Σ. For each stimulus image s, we
calculate y = WT

γ s and zk = hk(yk) + ηk to simulate the encoding process. Here hk(y) ∝∫ y
−∞ pk(t)1/3dt and pk(t) is Gaussian N (0, (WT

γ ΣWγ)kk). The additive Gaussian noise ηk is
independent Gaussian N (0, 10−4). To decode, we just calculate ŷk = h−1

k (zk) and ŝ = (WT
γ )−1ŷ.

Then we measure the L2 loss ‖ŝ− s‖22. This procedure is repeated 20 times and the result is plotted
in Fig. 5(e).

8 Discussion and Conclusions

In this paper, we have studied the an optimal diffeomorphic neural population code which minimizes
the L2 reconstruction error. The population of neurons is assumed to have sigmoidal activation
functions encoding linear combinations of a high dimensional stimulus with a multivariate Gaussian
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Figure 5: (a) The 2D filter Wγ of one specific neuron for γ = 0, 1/4, 1/2 from top to bottom. (b) The
cross-section of the filter Wγ on one specific row boxed in (a), plotted as a function. (c) The correlation of the
2D filtered stimulus, between one specific neuron and all neurons. (d) The cross-section of the 2D correlation
of the filtered stimulus, between the neuron and other neurons on the same row. (e) The simulation result of L2

loss for different filter Wγ and optimal nonlinearity h and the vertical bar shows the ±3σ interval across trials.

distribution. The optimal solution is provided and compared with solutions which maximize the
mutual information.

In order to derive the optimal solution, we first show that the Poisson noise model is equivalent to
the constant Gaussian noise under the variance stabilizing transformation. Then we relate the L2

reconstruction error to the trace of inverse Fisher information matrix via the Cramer-Rao bound.
Minimizing this bound leads to the global optimal solution in the asymptotic limit of long inte-
gration time. The general L2-minimization problem can be simplified and the optimal solution is
analytically derived when the stimulus distribution is Gaussian.

Compared to the infomax solutions, a careful evaluation and calculation of the Fisher information
matrix is needed for L2 minimization. The manifold of L2 optimal solutions possess a lower di-
mensional structure compared to the infomax solution. Instead of decorrelating the input statistics,
the L2-min solution maintains a certain degree of correlation across the channels. Our result sug-
gests that maximizing mutual information and minimizing the overall decoding loss are not the same
in general – encoding redundant information can be beneficial to improve reconstruction accuracy.
This principle may explain the existence of correlations at many layers in biological perception
systems.

As an example, we have applied our theory to 16-by-16 images with stationary pixel statistics. The
optimal solution exhibits center-surround receptive fields, but with a decay differing from those
found by decorrelating solutions. We speculate that these solutions may better explain observed
correlations measured in certain neural areas of the brain. Finally, we acknowledge the support of
the Office of Naval Research.
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A Fisher Information Matrix Calculation

First of all it is known that the Fisher information matrix for a system with m independent neuron is
just the sum of fisher information matrix of each neuron. For k-th neuron with Poisson noise

p(rk = N |s) =
1

N !
hk(s)N exp(−hk(s)) (27)

⇒ ∂

∂si
log p =

(
N

hk(s)
− 1

)
∂

∂si
hk(s) (28)

and the Fisher information matrix can be calculated element-wise,

IF (s)
(k)
i,j = E

[
∂

∂si
log p · ∂

∂sj
log p

∣∣∣∣ s] (29)

= E

[(
N

hk(s)
− 1

)2
∣∣∣∣∣ s
]
∂

∂si
hk(s) · ∂

∂sj
hk(s) (30)

= hk(s)−1 ∂

∂si
hk(s) · ∂

∂sj
hk(s) (31)

Similarly, for k-th neuron with constant Gaussian noise

p(rk|s) =
1√

2πV
exp

(
− 1

2V
(rk − hk(s))2

)
(32)

⇒ ∂

∂si
log p =

rk − hk(s)

V

∂

∂si
hk(s) (33)

and the Fisher information matrix can be calculated element-wise,

IF (s)
(k)
i,j = E

[
∂

∂si
log p · ∂

∂sj
log p

∣∣∣∣ s] (34)

= E

[
(rk − hk(s))2

V 2

∣∣∣∣ s] ∂

∂si
hk(s) · ∂

∂sj
hk(s) (35)

= V −1 ∂

∂si
hk(s) · ∂

∂sj
hk(s) (36)

Summing up Eq.(31) and Eq.(36) over k = 1, . . . ,m would give the results in Eq.(4) and Eq.(5).

B Preliminary Results on Matrix Derivatives

Following are some results we will need in the next sections

d

dW
tr[(WTW )−1] = −2W (WTW )−2 (37)

d

dW
log det(WTW ) = 2W (WTW )−1 (38)

d

dW
tr[AWTBW ] = BWA+BTWAT (39)

where W is invertible square matrix and A,B are any matrix with same dimension as W .

