
Appendix

Convergence rates of sub-sampled Newton methods

A Quadratic functions

In the case of quadratic functions, since the Lipschitz constant is 0 , we obtain ⇠t
2

= 0 and the
algorithm converges linearly. Following corollary summarizes this case when the sub-sampling
scheme S1 is used.
Corollary A.1 (Quadratic functions). Let the assumptions of Theorem 3.2 hold. Assume that 8i 2
[n], the functions ✓ : Rp ! f

i

(✓) are quadratic. Then, for ˆ✓t given by NewSamp at iteration step t,
with probability at least 1� 2/p, for the coefficient ⇠t

1

defined as in Theorem 3.2, we have

kˆ✓t+1 � ✓⇤k2  ⇠t
1

kˆ✓t � ✓⇤k2. (A.1)

Similar to Corollary A.1, we have the following result for the quadratic functions under sub-
sampling scheme S2.
Corollary A.2 (Quadratic functions). Let the assumptions of Theorem 3.3 hold. Further assume
that 8i 2 [n], the functions ✓ ! f

i

(✓) are quadratic. Conditioned on E , with probability at least
1� c e�p, NewSamp iterates satisfy

kˆ✓t+1 � ✓⇤k2  ⇠t
1

kˆ✓t � ✓⇤k2,
for coefficient ⇠t

1

defined as in Theorem 3.3.

B Proofs of Theorems and Lemmas

Proof of Lemma 3.1. We write

ˆ✓t � ✓⇤ � ⌘
t

Qtr
✓

f(ˆ✓t) =ˆ✓t � ✓⇤ � ⌘
t

Qt

Z
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0

r2

✓

f(✓⇤ + ⌧(ˆ✓t � ✓⇤))(ˆ✓
t � ✓⇤) d⌧,

=

✓

I � ⌘
t

Qt

Z

1

0

r2

✓

f(✓⇤ + ⌧(ˆ✓t � ✓⇤))d⌧

◆

(

ˆ✓t � ✓⇤) .

Since the projection PC in step 2 of the NewSamp can only decrease the `
2

distance, we obtain

kˆ✓t+1 � ✓⇤k2 
�

�

�

�

I � ⌘
t

Qt

Z

1

0

r2

✓

f(✓⇤ + ⌧(ˆ✓t � ✓⇤))d⌧

�

�

�

�

2

kˆ✓t � ✓⇤k2.

Note that the first term on the right hand side governs the convergence behavior of the algorithm.

In the following, we will provide the proof for sampling with replacement. The proof for the sam-
pling without replacement follows from similar steps. For the relevant matrix concentration bounds
using sampling without replacement, see i.e. [GN10].

Next, for an index set S ⇢ [n], define the matrix H
S

(✓) as

H
S

(✓) =
1

|S|
X

i2S

H
i

(✓)

where |S| denotes the size of the set. Denote the integral in the governing coefficient by eH, that is,

eH =

Z

1

0

r2

✓

f(✓⇤ + ⌧(ˆ✓t � ✓⇤))d⌧.

By the triangle inequality, this coefficient can be bounded as
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Eq.(B.1) holds, regardless of the choice of Qt.

Using any indexing over the elements of S, we denote the each element in S by s
i

, i.e.,

S = {s
1

, s
2

, ..., s|S|}.
Next, for a given ✓, we define the centered Hessians, W

i

(✓) as

W
i

(✓) =
1

|S| {Hsi(✓)� E [H
si(✓)]} ,

where the E [H
si(✓)] is just the full Hessian at ✓.

By the Assumption 2, we have

max

in

kH
i

(✓)k
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(✓)
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2

 K, (B.2)

max
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kW
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 2K
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�

�W2
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�

�

2

 4K2

|S|2 .

We apply the matrix Hoeffding’s inequality [Tro12] and obtain for ✓ 2 C,

P
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2

> ✏
�  2p exp

⇢
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. (B.3)

Therefore, to obtain a convergence rate of O(1/p), we let

✏ = C

s

log(p)

|S| .

where C = 8K.

For the last term, we may write,
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=
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2
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First inequality follows from the fact that norm of an integral is less than or equal to the integral of
the norm. Second inequality follows from the Lipschitz property.

Combining the above results, we obtain the following for the governing term in Eq. (B.1): For some
absolute constants c, C > 0, with probability at least 1� 2/p, we have
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.

Hence, the proof is completed.

