A Transformation of the Evidence Lower Bound

Recall that { = T'(#) and that the variational approximation in the real coordinate space is ¢(; ¢).

We begin with the evidence lower bound (ELBO) in the original latent variable space. We then trans-
form the latent variable space of to the real coordinate space.

r(X.0)
£ = 0:¢)l de
/Q(9 Og[q(é’:fb)}

_ . P(X, T7'(©))| det J7-1(8)]
—/q@,wog[M at

- / 4 ¢)log [p(X, 7-1(©))| det Jp—1 (¢)]] d& — / 4(&:)loglg(¢ : $)]d
= By [log p(X, T71(2)) + log | det Jr—1(§)|] — Eqz) [logq(§ ; ¢)]

The variational approximation in the real coordinate space is a Gaussian. Plugging in its entropy
gives the ELBO in the real coordinate space

K

1
£ = Eqq) [log p(X. T71(¢)) + log | det Jr—1(§)[] + EK (1 + log(2m)) + Zlogok.
k=1

B Gradients of the Evidence Lower Bound

First, consider the gradient with respect to the g parameter of the standardization. We exchange the
order of the gradient and the integration through the dominated convergence theorem [1]. The rest
is the chain rule for differentiation.

Vil =V, {H-Z Nz [log p(X. T7H(S, L, () + log | det Jr—1 (S0 ()]

K
K
+ 3(1 + log(2m)) + ,; log ak}

= Exion [Vi {log p(X. 771 (57 (1)) + log | det Jr-1 (s~ () [}]
= Ewa:on [Volog p(X.0)Ve T (§)Vyu Sy () + Ve log [det J7—1 (§)[Vu Sy, ()]
= Ex@:on [Vo log p(X.0)Ve T~ (§) + Vg log | det Jr—1(8)|]

Similarly, consider the gradient with respect to the @ parameter of the standardization. The gradient

with respect to a single component, wy, has a clean form. We abuse the V notation to maintain
consistency with the rest of the text (instead of switching to).

Ver £ = Vo, {[EM,,;O,I) [log p(X, T (S, 4 (1)) + log | det Jr—1 (S, 5 ()]]

K
+ g(l +log(2m) + Y log(exp(a)k))}
k=1

= [EN(ﬂk) [Vwk { lng(X, T_I(S;’lw (”))) + log ‘ det JT—l (S;’lw (7]))‘}] + 1
= Eweno [(Vor log p(X.0) Ve T7H(8) + Vi, log | det Jr—1(8)|) Vo S ()] + 1.
[(

= Exmo [(Ve log p(X, 0)Ve, T71¢) + Ve, log | det Jy-1 (§)|) Nk exp(wk)] + 1.

10

C Running ADVI in Stan

Visit http://mc-stan.org/ to download the latest version of Stan. Follow instructions on how to
install Stan. You are then ready to use ADVI.

Stan offers multiple interfaces. We describe the command line interface (cmdStan) below.

The syntax is

./myModel variational
grad__samples=M (M =1 default)
data file=myData.data.R
output file=output_advi.csv
diagnostic_file=elbo__advi.csv

where myData.data.R is the dataset stored in the R language Rdump format. output_ advi.csv
contains samples from the posterior and elbo__advi.csv reports the ELBO.

D Transformations of Continuous Probability Densities

We present a brief summary of transformations, largely based on [2].

Consider a univariate (scalar) random variable X with probability density function fx(x). Let X =
supp(fx (x)) be the support of X. Now consider another random variable Y defined as Y = T'(X).
Let ¥ = supp(fy (¥)) be the support of Y.

If T is a one-to-one and differentiable function from X to ¥, then Y has probability density function
_ a7 ~'(y)
o = el o) | 2.
y
Let us sketch a proof. Consider the cumulative density function Y. If the transformation 7 is in-
creasing, we directly apply its inverse to the cdf of Y. If the transformation 7 is decreasing, we

apply its inverse to one minus the cdf of Y. The probability density function is the derivative of the
cumulative density function. These things combined give the absolute value of the derivative above.

The extension to multivariate variables X and Y requires a multivariate version of the absolute value
of the derivative of the inverse transformation. This is the the absolute determinant of the Jacobian,
| det J7—1 (Y')| where the Jacobian is

a7y ! a7y !
ay1 WK
Jr(¥) =1 :
AT ! 0T !
ay1 K

Intuitively, the Jacobian describes how a transformation warps unit volumes across spaces. This
matters for transformations of random variables, since probability density functions must always
integrate to one.