C Derivation of the General L2-min Solution

We would like to optimize Eq.(16)

minimize
{wk},k=1...n

Lh∗(W ) = 6
√

3p ·
n∑
k=1

[(WTW )−1]kk(WTΣW )kk (40)
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for any given covariance matrix Σ. Note that the loss function is invariant Lh∗(W ) = Lh∗(WΛ)
for any column scaling where Λ = diag(λ1, . . . , λn) has positive diagonal entries. This is because

[(ΛWTWΛ)−1]kk = λ−2
k · [(WTW )−1]kk (41)

(ΛWTΣWΛ)kk = λ2
k · (WTΣW )kk (42)

Given this fact, we can choose Λ such that (WTΣW )kk = 1 after rescaling and we can simply
optimize the constrained problem

minimize
W

Lh∗(W ) = tr[(WTW )−1] (43)

subject to (WTΣW )kk = 1, k = 1, . . . , n (44)

Let diagonal A = diag(α1, . . . , αn) be the Lagrange multiplier and we can turn the above problem
into an unconstrained one

minimize
W,A

Lh∗(W,A) = tr[(WTW )−1] + tr[AWTΣW ]− tr[A] (45)

We can taking derivative with respect to W , αk. Setting them to zero would yield

0 =
∂

∂W
L(W,A) = −2W (WTW )−2 + 2ΣWA (46)

0 =
∂

∂αk
L(W,A) = (WTΣW − I)kk (47)

The second equation is equivalent to the normalization constraints. The first equation is equivalent
to the following by multiplying WT on the left on both sides of the equation

(WTW )−1 = WTΣWA (48)
Note that the left side is symmetric so we know the right side must be symmetric as well

WTΣWA = (WTΣWA)T = AWTΣW (49)

which implies that A and WTΣW is commutative and therefore A1/2 and WTΣW is commutative
as well. Below is a short proof.

Proof. Let A = diag(α1, . . . , αn) with non-negative entries and Z is an arbitrary matrix. The
following four statements are equivalent.

(a) AZ − ZA = 0

(b) (αi − αj)zij = 0 for all i, j
(c) (
√
αi −√αj)zij = 0 for all i, j

(d) A1/2Z − ZA1/2 = 0

Therefore
(WTW )−1 = WTΣWA = A1/2WTΣWA1/2 (50)

⇒ I = (WA1/2WT ) · Σ · (WA1/2WT ) (51)

Thus we know WA1/2WT = Σ−1/2 and WA1/4 = Σ−1/4U for some unitary matrix U . The
solution is of the form W ∗ = Σ−1/4UA−1/4. Plug this back into (44) and we can determine the
Lagrange multiplier

1 =
[
W ∗TΣW ∗

]
kk

=
[
A−1/4UTΣ1/2UA−1/4

]
kk

= (αkk)−1/2
[
UTΣ1/2U

]
kk

(52)

⇒ √
αkk =

[
UTΣ1/2U

]
kk

(53)

Now plug this back into the loss function in Eq.(43)

Lh∗(W ∗) = tr
[
A1/4UTΣ1/2UA1/4

]
=

n∑
k=1

[
UTΣ1/2U

]2
kk

(54)

Note that for arbitrary unitary matrix, tr[UTΣ1/2U ] = tr[Σ1/2] is a constant. Therefore the sum of
square is minimized when all of the entries are the same. After we drop the scalar A which does not
affect the nature of the solution, the optimal solution has the form

W ∗ = Σ−1/4U, where (UTΣ1/2U)kk =
1

n
tr(Σ1/2) for all k = 1, . . . , n (55)
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D Existence and Uniqueness of U

D.1 Existence

Whether there always exists such unitary U so that UTΣ1/2U has identical diagonal entries? The
answer is positive and we can prove this by induction on the dimension of Σ.

• If Σ1/2 is 2-by-2 and diagonalizable by some unitary matrix P ,

Σ1/2 =

(
a c
c b

)
, PTΣ1/2P =

(
λ1 0
0 λ2

)
(56)

let Q =
1√
2

(
1 −1
1 1

)
⇒ QTPTΣ1/2PQ =

1

2

(
λ1 + λ2 −λ1 + λ2

−λ1 + λ2 λ1 + λ2

)
(57)

Then U = PQ is the unitary matrix which equalizes the diagonal of UTΣU .
• Let us assume that we can construct such unitary matrix U for all Σ with dimension up to
n-by-n. Now for some new Σ with dimension (n+ 1)-by-(n+ 1). First denote

dmin = min
k

(Σ1/2)kk (58)

dmax = max
k

(Σ1/2)kk (59)

Without loss of generality we can assume dmin < tr(Σ1/2)/n < dmax otherwise Σ1/2

already has identical diagonal entries and no more construction is needed. We can permute
rows and columns such that the Σ1/2 looks like

Σ1/2 =


dmin ∗ ∗
∗ dmax

. . .

