
Algorithms with Logarithmic or Sublinear Regret for
Constrained Contextual Bandits

Huasen Wu
University of California at Davis

hswu@ucdavis.edu

R. Srikant
University of Illinois at Urbana-Champaign

rsrikant@illinois.edu

Xin Liu
University of California at Davis
liu@cs.ucdavis.edu

Chong Jiang
University of Illinois at Urbana-Champaign

jiang17@illinois.edu

Abstract

We study contextual bandits with budget and time constraints, referred to as con-
strained contextual bandits. The time and budget constraints significantly com-
plicate the exploration and exploitation tradeoff because they introduce complex
coupling among contexts over time. To gain insight, we first study unit-cost sys-
tems with known context distribution. When the expected rewards are known, we
develop an approximation of the oracle, referred to Adaptive-Linear-Programming
(ALP), which achieves near-optimality and only requires the ordering of expected
rewards. With these highly desirable features, we then combine ALP with the
upper-confidence-bound (UCB) method in the general case where the expected
rewards are unknown a priori. We show that the proposed UCB-ALP algorithm
achieves logarithmic regret except for certain boundary cases. Further, we de-
sign algorithms and obtain similar regret bounds for more general systems with
unknown context distribution and heterogeneous costs. To the best of our knowl-
edge, this is the first work that shows how to achieve logarithmic regret in con-
strained contextual bandits. Moreover, this work also sheds light on the study of
computationally efficient algorithms for general constrained contextual bandits.

1 Introduction

The contextual bandit problem [1, 2, 3] is an important extension of the classic multi-armed bandit
(MAB) problem [4], where the agent can observe a set of features, referred to as context, before
making a decision. After the random arrival of a context, the agent chooses an action and receives
a random reward with expectation depending on both the context and action. To maximize the
total reward, the agent needs to make a careful tradeoff between taking the best action based on the
historical performance (exploitation) and discovering the potentially better alternative actions under
a given context (exploration). This model has attracted much attention as it fits the personalized
service requirement in many applications such as clinical trials, online recommendation, and online
hiring in crowdsourcing. Existing works try to reduce the regret of contextual bandits by leveraging
the structure of the context-reward models such as linearity [5] or similarity [6], and more recent
work [7] focuses on computationally efficient algorithms with minimum regret. For Markovian
context arrivals, algorithms such as UCRL [8] for more general reinforcement learning problem can
be used to achieve logarithmic regret.

However, traditional contextual bandit models do not capture an important characteristic of real
systems: in addition to time, there is usually a cost associated with the resource consumed by each
action and the total cost is limited by a budget in many applications. Taking crowdsourcing [9] as
an example, the budget constraint for a given set of tasks will limit the number of workers that an
employer can hire. Another example is the clinical trials [10], where each treatment is usually costly
and the budget of a trial is limited. Although budget constraints have been studied in non-contextual
bandits where logarithmic or sublinear regret is achieved [11, 12, 13, 14, 15, 16], as we will see
later, these results are inapplicable in the case with observable contexts.
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In this paper, we study contextual bandit problems with budget and time constraints, referred to
as constrained contextual bandits, where the agent is given a budget B and a time-horizon T . In
addition to a reward, a cost is incurred whenever an action is taken under a context. The bandit
process ends when the agent runs out of either budget or time. The objective of the agent is to
maximize the expected total reward subject to the budget and time constraints. We are interested in
the regime where B and T grow towards infinity proportionally.

The above constrained contextual bandit problem can be viewed as a special case of Resourceful
Contextual Bandits (RCB) [17]. In [17], RCB is studied under more general settings with possibly
infinite contexts, random costs, and multiple budget constraints. A Mixture Elimination algorithm is
proposed and shown to achieve O(

√
T ) regret. However, the benchmark for the definition of regret

in [17] is restricted to within a finite policy set. Moreover, the Mixture Elimination algorithm suffers
high complexity and the design of computationally efficient algorithms for such general settings is
still an open problem.

To tackle this problem, motivated by certain applications, we restrict the set of parameters in our
model as follows: we assume finite discrete contexts, fixed costs, and a single budget constraint. This
simplified model is justified in many scenarios such as clinical trials [10] and rate selection in wire-
less networks [18]. More importantly, these simplifications allow us to design easily-implementable
algorithms that achieve O(log T ) regret (except for a set of parameters of zero Lebesgue measure,
which we refer to as boundary cases), where the regret is defined more naturally as the performance
gap between the proposed algorithm and the oracle, i.e., the optimal algorithm with known statistics.

Even with simplified assumptions considered in this paper, the exploration-exploitation tradeoff is
still challenging due to the budget and time constraints. The key challenge comes from the complex-
ity of the oracle algorithm. With budget and time constraints, the oracle algorithm cannot simply
take the action that maximizes the instantaneous reward. In contrast, it needs to balance between
the instantaneous and long-term rewards based on the current context and the remaining budget. In
principle, dynamic programming (DP) can be used to obtain this balance. However, using DP in
our scenario incurs difficulties in both algorithm design and analysis: first, the implementation of
DP is computationally complex due to the curse of dimensionality; second, it is difficult to obtain
a benchmark for regret analysis, since the DP algorithm is implemented in a recursive manner and
its expected total reward is hard to be expressed in a closed form; third, it is difficult to extend the
DP algorithm to the case with unknown statistics, due to the difficulty of evaluating the impact of
estimation errors on the performance of DP-type algorithms.

To address these difficulties, we first study approximations of the oracle algorithm when the system
statistics are known. Our key idea is to approximate the oracle algorithm with linear programming
(LP) that relaxes the hard budget constraint to an average budget constraint. When fixing the average
budget constraint at B/T , this LP approximation provides an upper bound on the expected total
reward, which serves as a good benchmark in regret analysis. Further, we propose an Adaptive
Linear Programming (ALP) algorithm that adjusts the budget constraint to the average remaining
budget bτ/τ , where τ is the remaining time and bτ is the remaining budget. Note that although the
idea of approximating a DP problem with an LP problem has been widely studied in literature (e.g.,
[17, 19]), the design and analysis of ALP here is quite different. In particular, we show that ALP
achieves O(1) regret, i.e., its expected total reward is within a constant independent of T from the
optimum, except for certain boundaries. This ALP approximation and its regret analysis make an
important step towards achieving logarithmic regret for constrained contextual bandits.

Using the insights from the case with known statistics, we study algorithms for constrained contex-
tual bandits with unknown expected rewards. Complicated interactions between information acqui-
sition and decision making arise in this case. Fortunately, the ALP algorithm has a highly desirable
property that it only requires the ordering of the expected rewards and can tolerate certain estimation
errors of system parameters. This property allows us to combine ALP with estimation methods that
can efficiently provide a correct rank of the expected rewards. In this paper, we propose a UCB-ALP
algorithm by combining ALP with the upper-confidence-bound (UCB) method [4]. We show that
UCB-ALP achieves O(log T ) regret except for certain boundary cases, where its regret is O(

√
T ).

We note that UCB-type algorithms are proposed in [20] for non-contextual bandits with concave
rewards and convex constraints, and further extended to linear contextual bandits. However, [20]
focuses on static contexts1 and achieves O(

√
T ) regret in our setting since it uses a fixed budget

constraint in each round. In comparison, we consider random context arrivals and use an adaptive

1After the online publication of our preliminary version, two recent papers [21, 22] extend their previous
work [20] to the dynamic context case, where they focus on possibly infinite contexts and achieve O(

√
T )

regret, and [21] restricts to a finite policy set as [17].
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budget constraint to achieve logarithmic regret. To the best of our knowledge, this is the first work
that shows how to achieve logarithmic regret in constrained contextual bandits. Moreover, the pro-
posed UCB-ALP algorithm is quite computationally efficient and we believe these results shed light
on addressing the open problem of general constrained contextual bandits.

Although the intuition behind ALP and UCB-ALP is natural, the rigorous analysis of their regret is
non-trivial since we need to consider many interacting factors such as action/context ranking errors,
remaining budget fluctuation, and randomness of context arrival. We evaluate the impact of these
factors using a series of novel techniques, e.g., the method of showing concentration properties under
adaptive algorithms and the method of bounding estimation errors under random contexts. For the
ease of exposition, we study the ALP and UCB-ALP algorithms in unit-cost systems with known
context distribution in Sections 3 and 4, respectively. Then we discuss the generalization to systems
with unknown context distribution in Section 5 and with heterogeneous costs in Section 6, which
are much more challenging and the details can be found in the supplementary material.

2 System Model

We consider a contextual bandit problem with a context set X = {1, 2, . . . , J} and an action set
A = {1, 2, . . . ,K}. At each round t, a context Xt arrives independently with identical distribution
P{Xt = j} = πj , j ∈ X , and each action k ∈ A generates a non-negative reward Yk,t. Under a
given context Xt = j, the reward Yk,t’s are independent random variables in [0, 1]. The conditional
expectation E[Yk,t|Xt = j] = uj,k is unknown to the agent. Moreover, a cost is incurred if action k
is taken under context j. To gain insight into constrained contextual bandits, we consider fixed and
known costs in this paper, where the cost is cj,k > 0 when action k is taken under context j. Similar
to traditional contextual bandits, the contextXt is observable at the beginning of round t, while only
the reward of the action taken by the agent is revealed at the end of round t.

At the beginning of round t, the agent observes the context Xt and takes an action At from {0}∪A,
where “0” represents a dummy action that the agent skips the current context. Let Yt and Zt be the
reward and cost for the agent in round t, respectively. If the agent takes an action At = k > 0,
then the reward is Yt = Yk,t and the cost is Zt = cXt,k. Otherwise, if the agent takes the dummy
action At = 0, neither reward nor cost is incurred, i.e., Yt = 0 and Zt = 0. In this paper, we focus
on contextual bandits with a known time-horizon T and limited budget B. The bandit process ends
when the agent runs out of the budget or at the end of time T .

A contextual bandit algorithm Γ is a function that maps the historical observations Ht−1 =
(X1, A1, Y1; X2, A2, Y2; . . . ;Xt−1, At−1, Yt−1) and the current context Xt to an action At ∈
{0} ∪ A. The objective of the algorithm is to maximize the expected total reward UΓ(T,B) for
a given time-horizon T and a budget B, i.e.,

maximizeΓ UΓ(T,B) = EΓ

[ T∑
t=1

Yt
]

subject to
T∑
t=1

Zt ≤ B,

where the expectation is taken over the distributions of contexts and rewards. Note that we consider
a “hard” budget constraint, i.e., the total costs should not be greater than B under any realization.