E Setting a Stepsize Sequence for ADVI

We use adaGrad [3] to adaptively set the stepsize sequence in ADVI. While adaGrad offers attractive
convergence properties, it can be slow for non-convex problems. One reason is because it has infinite
memory. (It tracks the norm of the gradient starting from the beginning of the optimization.) In ADVI
we randomly initialize the variational approximation, which can be far from the true posterior. This
makes adaGrad take very small steps for the rest of the optimization, thus slowing convergence.
Limiting adaGrad’s memory speeds up convergence in practice, an effect also observed in training
neural networks [4]. (See [5] for an analysis of these trade-offs and a method that combines benefits
from both.)

11

Consider the stepsize p® and a gradient vector g @ at iteration i. In adaGrad, kth element of p@ is

~ 0
=
T+ s,(:)

The vector s is the gradient vector squared element-wise and summed over all times steps since the
start of the optimization. Instead, we limit this by recursively downweighting previous iterations as

s](:) =0.9x s,(ci_l) + 0.1 x gi(i).

We do a grid search for the scaling coefficient 1 and, following Hoffman et al. [6], set the offset
=1

F Linear Regression with Automatic Relevance Determination
Linear regression with automatic relevance determination (ARD) is a high-dimensional sparse re-
gression model [7, 8]. We describe the model below. Stan code is in Figure 6.

The inputs are X = x.y where each x, is D-dimensional. The outputs are y = y;.y where each
Vn is 1-dimensional. The weights vector w is D-dimensional. The likelihood

N
Py X wo) =[N (v |wxs, 0)

n=1

describes measurements corrupted by iid Gaussian noise with unknown standard deviation o.
The ARD prior and hyper-prior structure is as follows

p(w.0.0) = p(w,o | a)p(a)

D
=N (w [0, 0 (diag@_l) InvGam(o | ag, bo) 1_[Gam(e; | co. do)
i=1
where « is a D-dimensional hyper-prior on the weights, where each component gets its own inde-
pendent Gamma prior.

We simulate data such that only half the regressions have predictive power. The results in Figure 4a
use ag = by = c¢op = dyp = 1 as hyper-parameters for the Gamma priors.

G Hierarchical Logistic Regression

Hierarchical logistic regression models structured datasets in an intuitive way. We study a model of
voting preferences from the 1988 United States presidential election. Chapter 14.1 of [9] motivates
the model and explains the dataset. We also describe the model below. Stan code is in Figure 7,
based on [10].

Pr(y, =1) = sigmoid(,B0 + pfemale . female, + Bk . black, + Blemaleblack . female black,

age age.edu

edu state
+ O + U+) T “jt[»i])

state region v.prev
o~ N (am[j] + B - v.prev; , osme).

The hierarchical variables are
a0 ~ N (0, Ogge) fork =1,....K
afd“fvw(o, Oequ) forl =1,..., L
M ~ N (0. Ougeean) fork =1,... . K.l=1.....L
ot;:gio“ ~N (O, U,egion) form=1,..., M.

The standard deviation terms all have uniform hyper-priors, constrained between 0 and 100.

12

H Non-negative Matrix Factorization: Constrained Gamma Poisson Model

The Gamma Poisson factorization model describes discrete data matrices [11, 12].

Consider a U x I matrix of observations. We find it helpful to think of u = {1,---,U} as users
andi = {1,---, 1} as items, as in a recommendation system setting. The generative process for a
Gamma Poisson model with K factors is
1. For each user v in {1,--- ,U}:
e For each component k, draw 6, ~ Gam(ayg, by)-
2. Foreachitemi in {1,---,1}:
e For each component k, draw B;; ~ Gam(cy, dy).
3. For each user and item:
e Draw the observation y,; ~ Poisson(ouT Bi).
A potential downfall of this model is that it is not uniquely identifiable: swapping rows and columns
of 6 and B give the same inner product. One way to contend with this is to constrain either vector to

be an ordered vector during inference. We constrain each 6, vector in our model in this fashion. Stan
code is in Figure 8. We set K = 10 and all the Gamma hyper-parameters to 1 in our experiments.

I Non-negative Matrix Factorization: Dirichlet Exponential Model

Another model for discrete data is a Dirichlet Exponential model. The Dirichlet enforces uniqueness
while the exponential promotes sparsity. This is a non-conjugate model that does not appear to have
been studied in the literature.

The generative process for a Dirichlet Exponential model with K factors is

1. For each user u in {1,--- ,U}:

e Draw the K-vector 8,, ~ Dir(ay).
2. For eachitem i in {1,---,[}:

e For each component k, draw B;; ~ Exponential(4¢).
3. For each user and item:

e Draw the observation y,; ~ Poisson(8, ;).

Stan code is in Figure 9. We set K = 10, ag = 1000 for each component, and Ay = 0.1. With this
configuration of hyper-parameters, the factors §; appear sparse.

J Gaussian Mixture Model

The Gaussian mixture model (GMM) is a celebrated probability model. We use it to group a dataset of
natural images based on their color histograms. We build a high-dimensional GMM with a Gaussian
prior for the mixture means, a lognormal prior for the mixture standard deviations, and a Dirichlet
prior for the mixture components.