Proof of Theorem 3.2. Using the definition of Qt in NewSamp, we immediately obtain that
�

�

�

I � ⌘
t

QtH
St(

ˆ✓t)
�

�

�

2

= max

i>r

⇢

�

�

�

�

1� ⌘
t

�t

i

�t

r+1

�

�

�

�

�

, (B.4)

and that kQtk
2

= 1/�t

r+1

. Then the proof follows from Lemma 3.1 and by the assumption on the
step size.
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Lemma B.1. Assume that the parameter set C is bounded, convex and S
t

⇢ [n] is based on sub-
sampling scheme S2. Further, let the Assumptions 1, 2 and 3 hold, almost surely. Conditioned on
the event E = {✓⇤ 2 C}, for some absolute constants c, c0 > 0 and cE = c/P(E), with probability
at least 1� cE e

�p, updates of the form Eq. 1.2 satisfy
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.

Proof of Lemma B.1. The first part of the proof is the same as Lemma 3.1 almost surely on the set
E . We carry our analysis from Eq. (B.1). Note that in this general set-up, the iterates are random
variables that depend on the random functions. Therefore, we use a uniform bound for the right
hand side in Eq.(B.1). That is, on E

�

�

�

I � ⌘
t

QtH
[n]

(

˜✓t)
�

�

�

2


�

�

�

I � ⌘
t

QtH
S

(

ˆ✓t)
�

�

�

2

+⌘
t

�

�Qt

�

�

2

n

sup

✓2C

�

�H
S

(✓)�H
[n]

(✓)
�

�

2

+

M
n

2

kˆ✓t � ✓⇤k2
o

.

By the Assumption 1, given ✓, ✓0 2 C such that k✓ � ✓0k
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 �, we have,
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Next, we will use a covering net argument to obtain a bound on the empirical process. Note that
similar bounds on the matrix forms can be obtained through other approaches like chaining [DE15].
Let T

�

be a �-net over the convex set C. By the above inequality, we obtain
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In the following, we will argue that the right hand side is small with high probability using matrix
concentration from [Tro12]. By the union bound over T

�

, we have
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For the first term on the right hand side, by Lemma D.2, we write:
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As before, let S = {s
1

, s
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, ..., s|S|}, that is, s
i

denote the different indices in S. For any ✓ 2 C and
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By the Assumption 2, we have the same bounds as in Eq. (B.2). Hence, for ✏ > 0 and ✓ 2 C, by the
matrix Hoeffding’s inequality
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We would like to obtain an exponential decay with a rate of at least O(p). Hence, we require,
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Therefore, we conclude that for the above choice of ✏, with probability at least 1� e�p, we have
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Applying this result to the inequality in Eq.(B.5), we obtain that with probability at least 1� e�p,
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The right hand side of the above inequality depends on the net covering diameter �. We optimize
over � using Lemma D.3 which provides for
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we obtain that with probability at least 1� e�p,
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Combining this with the bound stated in Eq.(B.1), and taking the conditioning on the set E into
account, we conclude the proof.

Proof of Theorem 3.4.
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Figure 3: The plots demonstrate the behavior of several optimization methods on a synthetic data set for
training SVMs. The elapsed time in seconds versus log of `2-distance to the true minimizer is plotted. Red
color represents the proposed method NewSamp .

By the Weyl’s and matrix Hoeffding’s [Tro12] inequalities (See Eq. (B.3) for details), we can write
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� �⇤
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with probability 1� 2/p. Then,
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for some constants c and c000.

Proof of Corollary 4.1. Observe that f
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Therefore, the Assumption 1 is satisfied with the Lipschitz constant M|St| := LR
3/2

x

. Moreover, by
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the Assumption 2 is satisfied for K :

= R
x

. We conclude the proof by applying Theorem 3.2.

C Further experiments and details

In this section, we present the details of the experiments presented in Figure 2 and provide additional
simulation results. In the experiments, R is used as the programming platform.
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Logistic Regression
Rank=3 Rank=10 Rank=20

Method Elapsed(sec) Iter Elapsed(sec) Iter Elapsed(sec) Iter
NewSamp 26.412 12 32.059 15 55.995 26
BFGS 50.699 22 54.756 31 56.606 34
LBFGS 103.590 47 64.617 37 107.708 67
Newton 18235.842 449 35533.516 941 31032.893 777
GD 345.025 198 322.671 198 311.946 197
AGD 449.724 233 436.282 272 450.734 290

Support Vector Machines
Rank=3 Rank=10 Rank=20

Method Elapsed(sec) Iter Elapsed(sec) Iter Elapsed(sec) Iter
NewSamp 47.755 8 52.767 9 124.989 22
BFGS 13352.254 2439 10672.657 2219 21874.637 4290
LBFGS 326.526 67 218.706 44 275.991 55
Newton 775.191 16 734.480 16 4159.486 106
GD 1512.305 238 1089.413 237 1518.063 269
AGD 1695.44 239 1066.484 238 1874.75 294

Table 2: Details of the simulations presented in Figures 3.