We measure the performance of the algorithm Γ by comparing it with the oracle, which is the optimal
algorithm with known statistics, including the knowledge of πj’s, uj,k’s, and cj,k’s. Let U∗(T,B)
be the expected total reward obtained by the oracle algorithm. Then, the regret of the algorithm Γ is
defined as

RΓ(T,B) = U∗(T,B)− UΓ(T,B).

The objective of the algorithm is then to minimize the regret. We are interested in the asymptotic
regime where the time-horizon T and the budget B grow to infinity proportionally, i.e., with a fixed
ratio ρ = B/T .

3 Approximations of the Oracle

In this section, we study approximations of the oracle, where the statistics of bandits are known
to the agent. This will provide a benchmark for the regret analysis and insights into the design of
constrained contextual bandit algorithms.
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As a starting point, we focus on unit-cost systems, i.e., cj,k = 1 for each j and k, from Section 3 to
Section 5, which will be relaxed in Section 6. In unit-cost systems, the quality of action k under con-
text j is fully captured by its expected reward uj,k. Let u∗j be the highest expected reward under con-
text j, and k∗j be the best action for context j, i.e., u∗j = maxk∈A uj,k and k∗j = arg maxk∈A uj,k.
For ease of exposition, we assume that the best action under each context is unique, i.e., uj,k < u∗j
for all j and k 6= k∗j . Similarly, we also assume u∗1 > u∗2 > . . . > u∗J for simplicity.

With the knowledge of uj,k’s, the agent knows the best action k∗j and its expected reward u∗j under
any context j. In each round t, the task of the oracle is deciding whether to take action k∗Xt or not
depending on the remaining time τ = T − t+ 1 and the remaining budget bτ .

The special case of two-context systems (J = 2) is trivial, where the agent just needs to procrastinate
for the better context (see Appendix D of the supplementary material). When considering more
general cases with J > 2, however, it is computationally intractable to exactly characterize the
oracle solution. Therefore, we resort to approximations based on linear programming (LP).

3.1 Upper Bound: Static Linear Programming

We propose an upper bound for the expected total reward U∗(T,B) of the oracle by relaxing the
hard constraint to an average constraint and solving the corresponding constrained LP problem.
Specifically, let pj ∈ [0, 1] be the probability that the agent takes action k∗j for context j, and 1− pj
be the probability that the agent skips context j (i.e., taking action At = 0). Denote the probability
vector as p = (p1, p2, . . . , pJ). For a time-horizon T and budget B, consider the following LP
problem:

(LPT,B) maximizep
J∑
j=1

pjπju
∗
j , (1)

subject to
J∑
j=1

pjπj ≤ B/T, (2)

p ∈ [0, 1]J .

Define the following threshold as a function of the average budget ρ = B/T :

j̃(ρ) = max{j :

j∑
j′=1

πj′ ≤ ρ} (3)

with the convention that j̃(ρ) = 0 if π1 > ρ. We can verify that the following solution is optimal for
LPT,B :

pj(ρ) =


1, if 1 ≤ j ≤ j̃(ρ),
ρ−

∑j̃(ρ)

j′=1
πj′

πj̃(ρ)+1
, if j = j̃(ρ) + 1,

0, if j > j̃(ρ) + 1.

(4)

Correspondingly, the optimal value of LPT,B is

v(ρ) =

j̃(ρ)∑
j=1

πju
∗
j + pj̃(ρ)+1(ρ)πj̃(ρ)+1u

∗
j̃(ρ)+1

. (5)

This optimal value v(ρ) can be viewed as the maximum expected reward in a single round with
average budget ρ. Summing over the entire horizon, the total expected reward becomes Û(T,B) =
Tv(ρ), which is an upper bound of U∗(T,B).
Lemma 1. For a unit-cost system with known statistics, if the time-horizon is T and the budget is
B, then Û(T,B) ≥ U∗(T,B).

The proof of Lemma 1 is available in Appendix A of the supplementary material. With Lemma 1, we
can bound the regret of any algorithm by comparing its performance with the upper bound Û(T,B)

instead of U∗(T,B). Since Û(T,B) has a simple expression, as we will see later, it significantly
reduces the complexity of regret analysis.
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3.2 Adaptive Linear Programming

Although the solution (4) provides an upper bound on the expected reward, using such a fixed
algorithm will not achieve good performance as the ratio bτ/τ , referred to as average remaining
budget, fluctuates over time. We propose an Adaptive Linear Programming (ALP) algorithm that
adjusts the threshold and randomization probability according to the instantaneous value of bτ/τ .

Specifically, when the remaining time is τ and the remaining budget is bτ = b, we consider an LP
problem LPτ,b which is the same as LPT,B except that B/T in Eq. (2) is replaced with b/τ . Then,
the optimal solution for LPτ,b can be obtained by replacing ρ in Eqs. (3), (4), and (5) with b/τ . The
ALP algorithm then makes decisions based on this optimal solution.

ALP Algorithm: At each round twith remaining budget bτ = b, obtain pj(b/τ)’s by solvingLPτ,b;
take action At = k∗Xt with probability pXt(b/τ), and At = 0 with probability 1− pXt(b/τ).

The above ALP algorithm only requires the ordering of the expected rewards instead of their accurate
values. This highly desirable feature allows us to combine ALP with classic MAB algorithms such as
UCB [4] for the case without knowledge of expected rewards. Moreover, this simple ALP algorithm
achieves very good performance within a constant distance from the optimum, i.e., O(1) regret,
except for certain boundary cases. Specifically, for 1 ≤ j ≤ J , let qj be the cumulative probability
defined as qj =

∑j
j′=1 πj′ with the convention that q0 = 0. The following theorem states the near

optimality of ALP.
Theorem 1. Given any fixed ρ ∈ (0, 1), the regret of ALP satisfies:
1) (Non-boundary cases) if ρ 6= qj for any j ∈ {1, 2, . . . , J − 1}, then RALP(T,B) ≤ u∗1−u

∗
J

1−e−2δ2
,

where δ = min{ρ− qj̃(ρ), qj̃(ρ)+1 − ρ}.
2) (Boundary cases) if ρ = qj for some j ∈ {1, 2, . . . , J − 1}, then RALP(T,B) ≤ Θ(o)

√
T +

u∗1−u
∗
J

1−e−2(δ′)2 , where Θ(o) = 2(u∗1 − u∗J)
√
ρ(1− ρ) and δ′ = min{ρ− qj̃(ρ)−1, qj̃(ρ)+1 − ρ}.

Theorem 1 shows that ALP achieves O(1) regret except for certain boundary cases, where it still
achieves O(

√
T ) regret. This implies that the regret due to the linear relaxation is negligible in most

cases. Thus, when the expected rewards are unknown, we can achieve low regret, e.g., logarithmic
regret, by combining ALP with appropriate information-acquisition mechanisms.

Sketch of Proof: Although the ALP algorithm seems fairly intuitive, its regret analysis is non-
trivial. The key to the proof is to analyze the evolution of the remaining budget bτ by mapping
ALP to “sampling without replacement”. Specifically, from Eq. (4), we can verify that when the
remaining time is τ and the remaining budget is bτ = b, the system consumes one unit of budget with
probability b/τ , and consumes nothing with probability 1 − b/τ . When considering the remaining
budget, the ALP algorithm can be viewed as “sampling without replacement”. Thus, we can show
that bτ follows the hypergeometric distribution [23] and has the following properties:
Lemma 2. Under the ALP algorithm, the remaining budget bτ satisfies:
1) The expectation and variance of bτ are E[bτ ] = ρτ and Var(bτ ) = T−τ

T−1 τρ(1− ρ), respectively.
2) For any positive number δ satisfying 0 < δ < min{ρ, 1− ρ}, the tail distribution of bτ satisfies

P{bτ < (ρ− δ)τ} ≤ e−2δ2τ and P{bτ > (ρ+ δ)τ} ≤ e−2δ2τ .

Then, we prove Theorem 1 based on Lemma 2. Note that the expected total reward under ALP
is UALP(T,B) = E

[∑T
τ=1 v(bτ/τ)

]
, where v(·) is defined in (5) and the expectation is taken

over the distribution of bτ . For the non-boundary cases, the single-round expected reward satisfies
E[v(bτ/τ)] = v(ρ) if the threshold j̃(bτ/τ) = j̃(ρ) for all possible bτ ’s. The regret then is bounded
by a constant because the probability of the event j̃(bτ/τ) 6= j̃(ρ) decays exponentially due to the
concentration property of bτ . For the boundary cases, we show the conclusion by relating the regret
with the variance of bτ . Please refer to Appendix B of the supplementary material for details.

4 UCB-ALP Algorithm for Constrained Contextual Bandits

Now we get back to the constrained contextual bandits, where the expected rewards are unknown
to the agent. We assume the agent knows the context distribution as [17], which will be relaxed in
Section 5. Thanks to the desirable properties of ALP, the maxim of “optimism under uncertainty”
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[8] is still applicable and ALP can be extended to the bandit settings when combined with estimation
policies that can quickly provide correct ranking with high probability. Here, combining ALP with
the UCB method [4], we propose a UCB-ALP algorithm for constrained contextual bandits.

4.1 UCB: Notations and Property

Let Cj,k(t) be the number of times that action k ∈ A has been taken under context j up to round t.
If Cj,k(t − 1) > 0, let ūj,k(t) be the empirical reward of action k under context j, i.e., ūj,k(t) =

1
Cj,k(t−1)

∑t−1
t′=1 Yt′1(Xt′ = j, At′ = k), where 1(·) is the indicator function. We define the UCB

of uj,k at t as ûj,k(t) = ūj,k(t) +
√

log t
2Cj,k(t−1) for Cj,k(t − 1) > 0, and ûj,k(t) = 1 for Cj,k(t −

1) = 0. Furthermore, we define the UCB of the maximum expected reward under context j as
û∗j (t) = maxk∈A ûj,k(t). As suggested in [24], we use a smaller coefficient in the exploration term√

log t
2Cj,k(t−1) than the traditional UCB algorithm [4] to achieve better performance.