The images are in Y = y;.ny where each y, is D-dimensional and there are N observations. The
likelihood for the images is

N K D
p(Y 0. 0.0)=T]D 6 [[¥NOnal ttaa-oka)
n=1k=1 d=1

with a Dirichlet prior for the mixture proportions

p(0) = Dir(6 ; ao).

13

a Gaussian prior for the mixture means

D D

pw) = [T [T#Gsa:0.1)

k=1d=1
and a lognormal prior for the mixture standard deviations

D D

p(o) = H l_[logNormal(ogg4 ; 0,1)

k=1d=1
The dimension of the color histograms in the imageCLEF datasetis D = 576. This is a concatenation
of three 192-length histograms, one for each color channel (red, green, blue) of the images.

We scale the image histograms to have zero mean and unit variance. Setting o to a small value
encourages the model to use fewer components to explain the data. Larger values of ¢ encourage
the model to use all K components. We set &g = 1000 in our experiments.

ADVI code is in Figure 10. The stochastic data subsampling version of the code is in Figure 11.

data {
int <lower=0> N; // number of data items
int <lower=0> D; // dimension of input features
matrix [N,D] x; // input matrix
vector [N] v; // output vector

// hyperparameters for Gamma priors
real <lower=0> al;
real <lower=0> b0;
real <lower=0> c0;
real <lower=0> dO;

}

parameters {
vector [D] w; // weights (coefficients) vector
real <lower=0> sigma; // standard deviation

vector <lower=0>[D] alpha; // hierarchical latent variables

}

transformed parameters {
vector [D] one_over_sqrt_alpha;
for (i in 1:D) {
one_over_sqrt_alphali]l <- 1 / sqrt(alphalil);
}
}

model {
// alpha: hyper-prior on weights
alpha ~ gamma(cO, dO0);

// sigma: prior on standard deviation
sigma ~ inv_gamma(a0, b0);

// w: prior on weights
w ~ normal(0, sigma * one_over_sqrt_alpha);

// y: likelihood
y ~ normal(x * w, sigma);

Figure 6: Stan code for Linear Regression with Automatic Relevance Determination.

14

data {
int <lower=0> N;
int <lower=0> n__age;
int <lower=0> n__age_edu;
int <lower=0> n_edu;
int <lower=0> n_region_ full;
int <lower=0> n_ state;
int <lower=0,upper=n_age> age[N];
int <lower=0,upper=n_age_edu> age_edul[N];
vector <lower=0,upper=1>[N] black;
int <lower=0,upper=n_edu> edul[N];
vector <lower=0,upper=1>[N] female;
int <lower=0,upper=n_region_full> region_ full [N];
int <lower=0,upper=n_state> state[N];
vector [N] v_prev_full;
int <lower=0,upper=1> y[N];

}

parameters {
vector [n_age] a;
vector [n_edul] b;
vector [n_age_edul c;
vector [n_state] d;
vector [n_region_full] e;
vector [5] beta;
real <lower=0,upper=100> sigma_a;
real <lower=0,upper=100> sigma_b;
real <lower=0,upper=100> sigma_c;
real <lower=0,upper=100> sigma_d;
real <lower=0,upper=100> sigma_e;

}

transformed parameters {
vector [N] y_hat;

for (i in 1:N)
y_hat[i] <- betal[1l]

+ betal2] * blackl[il
+ beta[3] * femalel[il
+ beta[5] * female[i] * black[i]
+ beta[4] * v_prev_full[il]
+ alagelil]
+ bledulill
+ clage_edulill]
+ dlstate[i]]
+ elregion_ fulllil]l;
}
model {
a ~ normal (0, sigma_a);
b ~ normal (0, sigma_b);
¢ ~ normal (0, sigma_c);
d ~ normal (0, sigma_d);
e ~ normal (0, sigma_e);

beta ~ normal(0, 100);
y ~ bernoulli_logit (y_hat);
}

Figure 7: Stan code for Hierarchical Logistic Regression, from [10].

