
Supplementary material for
“No-Regret Learning in Bayesian Games”

A Proof of Theorem 11

For readability we repeat the definitions of Lemma 10 and Theorem 11 from the main text.

Lemma 10 Let D ∈ ∆(Σ × V) be a joint distribution of (strategy, valuation) profile pairs. Con-
sider a sequence of play of the random matching game, where each player uses a vanishing regret
algorithm and let DT be the empirical distribution of strategy, valuation profile pairs up till time
step T . Suppose that there exists a subsequence of {DT }T that converges in distribution to D. Then,
almost surely, D is a product distribution, i.e. D = Ds×Dv , with Ds ∈ ∆(Σ) and Dv×∆(V) such
that Dv = F and Ds ∈ BAYES-CCE of the static incomplete information game with distributional
beliefs F .

Theorem 11 The price of anarchy for Bayesian no-regret dynamics is upper bounded by the price
of anarchy of Bayesian coarse correlated equilibria.

Proof. Let D ∈ ∆(Σ × V) be a joint distribution, such that there is a subsequence of {DT }T ,
converging in distribution to D. Then by Lemma 10, almost surely, D is a product distribution, i.e.
D ∈ ∆(Σ)×∆(V) and that the marginal on V is equal toF and the marginal on Σ is a BAYES-CCE
of the static incomplete information game with distributional beliefs F .

Therefore, if ρ is the BAYES-CCE− POA of the mechanism, and if (s,v) is a random sample from
D, then almost surely:

Es,v [SW (s(v);v)] ≥
1

ρ
Ev [OPT(v)] (13)

Thus the limit average social welfare of any convergent subsequence will be at least 1
ρ
Ev [OPT(v)],

which then implies that almost surely:

lim inf
T→∞

1

T

T
∑

t=1

SW (st(vt); vt) ≥
1

ρ
Ev [OPT(v)] =

1

ρ
lim

T→∞

1

T

T
∑

t=1

OPT(vt)

Thus for any non-measure zero event, for any ǫ, there exists a f(ǫ) such that for any T ≥ f(ǫ):

1

T

T
∑

t=1

SW (st(vt); vt) ≥
1

ρ

1

T

T
∑

t=1

OPT(vt)− ǫ

With no loss of generality we can assume that Ev [OPT(v)] > 0 (o.w. valuations are all zero
and theorem holds trivially). Since, the average optimal welfare converges almost surely to
Ev [OPT(v)], we get that for any non-measure zero event, there exists a g(δ) such that for T ≥ g(δ),
1
T

∑T
t=1 OPT(vt) is bounded away from zero. Thereby, we can turn the additive error into a multi-

plicative one, i.e. for any non-measure zero event and for any ǫ′ there exists w(ǫ′) such that for any
T ≥ w(ǫ′):

1

T

T
∑

t=1

SW (st(vt); vt) ≥
1

ρ
(1 + ǫ′)

1

T

T
∑

t=1

OPT(vt)

This implies that almost surely:

lim sup
T→∞

1
T

∑T
t=1 OPT(vt)

1
T

∑T
t=1 SW (st(vt); vt)

≤ ρ = BAYES-CCE-POA
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B Proof of Theorem 14

Theorem 14 Consider the repeated matching game with a (λ, µ)-smooth mechanism. Suppose that
for any T ≥ T 0, each player in each of the n populations has regret at most ǫ

n
. Then for every δ

and ρ, there exists a T ∗(δ, ρ), such that for any T ≥ min{T 0, T ∗}, with probability 1− ρ:

1

T

T
∑

t=1

SW (st(vt); vt) ≥
λ

max{1, µ}
Ev [OPT(v)]− δ − µ · ǫ (14)

Moreover, T ∗(δ, ρ) ≤ 54·n3·|Σ|·|V|2·H3

δ3
log

(

2
ρ

)

.

Proof. Fix a population i and a Bayesian strategy s∗i ∈ Σi, as well as a Bayesian strategy profile
s ∈ Σ. For shorter notation we will denote:

πi(s
∗
i , s, v) = Ui(s

∗
i (vi), s−i(v−i); vi).