We present the following property of UCB that is important in regret analysis.
Lemma 3. For two context-action pairs, (j, k) and (j′, k′), if uj,k < uj′,k′ , then for any t ≤ T ,

P{ûj,k(t) ≥ ûj′,k′(t)|Cj,k(t− 1) ≥ `j,k} ≤ 2t−1, (6)

where `j,k = 2 log T
(uj′,k′−uj,k)2 .

Lemma 3 states that for two context-action pairs, the ordering of their expected rewards can be iden-
tified correctly with high probability, as long as the suboptimal pair has been executed for sufficient
times (on the order of O(log T )). This property has been widely applied in the analysis of UCB-
based algorithms [4, 13], and its proof can be found in [13, 25] with a minor modification on the
coefficients.

4.2 UCB-ALP Algorithm

We propose a UCB-based adaptive linear programming (UCB-ALP) algorithm, as shown in Algo-
rithm 1. As indicated by the name, the UCB-ALP algorithm maintains UCB estimates of expected
rewards for all context-action pairs and then implements the ALP algorithm based on these esti-
mates. Note that the UCB estimates û∗j (t)’s may be non-decreasing in j. Thus, the solution of
LPτ,b based on û∗j (t) depends on the actual ordering of û∗j (t)’s and may be different from Eq. (4).
We use p̂j(·) rather than pj(·) to indicate this difference.

Algorithm 1 UCB-ALP
Input: Time-horizon T , budget B, and context distribution πj’s;
Init: τ = T , b = B;

Cj,k(0) = 0, ūj,k(0) = 0, ûj,k(0) = 1, ∀j ∈ X and ∀k ∈ A; û∗j (0) = 1, ∀j ∈ X ;
for t = 1 to T do
k∗j (t)← arg maxk ûj,k(t), ∀j;
û∗j (t)← û∗j,k∗j (t)(t);
if b > 0 then

Obtain the probabilities p̂j(b/τ)’s by solving LPτ,b with u∗j replaced by û∗j (t);
Take action k∗Xt(t) with probability p̂Xt(b/τ);

end if
Update τ , b, Cj,k(t), ūj,k(t), and ûj,k(t).

end for

4.3 Regret of UCB-ALP

We study the regret of UCB-ALP in this section. Due to space limitations, we only present a sketch
of the analysis. Specific representations of the regret bounds and proof details can be found in the
supplementary material.

Recall that qj =
∑j
j′=1 πj′ (1 ≤ j ≤ J) are the boundaries defined in Section 3. We show that

as the budget B and the time-horizon T grow to infinity in proportion, the proposed UCB-ALP
algorithm achieves logarithmic regret except for the boundary cases.
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Theorem 2. Given πj’s, uj,k’s and a fixed ρ ∈ (0, 1), the regret of UCB-ALP satisfies:
1) (Non-boundary cases) if ρ 6= qj for any j ∈ {1, 2, . . . , J − 1}, then the regret of UCB-ALP is
RUCB−ALP(T,B) = O

(
JK log T

)
.

2) (Boundary cases) if ρ = qj for some j ∈ {1, 2, . . . , J − 1}, then the regret of UCB-ALP is
RUCB−ALP(T,B) = O

(√
T + JK log T

)
.

Theorem 2 differs from Theorem 1 by an additional termO(JK log T ). This term results from using
UCB to learn the ordering of expected rewards. Under UCB, each of the JK content-action pairs
should be executed roughly O(log T ) times to obtain the correct ordering. For the non-boundary
cases, UCB-ALP is order-optimal because obtaining the correct action ranking under each context
will result in O(log T ) regret [26]. Note that our results do not contradict the lower bound in [17]
because we consider discrete contexts and actions, and focus on instance-dependent regret. For
the boundary cases, we keep both the

√
T and log T terms because the constant in the log T term

is typically much larger than that in the
√
T term. Therefore, the log T term may dominate the

regret particularly when the number of context-action pairs is large for medium T . It is still an open
problem if one can achieve regret lower than O(

√
T ) in these cases.

Sketch of Proof: We bound the regret of UCB-ALP by comparing its performance with the bench-
mark Û(T,B). The analysis of this bound is challenging due to the close interactions among differ-
ent sources of regret and the randomness of context arrivals. We first partition the regret according
to the sources and then bound each part of regret, respectively.

Step 1: Partition the regret. By analyzing the implementation of UCB-ALP, we show that its
regret is bounded as

RUCB−ALP(T,B) ≤ R(a)
UCB−ALP(T,B) +R

(c)
UCB−ALP(T,B),

where the first part R(a)
UCB−ALP(T,B) =

∑J
j=1

∑
k 6=k∗j

(u∗j − uj,k)E[Cj,k(T )] is the regret from

action ranking errors within a context, and the second part R(c)
UCB−ALP(T,B) =

∑T
τ=1 E

[
v(ρ) −∑J

j=1 p̂j(bτ/τ)πju
∗
j

]
is the regret from the fluctuations of bτ and context ranking errors.

Step 2: Bound each part of regret. For the first part, we can show that R(a)
UCB−ALP(T,B) =

O(log T ) using similar techniques for traditional UCB methods [25]. The major challenge of regret
analysis for UCB-ALP then lies in the evaluation of the second part R(c)

UCB−ALP(T,B).

We first verify that the evolution of bτ under UCB-ALP is similar to that under ALP and Lemma 2
still holds under UCB-ALP. With respect to context ranking errors, we note that unlike classic UCB
methods, not all context ranking errors contribute to the regret due to the threshold structure of
ALP. Therefore, we carefully categorize the context ranking results based on their contributions. We
briefly discuss the analysis for the non-boundary cases here. Recall that j̃(ρ) is the threshold for the
static LP problem LPT,B . We define the following events that capture all possible ranking results
based on UCBs:

Erank,0(t) =
{
∀j ≤ j̃(ρ), û∗j (t) > û∗

j̃(ρ)+1
(t);∀j > j̃(ρ) + 1, û∗j (t) < û∗

j̃(ρ)+1
(t)
}
,

Erank,1(t) =
{
∃j ≤ j̃(ρ), û∗j (t) ≤ û∗j̃(ρ)+1

(t);∀j > j̃(ρ) + 1, û∗j (t) < û∗
j̃(ρ)+1

(t)
}
,

Erank,2(t) =
{
∃j > j̃(ρ) + 1, û∗j (t) ≥ û∗j̃(ρ)+1

(t)
}
.

The first event Erank,0(t) indicates a roughly correct context ranking, because under Erank,0(t) UCB-
ALP obtains a correct solution for LPτ,bτ if bτ/τ ∈ [qj̃(ρ), qj̃(ρ)+1]. The last two events Erank,s(t),
s = 1, 2, represent two types of context ranking errors: Erank,1(t) corresponds to “certain contexts
with above-threshold reward having lower UCB”, while Erank,2(t) corresponds to “certain contexts
with below-threshold reward having higher UCB”. Let T (s) =

∑T
t=1 1(Erank,s(t)) for 0 ≤ s ≤ 2.

We can show that the expected number of context ranking errors satisfies E[T (s)] = O(JK log T ),
s = 1, 2, implying that R(c)

UCB−ALP(T,B) = O(JK log T ). Summarizing the two parts, we have
RUCB−ALP(T,B) = O(JK log T ) for the non-boundary cases. The regret for the boundary cases
can be bounded using similar arguments.

Key Insights from UCB-ALP: Constrained contextual bandits involve complicated interactions
between information acquisition and decision making. UCB-ALP alleviates these interactions by
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approximating the oracle with ALP for decision making. This approximation achieves near-optimal
performance while tolerating certain estimation errors of system statistics, and thus enables the
combination with estimation methods such as UCB in unknown statistics cases. Moreover, the
adaptation property of UCB-ALP guarantees the concentration property of the system status, e.g.,
bτ/τ . This allows us to separately study the impact of action or context ranking errors and conduct
rigorous analysis of regret. These insights can be applied in algorithm design and analysis for
constrained contextual bandits under more general settings.

5 Bandits with Unknown Context Distribution

When the context distribution is unknown, a reasonable heuristic is to replace the probability πj in
ALP with its empirical estimate, i.e., π̂j(t) = 1

t

∑t
t′=1 1(Xt′ = j). We refer to this modified ALP

algorithm as Empirical ALP (EALP), and its combination with UCB as UCB-EALP.

The empirical distribution provides a maximum likelihood estimate of the context distribution and
the EALP and UCB-EALP algorithms achieve similar performance as ALP and UCB-ALP, respec-
tively, as observed in numerical simulations. However, a rigorous analysis for EALP and UCB-
EALP is much more challenging due to the dependency introduced by the empirical distribution. To
tackle this issue, our rigorous analysis focuses on a truncated version of EALP where we stop updat-
ing the empirical distribution after a given round. Using the method of bounded averaged differences
based on coupling argument, we obtain the concentration property of the average remaining budget
bτ/τ , and show that this truncated EALP algorithm achieves O(1) regret except for the boundary
cases. The regret of the corresponding UCB-based version can by bounded similarly as UCB-ALP.

6 Bandits with Heterogeneous Costs

The insights obtained from unit-cost systems can also be used to design algorithms for heteroge-
neous cost systems where the cost cj,k depends on j and k. We generalize the ALP algorithm to
approximate the oracle, and adjust it to the case with unknown expected rewards. For simplicity, we
assume the context distribution is known here, while the empirical estimate can be used to replace
the actual context distribution if it is unknown, as discussed in the previous section.

With heterogeneous costs, the quality of an action k under a context j is roughly captured by its
normalized expected reward, defined as ηj,k = uj,k/cj,k. However, the agent cannot only focus
on the “best” action, i.e., k∗j = arg maxk∈A ηj,k, for context j. This is because there may exist
another action k′ such that ηj,k′ < ηj,k∗j , but uj,k′ > uj,k∗j (and of course, cj,k′ > cj,k∗j ). If
the budget allocated to context j is sufficient, then the agent may take action k′ to maximize the
expected reward. Therefore, to approximate the oracle, the ALP algorithm in this case needs to
solve an LP problem accounting for all context-action pairs with an additional constraint that only
one action can be taken under each context. By investigating the structure of ALP in this case and
the concentration of the remaining budget, we show that ALP achieves O(1) regret in non-boundary
cases, and O(

√
T ) regret in boundary cases. Then, an ε-First ALP algorithm is proposed for the

unknown statistics case where an exploration stage is implemented first and then an exploitation
stage is implemented according to ALP.