15

data {
int <lower=0> U;
int <lower=0> I;
int <lower=0> K;
int <lower=0> y[U,I];
real<lower=0> a;
real<lower=0> b;
real <lower=0> c;
real<lower=0> d;

}
parameters {
positive_ordered [K] theta[Ul; // user preference
vector <lower=0>[K] betall]; // item attributes
}
model {
for (u in 1:U)
theta[u] ~ gamma(a, b); // componentwise gamma
for (i in 1:1)
betal[i] ~ gamma(c, d); // componentwise gamma

for (u in 1:U) {
for (i in 1:1) {
ylu,i] ~ poisson(thetalu] ‘*betalil);
}
}
}

Figure 8: Stan code for Gamma Poisson non-negative matrix factorization model.

data {
int <lower=0> U;
int <lower=0> I;
int <lower=0> K;
int <lower=0> y[U,I];
real <lower=0> lambdaO;
real <lower=0> alphaO;

}

transformed data {
vector <lower=0>[K] alphaO_vec;
for (k in 1:K) {
alphaO_vec[k] <- alphaO;

}
}
parameters {
simplex [K] theta[U]; // user preference
vector <lower=0>[K] betal[l]; // item attributes
}
model {
for (u in 1:U)
theta[u] ~ dirichlet (alphaO_vec); // componentwise dirichlet
for (i in 1:1)
beta[i] ~ exponential(lambda0); // componentwise exponential

for (u in 1:U) {
for (i in 1:1) {
ylu,il ~ poisson(thetalu] ‘*betalil);

Figure 9: Stan code for Dirichlet Exponential non-negative matrix factorization model.

16

data {

int <lower=0> N; // number of data points in entire dataset
int <lower=0> K; // number of mixture components

int <lower=0> D; // dimension

vector [D] yI[N]; // observations

real <lower=0> alphaO; // dirichlet prior

}

transformed data {
vector <lower=0>[K] alphaO_vec;
for (k in 1:K)
alphaO_vec[k] <- alphaO;

}
parameters {
simplex [K] theta; // mixing proportions
vector [D] mul[K]; // locations of mixture components
vector <lower=0>[D] sigmal[K]; // standard deviations of mixture components
}
model {
// priors

theta ~ dirichlet (alphaO_vec);
for (k in 1:K) {
mulk] ~ normal(0.0, 1.0);
sigma[k] ~ lognormal(0.0, 1.0);
}

// likelihood
for (n in 1:N) {
real ps[K];
for (k in 1:K) {
pslk] <- log(thetal[k]) + normal_log(yl[n], mulk], sigmalk]);
¥
increment_log_prob (log_sum_exp(ps));

}

Figure 10: Stan code for the GMM example.

17

functions {
real divide_promote_real(int x, int y) {
real x_real;
x_real <- x;
return x_real / y;

}

}

data {
int <lower=0> NFULL; // total number of datapoints in dataset
int <lower=0> N; // number of data points in minibatch
int <lower=0> K; // number of mixture components
int <lower=0> D; // dimension

vector [D] yFULL[NFULL]; // dataset
vector [D] yINI]; // minibatch

real <lower=0> alphaO; // dirichlet hyper-prior parameter

}

transformed data {
real minibatch_factor;
vector <lower=0>[K] alphaO_vec;
for (k in 1:K) {
alphaO_vec[k] <- alphaO / K;

}
minibatch_factor <- divide_promote_real(N, NFULL);
}
parameters {
simplex [K] theta; // mixing proportions
vector [D] mul[K]; // locations of mixture components
vector <lower=0>[D] sigma [K]; // standard deviations of mixture components
}
model {
// priors

theta ~ dirichlet (alphaO_vec);
for (k in 1:K) {
mulk] ~ normal(0.0, 1.0);
sigma[k] ~ lognormal(0.0, 1.0);
}

// likelihood
for (n in 1:N) {
real psl[K];
for (k in 1:K) {
pslk] <- log(theta[k]) + normal_log(yln], mulk], sigmalk]);

increment_log_prob (log_sum_exp(ps));
¥

increment_log_prob(log(minibatch_factor));

Figure 11: Stan code for the GMM example, with stochastic subsampling of the dataset.

18

References

[1] Erhan Cinlar. Probability and Stochastics. Springer, 2011.
[2] David J Olive. Statistical Theory and Inference. Springer, 2014.

[3] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. The Journal of Machine Learning Research, 12:2121-2159, 2011.

[4] T Tieleman and G Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running average of
its recent magnitude. COURSERA: Neural Networks for Machine Learning, 4, 2012.

[5] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[6] Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. Stochastic variational
inference. The Journal of Machine Learning Research, 14(1):1303-1347, 2013.

[7] Christopher M Bishop. Pattern Recognition and Machine Learning. Springer New York, 2006.

[8] Jan Drugowitsch. Variational Bayesian inference for linear and logistic regression. arXiv
preprint arXiv:1310.5438, 2013.

[9] Andrew Gelman and Jennifer Hill. Data analysis using regression and multilevel/hierarchical
models. Cambridge University Press, 2006.

[10] Stan Development Team. Stan Modeling Language Users Guide and Reference Manual, 2015.
[11] John Canny. GaP: a factor model for discrete data. In ACM SIGIR, pages 122—-129. ACM, 2004.

[12] Ali Taylan Cemgil. Bayesian inference for nonnegative matrix factorisation models. Computa-
tional Intelligence and Neuroscience, 2009, 2009.

19

