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1 Expanded multicut objective and the cycle inequalities

In this appendix we show that for planar graphs, solving the expanded multicut optimization pro-
duces solutions that satisfy the cycle inequalities and have equivalent cost when truncated to lie in
the unit hypercube. This establishes an equivalence between the expanded multicut optimization

min
γ≥0
β≥0

θ · Ẑγ − θ− · β s.t. Ẑγ − β ≤ 1 (1)

and the cycle polytope relaxation
min
X∈CYC

θ ·X (2)

for the case of planar graphs.

1.1 Multicut cone and Cycle cone

Recall that CUT and MCUT denote the set of binary indicator vectors that represent valid two-way
cuts and multicuts respectively for a specified graph G. We denote the conic hulls of these sets by

CUT4 =

{∑
i

Xiγi : γi ≥ 0, Xi ∈ CUT

}
(3)

MCUT4 =

{∑
i

Xiγi : γi ≥ 0, Xi ∈ MCUT

}
(4)

(5)

Finally, we denote the cone of positive vectors satisfying the cycle inequalities by:

CYC4 =

{
X ≥ 0,

∑
e∈c−ê

Xe ≥ Xê,∀c ∈ C, ê ∈ c

}
(6)

We now state a two basic results concerning these cones.

Proposition 1: MCUT4 = CUT4

Every cut indicator is a multicut indicator, hence CUT4 ⊂ MCUT4. On the other hand, any
multicut X ∈ MCUT can be written as a conic combination of cuts that isolate each connected
component with weight 1

2 so that X = 1
2

∑
i Z

i with Zi ∈ CUT so MCUT ⊂ CUT4 and hence
MCUT4 ⊂ CUT4.

Proposition 2: If G is planar, CUT4 = CYC4

A stronger version of this result due to [1] states that for a graph G containing no K5 minor, the set
of cycle inequalities over chordless circuits is sufficient to specify the facets of the cut polytope for
G. See [2] (p. 434) for a detailed discussion.
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1.2 The projected solution min(1, Zγ) satisfies the cycle inequalities

As a result of the basic properties of the cut cone, for any γ ≥ 0, we have Zγ ∈ CYC4 for planar
graphs. Let X = min(1, Zγ) be a solution to the expanded multicut objective and (Zγ)e denote the
value for a particular edge e. It must then be that X ∈ CYC4 since:∑

e∈c−ê

min(1, (Zγ)e) ≥ min(1,
∑
e∈c−ê

(Zγ)e) (7)

≥ min(1, (Zγ)ê) ∀c ∈ C, ê ∈ c (8)

The first inequality arises from pulling the min outside the sum. The second inequality holds since
Zγ ∈ CYC4

1.3 The projected solution min(1, Zγ) achieves an objective cost no greater than that of Zγ

We now demonstrate that the fractional multicut X = min(1, Zγ) given by projecting the solution
Zγ yields a solution with an equal or smaller objective value.

Recall that β is a positive slack variable that allows corresponding edge indicators to take on a value
greater than 1.

Zγ − β ≤ 1 (9)

Since the objective is non-decreasing in β, for a given setting of γ an optimal setting of the slack
variables is given by:

β∗ = max(0, Zγ − 1) (10)

We split the objective into positive and negative edges and write:

θ · Zγ − θ− · β = θ+ · Zγ + θ− · Zγ − θ− · β (11)

= θ+ · Zγ + θ− ·min(1, Zγ) (12)

≥ θ+ ·min(1, Zγ) + θ− ·min(1, Zγ) (13)
= θ ·min(1, Zγ) (14)
= θ ·X (15)

which establishes that projecting Zγ onto the unit cube yields a fractional multicut solution that
does not increase the objective.

2 Expanded ultrametric objective and fractional ultrametrics

Recall the set of fractional ultrametrics is defined as follows

ΩL =
{
{X1, X2, . . . XL} : X l ∈ CYC, X l ≥ X l+1 ∀l

}
(16)

In analogy with the previous appendix, we show the equivalence of the expanded ultrametric round-
ing problem:

min
γ≥0
β≥0
α≥0

L∑
l=1

θl · Zγl +

L∑
l=1

−θ−l · βl +

L−1∑
l=1

θ+l · αl (17)

s.t. Zγl+1 + αl+1 ≤ Zγl + αl ∀l < L

Zγl − βl ≤ 1 ∀l (18)

with the relaxed problem:

min
X∈ΩL

L∑
l=1

θl ·X l (19)
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Given an optimal solution to the expanded ultrametric rounding problem specified by (γ, α, β), we
produce a fractional ultrametric H by the projection operation:

H l = min(1,max
m≥l

(Zγm)) = max(H l+1,min(1, (Zγl))) (20)

We show that the resulting projection H yields a valid fractional ultrametric H ∈ ΩL whose cost is
no greater than the cost of the corresponding solution to the expanded objective.

2.1 Projecting expanded solutions into ΩL

By construction, H satisfies the hierarchical constraint H l ≥ H l+1. We show that H l ∈ CYC by
induction. In the previous appendix, we established that HL = min(1, ZγL) ∈ CYC. Observe that
each H l for l < L is the coordinate-wise max of H l+1 and min(1, Zγl), both of which are in CYC
so we only need show that CYC is closed under coordinate-wise maximum.

Let X1 and X2 be two elements of CYC and X3 = max(X1, X2). We have ∀c ∈ C, ê ∈ c∑
e∈c−ê

X3
e =

∑
e∈c−ê

max(X1
e , X

2
e ) (21)

≥ max(
∑
e∈c−ê

X1
e ,
∑
e∈c−ê

X2
e ) (22)

≥ max(X1
ê , X

2
ê ) = X3

ê (23)
(24)

where the first inequality arises from pulling the max outside the sum and the second because X1

and X2 each satisfy the cycle inequality. Hence X3 ∈ CYC.