7 Conclusion

In this paper, we study computationally-efficient algorithms that achieve logarithmic or sublinear
regret for constrained contextual bandits. Under simplified yet practical assumptions, we show
that the close interactions between the information acquisition and decision making in constrained
contextual bandits can be decoupled by adaptive linear relaxation. When the system statistics are
known, the ALP approximation achieves near-optimal performance, while tolerating certain estima-
tion errors of system parameters. When the expected rewards are unknown, the proposed UCB-ALP
algorithm leverages the advantages of ALP and UCB, and achieves O(log T ) regret except for cer-
tain boundary cases, where it achieves O(

√
T ) regret. Our study provides an efficient approach of

dealing with the challenges introduced by budget constraints and could potentially be extended to
more general constrained contextual bandits.

Acknowledgements: This research was supported in part by NSF Grants CCF-1423542, CNS-
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Appendices

A Proof of Lemma 1: Upper Bound

We prove Lemma 1 by comparing Û(T,B) with the expected total reward under any feasible algo-
rithm satisfying the budget constraint.

Let Cj be the number of rounds that an action is taken under context j for any realization under
any feasible algorithm with known statistics. Let pj = E[Cj ]/(πjT ), which satisfies 0 ≤ pj ≤
1. Then the expected total reward becomes

∑J
j=1 u

∗
jE[Cj ] = T

∑J
j=1 pjπju

∗
j . Further, because

the hard budget constraint is met for all realizations, i.e.,
∑J
j=1 Cj ≤ B, we have

∑
j=1 pjπj =∑

j E[Cj ]/T ≤ B/T . Thus, the expected total reward obtained by any feasible algorithm, including

the oracle algorithm, is upper bounded by Û(T,B).

B Proof of Theorem 1: Near Optimality of ALP

B.1 Proof of Lemma 2: Evolution of Remaining Budget

The evolution of the remaining budget bτ is critical for evaluating the expected total reward under
ALP. We prove Lemma 2 by casting ALP to a sampling problem without replacement.

From the implementation of ALP, we can verify that when the remaining time is τ and remaining
budget is bτ = b, the system consumes one unit of budget with probability b/τ , and consumes
nothing with probability 1 − b/τ . Thus, when focusing on the remaining budget, we can view the
ALP algorithm as a sampling problem without replacement as follows.

Mapping ALP to Sampling without Replacement: Consider T balls in an urn, including B black
balls and T − B white balls. Running ALP is equivalent to randomly drawing a ball without re-
placement. Taking an action At > 0 is equivalent to drawing a black ball and taking the dummy
action At = 0 is equivalent to drawing a white ball. The event that bτ = b is equivalent to the event
that the agent draws T − τ balls, and the number of drawn black balls is B − b.
Based on the above mapping and using its symmetric property, we know that bτ follows the hyper-
geometric distribution [23] and complete the proof of Lemma 2.

B.2 Part 1: Non-Boundary Cases

According to Lemma 1, Û(T,B) is an upper bound on the total expected reward. Thus,

U∗(T,B)− UALP(T,B) ≤ Û(T,B)− UALP(T,B) =

T∑
τ=1

{
v(ρ)− E[v(bτ/τ)]

}
. (7)

To evaluate the gap between the single-round values, we define an auxiliary function ṽ(b/τ) for a
given ρ as follows:

ṽ(b/τ) =

j̃(ρ)∑
j=1

πju
∗
j + πj̃(ρ)+1p̃j̃(ρ)+1(b/τ)u∗

j̃(ρ)+1
, (8)

where

p̃j̃(ρ)+1(b/τ) =
b/τ −

∑j̃(ρ)
j=1 πj

πj̃(ρ)+1

.

This auxiliary function bridges the gap of single-round values, v(ρ) and E[v(bτ/τ)], as follows:

First, we note that ṽ(b/τ) uses the same threshold j̃(ρ) as in v(ρ). The only difference between
ṽ(b/τ) and v(ρ) is that ṽ(b/τ) uses the instantaneous average budget b/τ instead of the fixed average
budget ρ. Considering all possible b’s and according to Lemma 2, we have

v(ρ)− E[ṽ(bτ/τ)] =
{
ρ− E[bτ/τ ]

}
u∗
j̃(ρ)+1

= 0. (9)
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Second, compared with v(b/τ), the difference of the auxiliary function ṽ(b/τ) comes from the
event of j̃(b/τ) 6= j̃(ρ), which only occurs when b/τ < qj̃(ρ) or b/τ > qj̃(ρ)+1. Because ρ 6= qj ,
1 ≤ j ≤ J − 1, there exists a positive number δ = min{ρ − qj̃(ρ), qj̃(ρ)+1 − ρ} such that for all
ρ− δ ≤ ρ′ < ρ+ δ, the threshold under ρ′ is the same as that under ρ, i.e., j̃(ρ′) = j̃(ρ). Therefore,
for all b satisfying ρ− δ ≤ b/τ ≤ ρ+ δ, v(b/τ) = ṽ(b/τ).

If b/τ < ρ− δ, then

ṽ(b/τ)− v(b/τ)

=

[ j̃(ρ)∑
j=j̃(b/τ)+1

πju
∗
j +

( b
τ
− qj̃(ρ)

)
u∗
j̃(ρ)+1

]
−
( b
τ
− qj̃(b/τ)

)
u∗
j̃(b/τ)+1

≤
[
u∗1

j̃(ρ)∑
j=j̃(b/τ)+1

πj +
( b
τ
− qj̃(ρ)

)
u∗
j̃(ρ)+1

]
−
( b
τ
− qj̃(b/τ)

)
u∗
j̃(ρ)+1

≤ (u∗1 − u∗j̃(ρ)+1
)

j̃(ρ)∑
j=j̃(b/τ)+1

πj

≤ qj̃(ρ)(u
∗
1 − u∗J). (10)

Similarly, if b/τ > ρ+ δ, then

ṽ(b/τ)− v(b/τ)

=
( b
τ
− qj̃(ρ)

)
u∗
j̃(ρ)+1

−
[ j̃(b/τ)∑
j=j̃(ρ)+1

πju
∗
j +

( b
τ
− qj̃(b/τ)

)
u∗
j̃(b/τ)+1

]
≤ (1− qj̃(ρ))(u

∗
1 − u∗J). (11)

Summing all the above three cases (ρ− δ ≤ b/τ ≤ ρ+ δ, b/τ < ρ− δ, and b/τ > ρ+ δ) and using
Eq. (9), we have

v(ρ)− E[v(bτ/τ)]

= v(ρ)− E[ṽ(bτ/τ)] + E[ṽ(bτ/τ)− v(bτ/τ)]

=
∑

b<τ(ρ−δ) or b>τ(ρ+δ)

P(bτ = b)[ṽ(b/τ)− v(b/τ)]

≤ qj̃(ρ)(u
∗
1 − u∗J)P{bτ < τ(ρ− δ)}

+(1− qj̃(ρ))(u
∗
1 − u∗J)P{bτ > τ(ρ+ δ)}

≤ (u∗1 − u∗J)e−2δ2τ . (12)

Part 1 of Theorem 1 then follows by substituting Eq. (12) into Eq. (7).

B.3 Part 2: Boundary Cases

The proof of Part 2 of Theorem 1 is similar to that of Part 1. Specifically, when ρ = qj̃(ρ), let
δ′ = min{ρ− qj̃(ρ)−1, qj̃(ρ)+1 − ρ}. From the proof of Part 1, we know that

v(ρ)− E[ṽ(bτ/τ)] = 0. (13)

In addition, if ρ ≤ b/τ ≤ ρ+ δ′, then j̃(b/τ) = j̃(ρ) and v(b/τ) = ṽ(b/τ).
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If ρ− δ′ ≤ b/τ < ρ, we have j̃(b/τ) = j̃(ρ)− 1, and

ṽ(b/τ)− v(b/τ)

= πj̃(ρ)u
∗
j̃(ρ)

+ (
b

τ
− qj̃(ρ))u

∗
j̃(ρ)+1

− (
b

τ
− qj̃(b/τ))u

∗
j̃(b/τ)+1

= (πj̃(ρ) + qj̃(ρ)−1 −
b

τ
)u∗
j̃(ρ)

+ (
b

τ
− qj̃(ρ))u

∗
j̃(ρ)+1

= (ρ− b

τ
)u∗
j̃(ρ)

+ (
b

τ
− ρ)u∗

j̃(ρ)+1

≤
∣∣ b
τ
− ρ
∣∣(u∗1 − u∗J). (14)

Moreover, we still have (10) if b/τ < ρ− δ′, and (11) if b/τ > ρ+ δ′.

Compared with the proof of Part 1, we know that the only difference relies on the case of ρ − δ′ ≤
b/τ < ρ. Thus, summing all the above cases and using the results in the analysis of Part 1, we have

E[ṽ(bτ/τ)− v(bτ/τ)] ≤ (u∗1 − u∗J)
{
E[|bτ/τ − ρ|] + e−2(δ′)2τ

}
≤ (u∗1 − u∗J)

[√Var(bτ )

τ2
+ e−2(δ′)2τ

]
.

Consequently,

U∗(T,B)− UALP(T,B) ≤ Û(T,B)− UALP(T,B)

=

T∑
τ=1

{
v(ρ)− E[v(bτ/τ)]}

=

T∑
τ=1

{
v(ρ)− E[ṽ(bτ/τ)]

}
+

T∑
τ=1

E[ṽ(bτ/τ)− v(bτ/τ)]

≤ (u∗1 − u∗J)

T∑
τ=1

[√Var(bτ )

τ2
+ e−2(δ′)2τ

]
= (u∗1 − u∗J)

T∑
τ=1

[√ (T − τ)ρ(1− ρ)

(T − 1)τ
+ e−2(δ′)2τ

]
≤ (u∗1 − u∗J)

√
ρ(1− ρ)

T∑
τ=1

√
1

τ
+

u∗1 − u∗J
1− e−2(δ′)2

≤ 2
√
ρ(1− ρ)(u∗1 − u∗J)

√
T +

u∗1 − u∗J
1− e−2(δ′)2

.

C Proof of Theorem 2: Regret of UCB-ALP

We bound the regret of UCB-ALP by comparing its performance with the benchmark Û(T,B). To
obtain this upper bound, we first partition the regret according to the sources and then bound each
part of the regret, respectively.