We first start with additional experiments. The goal of this experiment is to further analyze the
effect of rank in the performance of NewSamp . We experimented using r-spiked model for r =

3, 10, 20. The case r = 3 was already presented in Figure 2, which is included in Figure 3 to ease
the comparison. The results are presented in Figures 3 and the details are summarized in Table
2. In the case of LR optimization, we observe through Figure 3 that stochastic algorithms enjoy
fast convergence in the beginning but slows down later as they get close to the true minimizer. The
algorithms that come closer to NewSamp in terms of performance are BFGS and LBFGS. Especially
when r = 20, performance of BFGS and that of NewSamp are similar, yet NewSamp still does
better. In the case of SVM optimization, the algorithm that comes closer to NewSamp is Newton’s
method.

Further, we demonstrate how the convergence coefficients ⇠
1

and ⇠
2

vary over several datasets in
Figure 4.

D Useful lemmas

Lemma D.1. Let X be a symmetric p⇥ p matrix, and let T
✏

be an ✏-net over Sp�1. Then,

kXk
2

 1

1� 2✏
sup

v2T✏

|hXv, vi| .

Lemma D.2. Let C be convex and bounded set in Rp and T
✏

be an ✏-net over C. Then,
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| 
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diam(C)
2✏/

p
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◆

p

.

Proof of Lemma D.2. The set C can be contained in a p-dimensional cube of size diam(C). Con-
sider a grid over this cube with mesh width 2✏/

p
p. Then C can be covered with at most

(diam(C)/(2✏/pp))p many cubes of edge length 2✏/
p
p. If ones takes the projection of the centers

of such cubes onto C and considers the circumscribed balls of radius ✏, we may conclude that C can
be covered with at most

✓

diam(C)
2✏/

p
p

◆

p

many balls of radius ✏.

Lemma D.3. For a, b > 0, and ✏ satisfying

✏ =

⇢

a

2

log

✓

2b2

a

◆�

1/2

and
2

a
b2 > e,

15



CT Slices Dataset
LR SVM

Method Elapsed(sec) Iter Elapsed(sec) Iter
NewSamp 9.488 19 22.228 33
BFGS 9.568 38 2094.330 5668
LBFGS 51.919 217 165.261 467
Newton 14.162 5 58.562 25
GD 350.863 2317 1660.190 4828
AGD 176.302 915 1221.392 3635

MSD Dataset
LR SVM

Method Elapsed(sec) Iter Elapsed(sec) Iter
NewSamp 25.770 38 71.755 49
BFGS 43.537 75 9063.971 6317
LBFGS 81.835 143 429.957 301
Newton 144.121 30 100.375 18
GD 642.523 1129 2875.719 1847
AGD 397.912 701 1327.913 876

Synthetic Dataset
LR SVM

Method Elapsed(sec) Iter Elapsed(sec) Iter
NewSamp 26.412 12 47.755 8
BFGS 50.699 22 13352.254 2439
LBFGS 103.590 47 326.526 67
Newton 18235.842 449 775.191 16
GD 345.025 198 1512.305 238
AGD 449.724 233 1695.44 239

Table 3: Details of the experiments presented in Figure 2.
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Figure 4: The plots demonstrate the behavior of ⇠1 and ⇠2 over several datasets.
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we have ✏2 � a log(b/✏).

Proof. Since a, b > 0 and x ! ex is a monotone increasing function, the above inequality condition
is equivalent to

2✏2

a
e

2✏2

a � 2b2

a
.

Now, we define the function f(w) = wew for w > 0. f is continuous and invertible on [0,1). Note
that f�1 is also a continuous and increasing function for w > 0. Therefore, we have
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2

f�1

✓

2b2

a

◆

Observe that the smallest possible value for ✏ would be simply the square root of af�1

�

2b2/a
�

/2.
For simplicity, we will obtain a more interpretable expression for ✏. By the definition of f�1, we
have

log(f�1

(y)) + f�1

(y) = log(y).

Since the condition on a and b enforces f�1

(y) to be larger than 1, we obtain the simple inequality
that

f�1

(y)  log(y).

Using the above inequality, if ✏ satisfies

✏2 =

a

2

log

✓

2b2

a

◆

� a

2

g

✓

2b2

a

◆

,

we obtain the desired inequality.
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