For a time step T , let pT (s) = |Ts|
T

be the empirical distribution of a Bayesian strategy s and with

pT (v|s) =
|Ts,v|
|Ts|

be the empirical distribution of values conditional on a Bayesian strategy s. The

average utility of a population i up till time step T , when switching to a fixed Bayesian strategy s∗i ,
can be written as:

1

T

T
∑

t=1

π(s∗i , s
t, vt) =

∑

s∈Σ

pT (s)
∑

v∈V

pT (v|s) · πi(s
∗
i , s, v) (15)

We will show that for any s∗i , there exists a T ∗(δ, ρ) such that for any T ≥ T ∗(δ, ρ), with probability
1− ρ:

∑

s∈Σ

pT (s)
∑

v∈V

pT (v|s) · πi(s
∗
i , s, v) ≥

∑

s∈Σ

pT (s)Ev [πi(s
∗
i , s,v)]− δ (16)

where v is a random variable drawn from the distribution of valuation profiles F . We will denote
with p(v) the density function implied by distribution F .

In what follows we will denote with H = maxi∈[n],vi∈Vi,xi∈Xi
vi(xi) the maximum possible value

of any player. Thus observe that the utility of any player is upper bounded by H and that the revenue
collected by any player at equilibrium is upper bounded by H .

For a time period T , let G = {s ∈ Σ : pT (s) ≥ ζ}. Then observe that:

∑

s∈Σ

pT (s)
∑

v∈V

(

pT (v|s)− p(v)
)

· πi(s
∗
i , s, v) ≥

∑

s∈G

pT (s)
∑

v∈V

(

pT (v|s)− p(v)
)

· πi(s
∗
i , s, v)− ζ · |Σ| ·H

Observe that for any s ∈ G, |Ts| ≥ ζ · T . Thus pT (v|s) is the empirical mean of at least ζ · T
independent random samples of a Bernoulli trial with success probability p(v). Hence, by Hoeffding

bounds, we have that |pT (v|s)− p(v)| ≤ t with probability at least 1− 2 exp
(

−2 · ζ · T · t2
)

. Thus
with that much probability we get:

∑

s∈Σ

pT (s)
∑

v∈V

(

pT (v|s)− p(v)
)

· πi(s
∗
i , s, v) ≥ −t · |V| ·H − ζ · |Σ| ·H

By setting t = δ
2·|V|·H , ζ = δ

2·|Σ|·H and T ∗(δ, ρ) = 16·|Σ|·|V|2·H3

δ3
log

(

2
ρ

)

, we get the claimed

property in Equation (16).

Now suppose that after time step T 0 each player in a population has regret ǫ/n. Thus the average
utility of the population is at least the utility from switching to any fixed Bayesian strategy s∗i , minus
an error term of ǫ/n:

∑

s∈Σ

pT (s)
∑

v∈V

pT (v|s)πi(si, s, v) ≥
∑

s∈Σ

pT (s)
∑

v∈V

pT (v|s)πi(s
∗
i , s, v)−

ǫ

n
(17)
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From the previous analysis, for any T ≥ min{T 0, T ∗( 2δ
3·n , ρ)}, we get that with probability 1− ρ:

∑

s∈Σ

pT (s)
∑

v∈V

pT (v|s)πi(si, s, v) ≥
∑

s∈Σ

pT (s)Ev [πi(s
∗
i , s,v)]−

2δ

3n
−

ǫ

n
(18)

Summing over all populations and using the Bayesian smoothness property of the mechanism from
Theorem 12, we have that with probability 1− ρ:

∑

s∈Σ

pT (s)
∑

v∈V

pT (v|s)
∑

i

πi(si, s, v) ≥
∑

s∈Σ

pT (s)
(

λEv [OPT(v)]− µRAG(s)
)

−
2δ

3
− ǫ

≥ λEv [OPT(v)]− µ
∑

s∈Σ

pT (s)RAG(s)−
2δ

3
− ǫ

To conclude the theorem we observe that since for any s ∈ Σ, |pT (v|s)− p(v)| ≤ δ
3·n·|V|·H , we get

that:

RAG(s) =
∑

v∈V

p(v)R(s(v)) ≤
∑

v∈V

pT (v|s)R(s(v)) +
δ

3
(19)

Since, the revenue collected by a player at any action in the support of an equilibrium is at most H .
By the latter we can combine the revenue on the right hand side with the utility on the left hand side.
We can also bound the remaining (µ − 1) of the revenue, by (µ − 1) of the average welfare minus
ǫ, since each player in each population can always drop out of the auction and therefore his average
utility at an ǫ

n
-regret sequence must be at least − ǫ

n
.

Hence, we get that:

∑

s∈Σ

pT (s)
∑

v∈V

pT (v|s)SW (s(v); v) ≥
λ

max{1, µ}
Ev [OPT(v)]− δ − µ · ǫ (20)

Thus choosing T ∗(ρ, 2δ
3·n ) =

54·n3·|Σ|·|V|2·H3

δ3
log

(

2
ρ

)

, we get the conditions of the theorem.
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