∗ . . .

 (60)

By choosing a rotation in the subspace of first two dimensions, we can smoothly increase
the smaller diagonal entries from dmin to (dmin +dmax)/2 and decrease the larger diagonal
entries from dmax to (dmin + dmax)/2. During this process, at least one of them will hit
the value of tr(Σ1/2)/n guaranteed by mean value theorem. Choose the unitary matrix P
corresponding to this 2D subspace rotation and therefore

PTΣ1/2P =


1
n tr(Σ1/2) ∗ ∗
∗ dmin + dmax − 1

n tr(Σ1/2)
. . .

∗ . . .

 (61)

Now we can construct Q such that it equalizes the last n dimension of PTΣ1/2P using the
induction assumption. Therefore

QTPTΣ1/2PQ =


1
n tr(Σ1/2) ∗

1
n tr(Σ1/2)

. . .
∗ 1

n tr(Σ1/2)

 (62)

This completes the proof of existence of U = PQ for (n+ 1)-by-n+ 1 matrix Σ.

D.2 Uniqueness

We can observe that the orthogonal groupO(n) has certain manifold structure with dimension n(n−
1)/2 since any unitary matrix can be written as U = exp(A) whereA is some anti-symmetric matrix
(A+AT = 0) with n(n− 1)/2 free parameters.
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The diagonal element requirements from Eq.(55) on U would pose additional n − 1 constraints
because we have uTk Σ1/2uk = tr(Σ1/2)/n. The number of constraints is n−1 instead of n because
tr(UTΣ1/2U) = tr(Σ1/2UUT ) = tr(Σ1/2) is fixed and if the first n− 1 diagonal elements satisfy
the condition, the last one automatically does.

For any solution U , then the locally connected solutions are on a manifold with dimension

dim =
n(n− 1)

2
− (n− 1) =

(n− 2)(n− 1)

2
(63)

For example when n = 2, the optimal solutions locally have dimension zero, i.e. they are isolated
points. When n = 3, we expect the solutions to have a one dimensional manifold (i.e. curve)
structure.

E Derivation of the General Infomax Solution

In the case of maximum mutual information, the function we want to maximize is (see Section 2.4)

maximize
{wk,hk},k=1...n

〈log det IF (s)〉 = log detWTW + 〈log detH2〉 (64)

= log detWTW +

n∑
k=1

〈
log h′k(wT

k s)
2
〉

(65)

which is equivalent to the following due to the 1D analysis of optimal hk in Section 3.

maximize
{wk},k=1...n

log detWTW − log

n∏
k=1

(WTΣW )kk + const (66)

The above objective function can be optimized by changing the variable W = Σ−1/2P and

maximize
P

log detPTP + log det Σ−1 − log

n∏
k=1

(PTP )kk + const (67)

Similar as the L2 case, this objective function is invariant under the column scaling P̃ = PΛ and
can again be rewritten in the constrained form

maximize
P

log detPTP (68)

subject to (PTP )kk = 1 (69)

Using the Lagrange multiplier A = diag(α1, . . . , αn) again, we can write this in the unconstrained
form

maximize
P

log detPTP + tr[APTP ]− tr[A] (70)

Taking derivative with respect to P and αk’s

0 = 2P (PTP )−1 + 2PA (71)

0 = (PTP − I)kk (72)

Solving the above equation would give us PTP = −A−1 which is diagonal and the diagonal ele-
ments are constrained to be one by the second equation. Therefore the optimal solution is achieved
when P = U is unitary and

W ∗info = Σ−1/2U (73)

F Details of Real Fourier Matrix Calculation

Here we want to proof that

(FDγFT )bb =
1

n
tr(Dγ) (74)
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for any real number γ as long as the power spectrum D = diag(σ2
1 , . . . , σ

2
n) is determined by

σ2
a = g(|~ka|) for some function g(·) > 0. For each diagonal term, we have

(FDγFT )bb =

(∑
a

σ2γ
a faf

T
a

)
bb

=
∑
a

σ2γ
a f2

a,b (75)

First there are four components that need special attention – those components with min/max fre-
quency in both x, y dimension. They all have the form of fa = (±

√
1/n, . . . ,±

√
1/n). For those

terms

σ2γ
a f2

a,b = σ2γ
a ·

1

n
(76)

All the other components appear as pairs of (a, ā) and fa,b =
√

2/n sin(~ka · ~xb) and fā,b =√
2/n cos(~ka · ~xb). For those terms, we consider each pair at the same time

σ2γ
a f2

a,b + σ2γ
ā f2

ā,b = σ2γ
a ·

(
2

n
cos2(~ka · ~xb) +

2

n
sin2(~ka · ~xb)

)
= σ2γ

a ·
2

n
(77)

To summarize, the result can be calculated as∑
a

σ2γ
a f2

a,b =
∑
a

σ2γ
a ·

1

n
=

1

n
tr(Dγ) (78)
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