Supplementary Material of ‘“Empirical Localization of
Homogeneous Divergences on Discrete Sample Spaces”

1 Proof of Theorem 0

The Hessian matrix of S, o/ (P, go) is
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For a given 8 # 1, we prove that there exists a model gg and parameters «, @', ~ such that the
Hessian is not non-negative definite.

Suppose X = {+1,—1}%. For ¢ = (z1,...,24) € X, the function ¢(x) = (¢1(x),...,dq(x)) €
R? is defined by ¢r(x) = x,k = 1,...,d. Then the normalized model is gg(x) =

exp{zzz1 Oy — Zgzl log(e% +e~%)}. Let p be the uniform distribution on X'. The covariance
matrix of ¢ is the diagonal matrix given by
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Letjbe d =1/(1+ ), then ¢ € (0, 1) holds for v > 0. We define

L (1—2)?
f(z:0) = (e(1=2)0 4 ¢—(1-2)6)2"

z, 0 € R.

Then, the ¢-th diagonal elements of the Hessian matrix is expressed by
A=5-f(a:0) + (1-3)- f(a's0) — f(6a+ (1 - )a';0,)

up to a positive constant. Our task is to find the parameter «, o', § such that 8 = dar+ (1 — )’ and
A < 0 hold. The function f satisfies the following properties.

(@ f(z;0)>0and f(%;0) =0 2z=1.
b) f(l+e0)=f(1—e6)=f(1+e—0)fore >0,0 cR.
(¢) lim,, 1 f(2;60) = 0 holds for 6 # 0.

Let 0 be a fixed non-zero real number. Since 5 # 1, f(8;6) > 0 holds. Due to the properties (b)
and (c), any sufficiently large ¢ > O satisfies f(1 —e;0) = f(14¢;0) < f(B;60). Definec = 1+¢
and o/ = 1 — e. By choosing § € (0, 1) such that 8 = da + (1 — §)a’, we have A < 0.

Remark 1. Even when o and o are both restricted to positive numbers, we need 3 = 1 to ensure
the non-negative definiteness of the Hessian matrix. Let us prove this fact. Suppose that [ > 1.
Due to (a), (c) in the above and the continuity of f(z,0) at z = 1, there exists a and o/ satisfying
1 < o < B < «such that both f(o';0) and f(«;0) are less than f(3;0), where 0 is a non-zero
constant. Then, A < 0 holds for 6 € (0,1) such that § = da + (1 — §)o’. We prove the case of
0 < B < 1. For a sufficiently large 6, we have
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Hence, the continuity of [ ensures that there exist a sufficiently large 6 and a small positive o such
that 0 < o/ < Band f(a';0) < f(B;0) hold. The property (c) ensures that there exists a sufficiently
large oo > 1 satisfying f(; 0) < f(5;0). Again, A < 0 holds for 6 such that 8 = da + (1 — 0)d/.

2 Proof of Theorem

Let us assume that the empirical distribution is written as

p(®) = Go, (2) + e().



Note that (¢) = 0 because p, gg, € P. By expanding an equilibrium condition of the estimator (B)
around 6 = 6 and e(x) = 0, we obtain
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By the delta method [[I], we observe that
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The last equality comes from (¢) = > _ ., €(x) = 0. Then we have
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From the central limit theorem,

Vi (€)= Vit (U, () — (douth,)

asymptotically follows the normal distribution with mean 0, and variance Vg, [ ], which is known
as the Fisher information matrix. Also from the law of large number, we have
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in the limit of n — co. Consequently, we observe that

V(6 — 80) ~ N (0, Vg, [1,] 1)
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