Before presenting the proof, we first introduce a notation that will be widely used later. For contexts
j and j′, and an action k, let ∆

(j′)
j,k be the difference between the expected reward for action k under

context j and the highest expected reward under context j′, i.e., ∆
(j′)
j,k = u∗j′ − uj,k. When j′ = j,

∆
(j)
j,k is the difference of expected reward between the suboptimal action k and the best action under

context j.
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C.1 Step 1: Partition the Regret

Note that the total reward of the oracle solution U∗(T,B) ≤ Û(T,B). Thus, we can bound the
regret of UCB-ALP by comparing its total expected reward UUCB−ALP(T,B) with Û(T,B), i.e.,

RUCB−ALP(T,B)

= U∗(T,B)− UUCB−ALP(T,B)

≤ Û(T,B)− UUCB−ALP(T,B)

= Tv(ρ)−
J∑
j=1

K∑
k=1

uj,kE[Cj,k(T )]. (15)

The total expected reward of UCB-ALP can be further divided as

UUCB−ALP(T,B)

=

J∑
j=1

u∗jE
[ K∑
k=1

Cj,k(T )
]
−

J∑
j=1

K∑
k=1

∆
(j)
j,kE[Cj,k(T )]

=

J∑
j=1

u∗jE
[
Cj(T )

]
−

J∑
j=1

K∑
k=1

∆
(j)
j,kE[Cj,k(T )],

where Cj(T ) =
∑K
k=1 Cj,k(T ) is the total number that actions have been taken under context j up

to round T .

Consequently, the regret of UCB-ALP can be bounded as

RUCB−ALP(T,B) ≤ R(a)
UCB−ALP(T,B) +R

(c)
UCB−ALP(T,B), (16)

where

R
(a)
UCB−ALP(T,B) =

J∑
j=1

K∑
k=1

∆
(j)
j,kE[Cj,k(T )],

and

R
(c)
UCB−ALP(T,B) =

T∑
τ=1

E
[
v(ρ)−

J∑
j=1

p̂j(bτ/τ)πju
∗
j

]
.

Eq. (16) clearly shows that the regret of the UCB-ALP algorithm can be divided into two parts: the
first partR(a)

UCB−ALP(T,B) is from taking suboptimal actions under a given context; the second part

R
(c)
UCB−ALP(T,B) is from the deviation of remaining budget bτ and context ranking errors.

C.2 Step 2: Bound Each Part of Regret

C.2.1 Step 2.1: Bound of R(a)
UCB-ALP(T,B)

For the regret from action ranking errors, we show in Lemma 4 that R(a)
UCB-ALP(T,B) = O(log T )

using similar techniques for traditional UCB methods [25].

Lemma 4. Under UCB-ALP, the regret due to the action ranking errors within context j satisfies

R
(a)
UCB-ALP(T,B)

≤
J∑
j=1

∑
k 6=k∗j

[( 2

∆
(j)
j,k

+ 2∆
(j)
j,k

)
log T + 2∆

(j)
j,k

]
. (17)
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Proof. For k 6= k∗j , let `(j)j,k = 2 log T

(∆
(j)
j,k)2

. According to Lemma 3, we have

E[Cj,k(T )]

≤ `
(j)
j,k +

T∑
t=1

P{Xt = j, At = k,Cj,k(t− 1) ≥ `(j)j,k}

≤ `
(j)
j,k +

T∑
t=1

P{Xt = j, At = k|Cj,k(t− 1) ≥ `(j)j,k}

≤ `
(j)
j,k +

T∑
t=1

2t−1.

The conclusion then follows by the facts that
∑T
t=1 t

−1 ≤ 1 + log T and R
(a)
UCB-ALP(T,B) =∑J

j=1

∑
k 6=k∗j

∆
(j)
j,kE[Cj,k(T )].

C.2.2 Step 2.2: Bound of R(c)
UCB-ALP(T,B)

Next, we show that the second part R(c)
UCB−ALP(T,B) = O(log T ). We first present the proof for

the non-boundary cases, and discuss the boundary cases later.

Note that we have separately considered the regret due to action ranking errors in R(a)
UCB-ALP(T,B)

and we only need to consider the best action of each context for R(c)
UCB-ALP(T,B). Thus, we define

v∗UCB−ALP(τ, bτ ) as follows:

v∗UCB−ALP(τ, bτ ) =

J∑
j=1

p̃j(bτ/τ)πju
∗
j .

Let ∆vτ be the single-round difference between UCB-ALP and the upper bound, i.e.,

∆vτ = v(ρ)− v∗UCB−ALP(τ, bτ ).

Then R(c)
UCB−ALP(T,B) =

∑1
τ=T E[∆vτ ]. We study the expectation E[∆vτ ] under all possible

situations. For a random variable X and event E , let E[X, E ] = E[X1(E)]. Then, the expectation
E[X] = E[X, E ] + E[X, qE ]. Therefore,

E[∆vτ ] =

2∑
s=0

E[∆vτ , Erank,s(T − τ + 1)]. (18)

We first consider the case of s = 0 and convert the expectation value into other two cases. Consid-
ering all possible value of bτ , we have

E[∆vτ , Erank,0(T − τ + 1)]

=

B∑
b=0

E[∆vτ |bτ = b, Erank,0(T − τ + 1)]P{bτ = b, Erank,0(T − τ + 1)}. (19)

For the probability, we have

P{bτ = b, Erank,0(T − τ + 1)} = P{bτ = b} −
2∑
s=1

P{bτ = b, Erank,s(T − τ + 1)}. (20)

For the conditioned expectation, we note that Erank,0(T − τ + 1) provides a roughly correct context
rank in the sense that if bτ/τ is close to ρ, then v∗UCB−ALP(τ, bτ ) = v(bτ/τ), where v(bτ/τ) is the
single round value with the correct context rank. Specifically, letting δ = 1

2 min{ρ−qj̃(ρ), qj̃(ρ)+1−
ρ}. If b ∈ [ρ− δ, ρ+ δ], then v∗UCB−ALP(τ, b) = v(b/τ), and thus,

E[∆vτ |bτ = b, Erank,0(T − τ + 1)] = v(ρ)− v(b/τ). (21)
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Combining Eqs. (19) ∼ (21) and using the facts that v(ρ) ≥ 0 and v∗UCB−ALP(τ, b) ≥ 0, we have

E[∆vτ , Erank,0(T − τ + 1)]

≤ v(ρ)−
B∑
b=0

v(b/τ)P{bτ = b}

+

2∑
s=1

B∑
b=0

v(b/τ)P{bτ = b, Erank,s(T − τ + 1)}

+
∑

b/∈[ρ−δ,ρ+δ]

v(b/τ)P{bτ = b, Erank,0(T − τ + 1)}. (22)

Recall that under UCB-ALP, the remaining budget bτ follows the hypergeometric distribution. Using
the same method as the analysis of Eq. (12), we have

v(ρ)−
B∑
b=0

v(b/τ)P{bτ = b} ≤ (u∗1 − u∗J)e−2δ2τ . (23)

In addition,∑
b/∈[ρ−δ,ρ+δ]

v(b/τ)P{bτ = b, Erank,0(T − τ + 1)} ≤ ū∗
∑

b/∈[ρ−δ,ρ+δ]

P{bτ = b} ≤ 2ū∗e−2δ2τ , (24)

where ū∗ =
∑J
j=1 πju

∗
j is the expected reward without budget constraint.

Moreover,
B∑
b=0

v(b/τ)P{bτ = b, Erank,s(T − τ + 1)} ≤ ū∗P{Erank,s(T − τ + 1)}, (25)

Substituting Eqs. (23) ∼ (25) into Eq. (22), we have

E[∆vτ , Erank,0(T − τ + 1)] ≤ [u∗1 − u∗J + 2ū∗]e−2δ2τ + ū∗
2∑
s=1

P{Erank,s(T − τ + 1)}. (26)

When the rank is wrong, i.e., 1 ≤ s ≤ 2, since ∆vτ ≤ v(ρ) under any possible ranking results, we
have

E[∆vτ , Erank,s(T − τ + 1)] ≤ v(ρ)P{Erank,s(T − τ + 1)}. (27)

Substituting Eqs. (26) and (27) into Eq. (18), we have

E[∆vτ ] ≤ [u∗1 − u∗J + 2ū∗]e−2δ2τ + [ū∗ + v(ρ)]

2∑
s=1

P{Erank,s(T − τ + 1)}.

Note that R(c)
UCB−ALP(T,B) =

∑T
τ=1 E[∆vτ ]. Thus

R
(c)
UCB−ALP(T,B) ≤ [u∗1 − u∗J + 2ū∗]e−2δ2

1− e−2δ2
+ [ū∗ + v(ρ)]

2∑
s=1

E[T (s)], (28)

where T (s) =
∑T
t=1 1(Erank,s(t)) (s = 1, 2) is the number of type-s ranking errors.

Next, we bound the expected number of context ranking errors. From Lemma 3, we know that
to obtain the correct ordering of two context-action pairs with high probability, the agent needs to
execute the suboptimal context-action pair for enough times. Unlike traditional MABs, however,
the context-action pair with the higher UCB in a round might not be executable, as the context of
that round could be different. Fortunately, the following lemma will show that if the condition that
causes the an context-action pair to be executed with a positive probability appears many times, the
context-action pair will indeed be executed proportionally with high probability.

15



Lemma 5. Assume Et’s, Êt’s are events in round t (1 ≤ t ≤ T ), satisfying P{Et|Êt,H1:t−1} =

P{Et|Êt} ≥ p > 0, where H1:t−1 is the filtration from 1 to t − 1. Let C(T ) =
∑T
t=1 1(Et) and

Ĉ(T ) =
∑T
t=1 1(Êt). Then,

P{C(T ) ≤ (p− ε)N, Ĉ(T ) ≥ N} ≤ e−2ε2N .

Proof. One may think the proof of this lemma is trivial because P{C(T ) ≤ (p − ε)N, Ĉ(T ) ≥
N} ≤ P{C(T ) ≤ (p − ε)N |Ĉ(T ) ≥ N} and we can bound the right-hand-side using Chernoff
bound. However, this is incorrect because although Et is independent of the history given Êt, the
event Êt+1 may depend on E(t).

We prove this lemma using the coupling argument. Let St = 1(Et ∩ Êt), and CS(T ) =
∑T
t=1 St.

