Supplementary material for
“No-Regret Learning in Bayesian Games”

A Proof of Theorem 11

For readability we repeat the definitions of Lemma 10 and Theorem 11 from the main text.

Lemma 10 Let D € A(X X V) be a joint distribution of (strategy, valuation) profile pairs. Con-
sider a sequence of play of the random matching game, where each player uses a vanishing regret
algorithm and let DT be the empirical distribution of strategy, valuation profile pairs up till time
step T. Suppose that there exists a subsequence of { DT} that converges in distribution to D. Then,
almost surely, D is a product distribution, i.e. D = D x D,, with Dy € A(X) and D, x A(V) such
that D,, = F and D4 € BAYES-CCE of the static incomplete information game with distributional
beliefs F.

Theorem 11 The price of anarchy for Bayesian no-regret dynamics is upper bounded by the price
of anarchy of Bayesian coarse correlated equilibria.

Proof. Let D € A(X x V) be a joint distribution, such that there is a subsequence of { D7},
converging in distribution to D. Then by Lemma 10, almost surely, D is a product distribution, i.e.
D € A(X) x A(V) and that the marginal on V is equal to F and the marginal on ¥ is a BAYES-CCE
of the static incomplete information game with distributional beliefs F.

Therefore, if p is the BAYES-CCE — POA of the mechanism, and if (s, v) is a random sample from
D, then almost surely:
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Thus the limit average social welfare of any convergent subsequence will be at least %EV [OPT(V)],
which then implies that almost surely:
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Thus for any non-measure zero event, for any e, there exists a f(e) such that for any T > f(e):
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With no loss of generality we can assume that E, [OPT(v)] > 0 (o.w. valuations are all zero
and theorem holds trivially). Since, the average optimal welfare converges almost surely to
E, [OPT(v)], we get that for any non-measure zero event, there exists a g(d) such that for ' > ¢(9),
% Zthl OpT(v') is bounded away from zero. Thereby, we can turn the additive error into a multi-

plicative one, i.e. for any non-measure zero event and for any €’ there exists w(e’) such that for any
T > w(e):
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This implies that almost surely:
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B Proof of Theorem 14

Theorem 14 Consider the repeated matching game with a (X, u)-smooth mechanism. Suppose that
for any T > T°, each player in each of the n populations has regret at most +. Then for every §

and p, there exists a T* (3, p), such that for any T > min{T°, T*}, with probability 1 — p

1 d tio by, .t A
T ;SW(S (U ),’U ) Z WEV [OPT(V)] -0 — o€ (14)

Moreover, T*(6, p) < 547‘3‘25'# log (%)

Proof. Fix a population ¢ and a Bayesian strategy s; € 3J;, as well as a Bayesian strategy profile
s € Y. For shorter notation we will denote:

(st s,0) = Ui(si(vg), 5—i(v—s);v;).

For a time step 7T, let p” (s) = m‘ be the empirical distribution of a Bayesian strategy s and with

pT(v]s) = |‘7;i“ | be the empirlcal distribution of values conditional on a Bayesian strategy s. The

average utility of a population ¢ up till time step 7", when switching to a fixed Bayesian strategy s;,
can be written as:
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We will show that for any s, there exists a 7% (d, p) such that for any T' > T (4, p), with probability
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where v is a random variable drawn from the distribution of valuation profiles . We will denote
with p(v) the density function implied by distribution F.

In what follows we will denote with H = max;e[n] v, eV, z; e, Vi(2;) the maximum possible value
of any player. Thus observe that the utility of any player is upper bounded by H and that the revenue
collected by any player at equilibrium is upper bounded by H.

For a time period 7', let G = {s € ¥ : pT(s) > (}. Then observe that:
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Observe that for any s € G, |Ts| > ¢ - T. Thus p” (v|s) is the empirical mean of at least ¢ - T'
independent random samples of a Bernoulli trial with success probability p(v). Hence, by Hoeffding
bounds, we have that |p” (v]s) — p(v)| < ¢ with probability at least 1 — 2exp (—2- ¢ - T - ¢?). Thus
with that much probability we get:
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By setting t = 2,|{,§|,H, ¢ = 2,|£‘_H and T%(0,p) = Wlog (%) we get the claimed
property in Equation (16).
Now suppose that after time step 7 each player in a population has regret ¢/n. Thus the average

utility of the population is at least the utility from switching to any fixed Bayesian strategy s;, minus
an error term of €/n:
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From the previous analysis, for any 7 > min{7, T*( ,p)}, we get that with probability 1 —
20 €
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Summing over all populations and using the Bayesian smoothness property of the mechanism from
Theorem 12, we have that with probability 1 — p

26
D 0 () > P (wls) Y milsiis,v) = > pt(s) (AEy [OPT(v)] — pR*(s)) — 3 7€
sex veVY % sEX
> AE, [0PT(v)] — Y p" (s)R*(s _2
- 3
sEX
To conclude the theorem we observe that since for any s € 3, [pT (v|s) — p(v)| < W, we get
that: 5
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Since, the revenue collected by a player at any action in the support of an equilibrium is at most 1.
By the latter we can combine the revenue on the right hand side with the utility on the left hand side.
We can also bound the remaining (u — 1) of the revenue, by (i — 1) of the average welfare minus
€, since each player in each population can always drop out of the auction and therefore his average
utility at an - -regret sequence must be at least — .

Hence, we get that:
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Thus choosing 7 (p, %) = M"S‘EJ—JMzH?’ log (%), we get the conditions of the theorem. |