2.2 The cost of H is no greater than that of {γ, α, β}

Fixing an optimal solution to the expanded ultrametric problem specified by γ we first note that the
optimal values of β and α are given by:

βl = max(0, Zγl − 1) (25)

αl = max
m≥l

(Zγm − Zγl) (26)

The formula for α can be developed by starting from layer L and working down, setting α to the
smallest possible value needed to satisfy the inter-layer constraints for a given γ.

αL = 0

αL−1 = max(0, ZγL − ZγL−1)

αL−2 = max(0, ZγL − ZγL−2, ZγL−1 − ZγL−2)

. . . (27)

Since the objective is non-decreasing in α and β, these values are the smallest values for which the
constraints are satisfied.

Plugging in the settings of the slack variables for each layer l we have:

θl · Zγl − θ−l · βl + θ+l · αl

= (θ+l + θ−l) · Zγl − θ−l ·max(0, Zγl − 1) + θ+l ·max
m≥l

(Zγm − Zγl)

= θ+l · (Zγl + max
m≥l

(Zγm − Zγl)) + θ−l · (Zγl −max(0, Zγl − 1))

= θ+l ·max
m≥l

Zγm + θ−l ·min(1, Zγl)

≥ θ+l ·min(1,max
m≥l

Zγm) + θ−l ·min(1, Zγl)

≥ θ+l ·min(1,max
m≥l

Zγm) + θ−l ·min(1,max
m≥l

Zγm)

= θl ·H l
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where the second inequality holds because the max introduced is multiplied by a negative weight.
Since projection can only remain the same or decrease the cost of each layer, the total objective must
also be no greater than the expanded solution:∑

l

θl · Zγl − θ−l · βl + θ+l · αl ≥
∑
l

θl ·H l

3 Derivation of Dual Problem

Here we give a derivation of the dual objective over the expanded ultrametric cut cone which we
utilize to provide an efficient column generation approach based on perfect matching.

We introduce two sets of Lagrange multipliers {ω1 . . . ωL−1} and {λ1 . . . λL} corresponding to the
positivity constraints in Eq (8) in the main paper.

min
γ≥0
β≥0
α≥0

max
ω≥0,λ≥0

L∑
l=1

θlZ · γl −
L∑
l=1

θ−lβl +

L−1∑
l=1

θ+lαl (28)

+

L−1∑
l=1

ωl(Z · γl+1 + αl+1 − Zγl − αl)

+

L∑
l=1

λl(Z · γl − 1− βl)

For notational convenience, we set αL = 0 and ω0 = 0. We reorder the terms of the Lagrangian in
terms of summations over the primal variable indices.

min
γ≥0
β≥0
α≥0

max
ω≥0,λ≥0

L∑
l=1

−λl1 +

L∑
l=1

(−θ−l − λl)βl (29)

+

L∑
l=1

(θ+l + ωl−1 − ωl)αl +

L∑
l=1

(θl + λl + ωl−1 − ωl) · Zγl

Each primal variable yields a positivity constraint in the dual.

max
ω≥0,λ≥0

L∑
l=1

−λl1 (30)

s.t. (−θ−l − λl) ≥ 0 ∀l
(θ+l − ωl + ωl−1) ≥ 0 ∀l
(θl + λl + ωl−1 − ωl) · Z ≥ 0 ∀l

This dual LP can be interpreted as finding modification of the original edge weights θl so that every
possible cut of each resulting graph has non-negative weight. Observe that the introduction of the
two slack terms α and β in the primal problem (Eq (8) in the main paper) results in bounds on the
Lagrange multipliers λ and ω in the dual problem. The constraint (−θ−l − λl) ≥ 0 is a result of
the introduction of βl. The constraint ωl−1 − ωl ≤ θ+l is a result of the introduction of αl. In
practice these bounds turn out to be essential for efficient optimization and are a key contribution of
this paper.
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It is also informative to make the substitution µl = ωl−ωl−1 which yields a slightly more symmetric
formulation

max

L∑
l=1

−λl1 (31)

s.t. 0 ≤ λl ≤ −θ−l ∀l

0 ≤
l∑

m=1

µm ∀l (32)

µl ≤ θ+l ∀l
(θl + λl − µl) · Z ≥ 0 ∀l

4 Producing a genuine lower bound on the optimal integer solution

Consider optimizing the Lagrangian over the set of integer solutions X ∈ Ω̄L. In this case the α, β
terms disappear. For a given setting of the remaining multipliers ω, λ we have a lower bound on the
optimal integer solution given by:

L(ω, λ) = min
X∈Ω̄L

L∑
l=1

(θlX̄ l + ωl(X̄ l+1 − X̄ l) + λl(X̄ l − 1))

= min
X∈Ω̄L

L∑
l=1

(θlX̄ l + ωl−1X̄ l − ωlX̄ l + λlX̄ l − λl1)

= min
X∈Ω̄L

L∑
l=1

(θl + ωl−1 − ωl + λl)X̄ l − λl1

=

L∑
l=1

−λl1 + min
X∈Ω̄L

L∑
l=1

(θl + ωl−1 − ωl + λl)X̄ l

≥
L∑
l=1

−λl1 +

L∑
l=1

min
Xl∈MCUT

(θl + ωl−1 − ωl + λl)X̄ l

≥
L∑
l=1

−λl1 +

L∑
l=1

3

2
min

X̄l∈CUT
(θl + ωl−1 − ωl + λl)X̄ l (33)

where the first inequality arises from dropping the constraints between layers of the hierarchy and
the second inequality holds for planar graphs where the the optimal multi-cut is bounded below by
3
2 the value of the optimal two-way cut (see [3]).
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