Then, we have

P{C(T ) ≤ (p− ε)N, Ĉ(T ) ≥ N} ≤ P{CS(T ) ≤ (p− ε)N, Ĉ(T ) ≥ N}. (29)

Now, we show P{CS(T ) ≤ (p− ε)N, Ĉ(T ) ≥ N} ≤ e−2ε2N using the coupling argument.

First, generate W1,W2, . . . ,WT i.i.d. according to Bernoulli distribution with P{Wt = 1} = p.

Next, generate a sequences (V ′t , S
′
t, 1 ≤ t ≤ T ) as follows:

For each t, generate V ′t according to Bernoulli distribution with P{V ′t = 1} = P{Êt = 1|1(Êt′) =
V ′t′ ,1(Et′) = S′t′ 1 ≤ t′ ≤ t− 1}. Further, we generate S′t conditioned on the value of V ′t and Wt.
Specifically, let CV ′(t) =

∑t
t′=1 V

′
t .

1) If V ′t = 1, generate S′t conditioned on WCV ′ (t)
:

a. If WCV ′ (t)
= 1, then S′t = 1;

b. If WCV ′ (t)
= 0, then generate S′t according to Bernoulli distribution with

P{S′t = 1|WCV ′ (t)
= 0} =

P[1(Et) = 1|1(Êt) = 1]− p
1− p

.

2) If V ′t = 0, let S′t = 0.

We can verify that (V ′t , S
′
t, 1 ≤ t ≤ T ) has the same distribution as (1(Êt), St, 1 ≤ t ≤ T ). Hence,

P{CS(T ) ≤ (p− ε)N, Ĉ(T ) ≥ N} = P{
∑T
t=1 S

′
t ≤ (p− ε)N,

∑T
t=1 V

′
t ≥ N}.

On the other hand, from the generation of S′t, we have
∑T
t=1 S

′
t ≥

∑CV ′ (T )
t=1 Wt. Thus, the event

{
∑T
t=1 S

′
t ≤ (p− ε)N,

∑T
t=1 V

′
t ≥ N} implies {

∑N
t=1Wt ≤ (p− ε)N}, and

P{
T∑
t=1

S′t ≤ (p− ε)N,
T∑
t=1

V ′t ≥ N} ≤ P{
N∑
t=1

Wt ≤ (p− ε)N} ≤ e−2ε2N . (30)

The conclusion of the lemma then follows.

The following lemma bounds the expected number of context ranking errors.
Lemma 6. Given πj’s, uj,k’s and a fixed ρ ∈ (0, 1), ρ 6= qj (1 ≤ j ≤ J − 1), under the UCB-ALP
algorithm, we have

E[T (1)] ≤
j̃(ρ)∑
j=1

K∑
k=1

27 log T

2gj̃(ρ)+1[∆
(j)

j̃(ρ)+1,k
]2

+ 2Kj̃(ρ) log T +O(1),

E[T (2)] ≤
J∑

j=j̃(ρ)+2

K∑
k=1

27 log T

2gj [∆
(j̃(ρ)+1)
j,k ]2

+ 2K[J − j̃(ρ)− 1] log T +O(1),

where gj = min
{
πj ,

1
2 (ρ− qj̃(ρ)), 1

2 (qj̃(ρ)+1 − ρ)
}
.
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Proof. We only prove the conclusion for the case of s = 1 as the other case can be analyzed sim-
ilarly. From Algorithm 1, we can see that the evolution of the remaining budget also affects the
execution of the UCB-ALP algorithm. Under the assumption of known context distribution, it can
be verified that Lemma 2 holds under UCB-ALP, i.e., the remaining budget bτ follows the hyperge-
ometric distribution and has the properties described in Lemma 2. We define an event Ebudget,0(t)
as follows,

Ebudget,0(t) = {(ρ− δ)τ ≤ bτ ≤ (ρ+ δ)τ},

where δ is given by

δ =
1

2
min{ρ− qj̃(ρ), qj̃(ρ)+1 − ρ}.

According to Lemma 2, we have

P{qEbudget,0(t)} = P{bτ < (ρ− δ)τ}+ P{bτ > (ρ+ δ)τ} ≤ 2e−2δ2(T−t+1).

Back to the ranking event Erank,1(t), we have

P(Erank,1(t)) ≤ P(qEbudget,0(t)) + P(Erank,1(t) ∩ Ebudget,0(t)).

Note that the event Erank,1(t) can be divided as follow:

Erank,1(t) ⊆
⋃

1≤j≤j̃(ρ),1≤k≤K

E(j,k)
rank,1(t),

where for 1 ≤ j ≤ j̃(ρ) and 1 ≤ k ≤ K,

E(j,k)
rank,1(t) =

{
∀j′ > j̃(ρ) + 1, û∗j′(t) < û∗

j̃(ρ)+1
(t); û∗j (t) ≤ û∗j̃(ρ)+1

(t), k∗j (t) = k
}
.

Thus,

E[T (1)] =

T∑
t=1

P(Erank,1(t)) ≤ 2e−2δ2

1− e−2δ2
+

j̃(ρ)∑
j=1

K∑
k=1

E[N
(1)
j,k (T )],

(31)

where for 1 ≤ j ≤ j̃(ρ) and 1 ≤ k ≤ K,

N
(1)
j,k (t) =

t∑
t′=1

1(E(j,k)
rank,1(t′), Ebudget,0(t′)).

Let ˆ̀(j1)
j2,k

= 2 log T

gj2 (1−ε)ε2(∆
(j1)

j2,k
)2

, where gj2 = min{πj2 , δ} and ε ∈ (0, 1). Similar to the analysis of

UCB in [4], we have

E[N
(1)
j,k (T )] ≤ ˆ̀(j)

j̃(ρ)−1,k
+

T∑
t=1

P
{
E(j,k)

rank,1(t), Ebudget,0(t), N
(1)
j,k (t− 1) ≥ ˆ̀(j)

j̃(ρ)+1,k

}
. (32)

For each t in the second term, we have

P{E(j,k)
rank,1(t), Ebudget,0(t), N

(1)
j,k (t− 1) ≥ ˆ̀(j)

j̃(ρ)+1,k
}

≤ P{E(j,k)
rank,1(t), Ebudget,0(t)|Cj̃(ρ)+1,k(t− 1) ≥ gj̃(ρ)+1(1− ε)ˆ̀(j)

j̃(ρ)+1,k
}

+ P{Cj̃(ρ)+1,k(t− 1) < gj̃(ρ)+1(1− ε)ˆ̀(j)
j̃(ρ)+1,k

, N
(1)
j,k (t− 1) ≥ ˆ̀(j)

j̃(ρ)+1,k
},

where Cj̃(ρ)+1,k(t) =
∑t
t′=1 1(Xt′ = j̃(ρ) + 1, At′ = k) is the number that the context-action pair

(j̃(ρ) + 1, k) has been executed up to round t.
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For the first term, we note that the event {E(j,k)
rank,1(t), Ebudget,0(t)} implies that ûj,k∗j (t) ≤

ûj̃(ρ)+1,k(t). Because uj,k∗j > uj̃(ρ)+1,k for all j ≤ j̃(ρ) and k, according to Lemma 3, we have

P{E(j,k)
rank,1(t), Ebudget,0(t)|Cj̃(ρ)+1,k(t− 1) ≥ gj̃(ρ)+1(1− ε)ˆ̀(j)

j̃(ρ)+1,k
}

≤ P{ûj,k∗j (t) ≤ ûj̃(ρ)+1,k(t)|Cj̃(ρ)+1,k(t− 1) ≥ gj̃(ρ)+1(1− ε)ˆ̀(j)
j̃(ρ)+1,k

}

≤ 2t−1. (33)

For the second term, we note that since context j̃(ρ)+1 arrives with probability πj̃(ρ)+1 independent
of the observations, we have

P
{
Xt = j̃(ρ) + 1, At = k|E(j,k)

rank,1(t), Ebudget,0(t)
}

= min{δ, πj̃(ρ)+1} = gj̃(ρ)+1.

Thus, according to Lemma 5, we have

P{Cj̃(ρ)+1,k(t− 1) < gj̃(ρ)+1(1− ε)ˆ̀(j)
j̃(ρ)+1,k

, N
(1)
j,k (t− 1) ≥ ˆ̀(j)

j̃(ρ)+1,k
} ≤ e−2ε2 ˆ̀(j)

j̃(ρ)+1,k ≤ T−4.

(34)

Substituting Eqs. (33) and (34) into Eq. (32), we have

E[N
(1)
j,k (T )] ≤ ˆ̀(j)

j̃(ρ)+1,k
+

T∑
t=1

(2t−1 + T−4) ≤ ˆ̀(j)
j̃(ρ)+1,k

+ 2 log T + 2 + T−3. (35)

Substituting Eq. (35) to Eq. (31) and letting ε = 2/3 in ˆ̀(j)
j̃(ρ)−1,k

, we have

E[T (1)] ≤ 2e−2δ2

1− e−2δ2
+

j̃(ρ)∑
j=1

K∑
k=1

ˆ̀(j)
j̃(ρ)+1,k

+ 2Kj̃(ρ) log T +O(1)

≤
j̃(ρ)∑
j=1

K∑
k=1

27 log T

2gj̃(ρ)+1(∆
(j)

j̃(ρ)+1,k
)2

+ 2Kj̃(ρ) log T +O(1). (36)

Combining Lemma 4, Lemma 6, and Eq. (28), we have

lim sup
T→∞

RUCB−ALP(T,B)

log T
≤ Θ(a) + Θ

(c)
nb ,

where

Θ(a) =

J∑
j=1

∑
k 6=k∗j

( 2

∆
(j)
j,k

+ 2∆
(j)
j,k

)
,

Θ
(c)
nb = [ū∗ + v(ρ)]

{ j̃(ρ)∑
j=1

K∑
k=1

27

2gj̃(ρ)+1[∆
(j)

j̃(ρ)+1,k
]2

+

J∑
j=j̃(ρ)+2

K∑
k=1

27

2gj [∆
(j̃(ρ)+1)
j,k ]2

+ 2KJ

}
.

This completes the proof of Part 1 in Theorem 2.

Next, we discuss the bound of R(c)
UCB−ALP(T,B) for the boundary cases. The analysis is similar

to the non-boundary cases with slight modification on the threshold.

We note that fundamentally, the context j̃(ρ) + 1 for ρ 6= qj and the context j̃(ρ) for ρ = qj are
both the minimum context with positive probability in the static LP problem. Thus, we can define
the context ranking events Erank,s(t) (0 ≤ s ≤ 2) similar to the analysis of Part 1, with j̃(ρ) + 1

replaced by j̃(ρ). Then, we have

R
(c)
UCB−ALP(T,B) =

T∑
τ=1

E[∆vτ ],
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where

E[∆vτ ] =

2∑
s=0

E[∆vτ , Erank,s(T − τ + 1)].

For the case of s = 0,

E[∆vτ , Erank,0(T − τ + 1)] =

B∑
b=0

E[∆vτ |bτ = b, Erank,0(T − τ + 1)]P{bτ = b, Erank,0(T − τ + 1)}.

When b/τ ∈ [ρ − δ, ρ + δ] and Erank,0(T − τ + 1) occurs, we have ∆vτ ≤ (u∗1 − u∗J)|ρ − b/τ |.
Moreover, ∆vτ ≤ v(ρ) under any condition. Thus,

E[∆vτ , Erank,0(T − τ + 1)]

≤ u∗1E[|bτ/τ − ρ|] + v(ρ)
∑

b/∈[ρ−δ,ρ+δ]

P{bτ = b}

≤ u∗1

√
Var(bτ )

τ2
+ 2v(ρ)e−2δ2τ .

For the other cases of s = 1, 2, we have
E[∆vτ , Erank,s(T − τ + 1)] ≤ v(ρ)P{Erank,s(T − τ + 1)}.

On the other hand, we extend Lemma 6 to the boundary cases:

lim sup
T→∞

E[T (1)]

log T
≤
∑
j<j̃(ρ)

K∑
k=1

27

2gj̃(ρ)[∆
(j)

j̃(ρ),k
]2

+ 2K[j̃(ρ)− 1],

lim sup
T→∞

E[T (2)]

log T
≤

∑
j≥j̃(ρ)+1

K∑
k=1

27

2gj [∆
(j̃(ρ))
j,k ]2

+ 2K[J − j̃(ρ)],

where

gj = min
{
πj ,

1

2
(ρ− qj̃(ρ)−1),

1

2
(qj̃(ρ)+1 − ρ)

}
.

Consequently, we can bound R(c)
UCB−ALP(T,B) by summing over the entire horizon and using the

properties of T (1) and T (2). The conclusion of Part 2 of Theorem 2 then follows by adding the
bound of R(a)

UCB−ALP(T,B) and R(c)
UCB−ALP(T,B).

D Two-Context Systems with Unit-Cost

As a special case, the oracle algorithm can be obtained for two-context systems with unit costs.
When the context distribution and expected rewards are unknown, the oracle algorithm can be com-
bined with the UCB method to achieve logarithmic regret under both boundary and non-boundary
cases.

D.1 Oracle Algorithm: Procrastinate-for-the-Better-context

When there are only two contexts, the oracle algorithm is trivial. Under the unit-cost assumption,
skipping the worse context does not waste any opportunities if bτ < τ . Thus, the agent can reserve
budget for the better context, unless there is sufficient budget; i.e., we have the following algorithm:

Procrastinate-for-the-Better (PB): If Xt = 1 and bτ > 0, or if bτ ≥ τ , take action At = k∗Xt ;
otherwise, At = 0.

We can verify that the above PB algorithm achieves the highest expected reward for any realization
of the context arrival process. Thus, the PB algorithm is optimal in two-context systems. We note
that the PB algorithm does not need to know the context distribution and only requires the ordering of
the expected rewards. This property allows us to extend it to the case where the context distribution
or expected rewards are unknown.
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D.2 UCB-PB: Logarithmic Regret Algorithm for Two-Context Bandits with Unit-Cost

When the context distribution and expected rewards are unknown, we propose the UCB-based
Procrastinate-for-the-Better (UCB-PB) algorithm for solving the constrained contextual bandit prob-
lem with two contexts and unit costs.

Algorithm 2 UCB-PB
Input: Time-horizon T , budget B;
Init: Remaining time τ = T , remaining budget b = B;

Cj,k(0) = 0, ūj,k(0) = 0, ûj,k(0) = 1, for all j ∈ X
and k ∈ A; û∗j (0) = 1 for all j ∈ X ;

for t = 1 to T do
k∗j (t)← arg maxk ûj,k(t), ∀j;
û∗j (t)← û∗j,k∗j (t)(t), ∀j;
j∗(t)← arg maxj û

∗
j (t);

if b ≥ τ or (0 < b < τ and Xt = j∗(t)) then
Take action k∗Xt(t);

end if
Update τ , b, Cj,k(t), ūj,k(t), and ûj,k(t);

end for

As shown in Algorithm 2, the agent maintains UCB estimates ûj,k(t)’s for the expected rewards
of all context-action pairs. In each round, the agent implements the PB algorithm based on these
estimates.

Next, we study the regret of the UCB-PB algorithm. We show that the UCB-PB algorithm achieves
logarithmic regret for any given ρ ∈ (0, 1).

Theorem 3. For a constrained contextual bandit with unit-cost and two contexts, the UCB-PB
algorithm achieves logarithmic regret as T goes to infinity, i.e.,

lim sup
T→∞

RUCB-PB(T,B)

log T
≤

K∑
k=1

[
27

2π2∆
(1)
2,k

+ 2∆
(1)
2,k

]
+

2∑
j=1

∑
k 6=k∗j

[
2

∆
(j)
j,k

+ 2∆
(j)
j,k

]
.

Proof. The proof of Theorem 3 is similar to that of Theorem 2, while the analysis on the error
events is even simpler. Note that the regret is defined as the difference between the expected total
rewards achieved by the UCB-PB algorithm and the oracle algorithm. For the oracle algorithm, let
C∗j (t) =

∑t
t′=1 1{Xt′ = j, At′ = k∗j } be the number of times that the context-action pair (j, k∗j )

has been executed up to round t. For the UCB-PB algorithm, Recall that Cj,k(t) =
∑t
t′=1 1{Xt′ =

j, At′ = kj} is the number of times that the context-action pair (j, k) has been executed up to round
t, and let Cj(t) =

∑K
k=1 Cj,k(t). Then the regret of UCB-PB can be expressed as

RUCB-PB(T,B)

=

J∑
j=1

u∗jE[C∗j (T )]−
J∑
j=1

K∑
k=1

uj,kE[Cj,k(T )]

=

J∑
j=1

K∑
k=1

∆
(j)
j,kE[Cj,k(T )] +

J∑
j=1

u∗jE
[
C∗j (T )−

K∑
k=1

Cj,k(T )
]

= R
(a)
UCB-PB(T,B) +R

(c)
UCB-PB(T,B), (37)

where R(a)
UCB-PB(T,B) is the regret due to action-ranking errors, i.e.,

R
(a)
UCB-PB(T,B) =

J∑
j=1

∑
k 6=k∗j

∆
(j)
j,kE[Cj,k(T )],
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and R(c)
UCB-PB(T,B) is the regret due to context-ranking errors, i.e.,

R
(c)
UCB-PB(T,B) =

J∑
j=1

u∗jE
[
C∗j (T )−

K∑
k=1

Cj,k(T )
]

= (u∗1 − u∗2)E
[
C∗1 (T )− C1(T )

]
. (38)

The expression of R(c)
UCB-PB(T,B) uses the fact that both the oracle algorithm and UCB-PB will

exhaust their entire budget, i.e.,
∑J
j=1 C

∗
j (T ) =

∑J
j=1 Cj(T ) = B.

For R(a)
UCB-PB(T,B), we note that Lemma 4 also holds under UCB-PB, i.e.,

R
(a)
UCB-PB(T,B) ≤

J∑
j=1

∑
k 6=k∗j

[( 2

∆
(j)
j,k

+ 2∆
(j)
j,k

)
log T + 2∆

(j)
j,k

]
. (39)

Next, we show that R(c)
UCB-PB(T,B) is also of order O(log T ). Let (X̂t, Ât) be the context-action

pair that has the highest UCB in round t. Moreover, let Ĉj(t) be the number of events that context
j has the maximum index up to round t, i.e., Ĉj(t) =

∑t
t′=1 1(X̂t = j), and Ĉj,k(t) be the number

of events that the context-action pair (j, k) has the highest UCB up to round t, i.e., Ĉj,k(t) =∑t
t′=1 1(X̂t = j, Ât = k). We show that the UCB-PB algorithm mistakes the suboptimal context

as the optimal context for at most O(log T ) times, i.e., E[Ĉ2(T )] = O(log T ), and then E
[
C∗1 (T )−

C1(T )
]
≤ E[Ĉ2(T )] = O(log T ).

Specifically, consider the suboptimal context j = 2. For 1 ≤ k ≤ K, we have

E
[
Ĉ2,k(T )

]
≤ ˆ̀(1)

2,k +

T∑
t=1

P{X̂t = 2, Ât = k, bτ > 0, Ĉ2,k(t− 1) ≥ ˆ̀(1)
2,k},

where ˆ̀(1)
2,k = 2 log T

π2(1−ε)ε2(∆
(1)
2,k)2

, and ε ∈ (0, 1).

Based on Lemma 5, we have

P{C2,k(t− 1) < π2(1− ε)ˆ̀(1)
2,k, bτ > 0, Ĉ2,k(t− 1) ≥ ˆ̀(1)

2,k} ≤ e
−2ε2 ˆ̀

2,k ≤ T−4. (40)

Thus,

P{X̂t = 2, Ât = k, Ĉ2,k(t− 1) ≥ ˆ̀(1)
2,k, bτ > 0}

≤ P{X̂t = 2, Ât = k,C2,k(t− 1) ≥ π2(1− ε)ˆ̀(1)
2,k}

+ P{C2,k(t− 1) < π2(1− ε)ˆ̀(1)
2,k, Ĉ2,k(t− 1) ≥ ˆ̀(1)

2,k, bτ > 0}

≤ P{û∗2,k(t) > û1,k∗1
(t)|C2,k(t− 1) ≥ π2(1− ε)ˆ̀(1)

2,k}

+ P{C2,k(t− 1) < π2(1− ε)ˆ̀(1)
2,k, Ĉ2,k(t− 1) ≥ ˆ̀(1)

2,k, bτ > 0}
≤ 2t−1 + T−4,

where the last inequality results from Lemma 3 (note that for j = 2, û2,k(t) < û1,k∗1
(t) ≤ û∗1(t))

and Eq. (40).

Summing over all actions, we have

E[Ĉ2(T )] =

K∑
k=1

E
[
Ĉ2,k(T )

]
≤

K∑
k=1

ˆ̀(1)
2,k +

T∑
t=1

K∑
k=1

(2t−1 + T−4)

=

K∑
k=1

[
2

π2(1− ε)ε2(∆
(1)
2,k)2

+ 2

]
log T +O(1).
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Consequently,

E[C∗1 (T )− C1(T )] ≤
K∑
k=1

[
2

π2(1− ε)ε2(∆
(1)
2,k)2

+ 2

]
log T +O(1)

=

K∑
k=1

[
27

2π2(∆
(1)
2,k)2

+ 2

]
log T +O(1). (41)

The last equality is obtained by letting ε = 2/3. Combining Eqs. (39), (38), and (41), and using the
fact that u∗1 − u∗2 ≤ u∗1 − u2,k for all k, we can obtain the conclusion of Theorem 3.

E Constrained Contextual Bandits with Unknown Context Distribution

In this section, we relax the assumption of known context distribution and study unit-cost systems
with unknown context distribution. Since the arrival of contexts is independent of the actions taken
by the agent. a natural idea is to implement the ALP or UCB-ALP algorithm based on the empirical
distribution as follows:

EALP and UCB-EALP Algorithms: the agent maintains the empirical distribution of the contexts,
denoted by π̂t = (π̂1,t, π̂2,t, . . . , π̂J,t), where π̂j,t = 1

t

∑t
t′=1 1(Xt′ = j). In each round, the agent

executes the ALP (when the expected rewards are known) or UCB-ALP (when the expected rewards
are unknown) algorithms with the context distribution π in LPτ,b replaced by π̂t. These algorithms
are referred to as Empirical ALP (EALP) and UCB-EALP, respectively.

As we can see from the numerical simulations in Appendix G, the above EALP and UCB-EALP
algorithms have similar performance as ALP and UCB-ALP, respectively. However, the regret anal-
ysis for these algorithms is challenging because the empirical distribution introduces complex tem-
poral dependency since the empirical distribution depends on the context arrivals in all the past
rounds, which makes it difficult to analyze the evolution of the remaining budget. Thus, we focus on
the non-boundary cases and consider truncated version of EALP and UCB-EALP. Specifically, we
study algorithms that stop updating the empirical distribution from the T1-th (will be defined later)
round and use the fixed estimate π̂T1

for the remaining rounds, which are referred to as EALP2 (as
shown in Algorithm 3) and UCB-EALP2, respectively. We focus on the EALP2 algorithm for the
case where the expected rewards are known, while the properties of UCB-EALP2 can be obtained
by similar techniques in the analysis of UCB-ALP combined with the properties of EALP2.

Algorithm 3 EALP2
Input: Time horizon T , budget B, learning stage length T1, and expected rewards u∗j ’s;
Init: τ = T ; b = B; π̂j,0 = 0, ∀j;
for t = 1 to T do

if t ≤ T1 then
π̂j,t ← (t−1)π̂j,t−1+1(Xt=j)

t , ∀j;
end if
if b > 0 then

Obtain the probabilities pj(b/τ)’s by solving LPτ,b with π replaced by π̂t.
Take action k∗Xt with probability pXt(b/τ).

end if
end for

Now we show that for a sufficiently large T and an appropriate chosen T1, the EALP2 algorithm
achieves similar performance as ALP in the non-boundary cases. Let δ = min{qj̃(ρ)+1−ρ, ρ−qj̃(ρ)}
be the gap between ρ and the boundaries. The following theorem shows that EALP2 achieves O(1)
regret with appropriately chosen T and T1.

Theorem 4. Given a fixed ρ ∈ (0, 1), ρ 6= qj , j = 1, 2, . . . , J − 1. If T1 = 16J2 log3 T/δ2 and T
satisfies log3 T/T ≤ δ3/(64J2), then the regret of EALP2 satisfies REALP2(T,B) = O(1).

Note that here we assume δ is known for the simplicity of presentation. When considering practical
scenarios where δ is unknown, we can obtain a lower confidence bound of δ as follows. At round
t, let q̂j,t =

∑j
j′=1 π̂j,t be the empirical estimate of the cumulative probability. Further, let j̃′t(ρ) =
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max{j : q̂j,t ≤ ρ} be the threshold under the empirical estimate. Let δ̂t = min{q̂j̃′t(ρ)+1 − ρ, ρ −
q̂j̃′t(ρ)} and δ̌t = 1

2 δ̂t. Then δ̌t is a lower confidence bound of δ with P{δ ≥ δ̌t} ≥ 1 − e−2δ̌2t t.

We choose T1 which is the smallest t such that e−2δ̌2t t ≤ 1
T 2 and t ≥ 16J2 log3 T/δ̌2

t . Then the
following analysis holds, while the regret due to the event that δ ≥ δ̌t will be O(1). Moreover, such
a t will appear with high probability after 64J2 log3 T/δ2 rounds for the non-boundary cases, and
not appear with high probability for the boundary cases.

Similar to the non-boundary cases in Theorem 1, the key idea of proving Theorem 4 is to show
that under EALP2, the average remaining budget bτ/τ will not cross the boundaries with high
probability. To achieve this, we examine the expectation of bτ/τ and its concentration properties
under EALP2.

Step 1: Estimation error of π̂T1 . Let α = δ/(4J log T ). According to Hoeffding-Chernoff bound,
we have

P{|π̂j,T1
− πj | ≤ α,∀j} ≥ 1− 2J

T 2
. (42)

Step 2: Bound on the expectation of bτ/τ .
Lemma 7. Assume |π̂j,T1

− πj | ≤ α for all j. Then, for all T1 ≤ t ≤ T , the expectation of the
average remaining budget satisfies

|E[bτ/τ ]− ρ| ≤ δ

2
, (43)

where τ = T − t+ 1.

Proof. First, we note that the average remaining budget bτ/τ is close to the initial value ρ at round
T1, because we can verify that for all t ≤ T1,

ρ− δ

4
≤ B − T1

T − T1 + 1
≤ bτ

τ
≤ B

T − T1 + 1
≤ ρ+

δ

4
. (44)

Now we show by mathematical induction that, if |π̂j,T1
− πj | ≤ α for all j, then |E[bτ/τ ] − ρ| ≤

Jα
∑τ
τ ′=T−T1+1

1
τ ′ + δ

4 for τ ≤ T − T1 + 1 (i.e., t ≥ T1).

Specifically, for t = T1, we have
∣∣E[

bT−T1+1

T−T1+1 ]−ρ
∣∣ ≤ δ

4 according to Eq. (44). For any given t ≥ T1,
we have τ = T − t+ 1, and

E[bτ−1|bτ = b]

= b−
(
b/τ −

∑
j≤j̃(b/τ) π̂j,T1

π̂j̃(b/τ)+1,T1

πj̃(b/τ)+1 +
∑

j≤j̃(b/τ)

πj

)

= b− b/τ +
b/τ −

∑
j≤j̃(b/τ) π̂j,T1

π̂j̃(b/τ)+1,T1

(π̂j̃(b/τ)+1,T1
− πj̃(b/τ)+1) +

∑
j≤j̃(b/τ)

(π̂j,T1
− πj).

Note that 0 <
b/τ−

∑
j≤j̃(b/τ) π̂j,T1

π̂j̃(b/τ)+1,T1

< 1. Thus,
∣∣E[bτ−1|bτ = b] − b(τ−1)

τ

∣∣ ≤ Jα, implying that∣∣E[ bτ−1

τ−1 |bτ = b]− b
τ

∣∣ ≤ Jα
τ−1 . If

∣∣E[bτ/τ ]− ρ| ≤ Jα
∑τ
τ ′=T−T1+1

1
τ ′ + δ

4 for 2 ≤ τ ≤ T −T1 + 1,
then

∣∣E[bτ−1/(τ − 1)]− ρ| ≤ Jα
∑τ
τ ′=T−T1+1

1
τ ′ + Jα

τ−1 + δ
4 .

The conclusion of Lemma 7 then follows because |E[bτ/τ ] − ρ| ≤ Jα
∑τ
τ ′=T−T1+1

1
τ ′ + δ

4 ≤
Jα log T + δ

4 ≤
δ
2 .

Step 3: Concentration of bτ/τ . The next lemma shows the concentration of the average remaining
budget bτ/τ .
Lemma 8. Assume |π̂j,T1

− πj | ≤ α for all j. The average remaining budget bτ/τ in round
t = T − τ + 1 satisfies

P
{
|bτ
τ
− E[

bτ
τ

]| ≥ δ/4
}
≤ 2 exp

(
− δ2τ

32

)
. (45)
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To show the concentration of bτ/τ , we first use the coupling argument to show the following lemma
and then use the method of averaged bounded differences [23].
Lemma 9. Assume |π̂j,T1 − πj | ≤ α for all j. The remaining budget bτ in round t = T − τ + 1
satisfies∣∣E[bτ |Zt′−1, Zt′ = 1]− E[bτ |Zt′−1, Zt′ = 0]

∣∣ ≤ 2
( τ

T − t′
)1−σ

, T1 ≤ t′ < t. (46)

where Zt′−1 = (Z1, Z2, . . . , Zt′−1) and σ = 1−minj
πj

πj+α
.

Proof. We bound the difference by constructing a couplingM of the two conditional distributions
(·|Zt′−1, Zt′ = 1) and (·|Zt′−1, Zt′ = 0). Let ζt′+1, ζt′+2, . . . , ζT−τ and ζ ′t′+1, ζ

′
t′+2, . . . , ζ

′
T−τ

be the pair of random variables in the couplingM. We construct the coupling as follows:

Coupling: We generate the value of ζt′′ ’s and ζ ′t′′ ’s sequentially. For each t′′ > t′, let b̃T−t′′+1 =

B − 1 −
∑t′−1
s=1 Zs −

∑t′′−1
s=t′+1 ζs and b̃′T−t′′+1 = B −

∑t′−1
s=1 Zs −

∑t′′−1
s=t′+1 ζ

′
s be the remaining

budgets in round t′′ corresponding to the pair of random variables. For ζt′′ , We pick its value

randomly with distribution P{ζt′′ = 1} = h
( b̃T−t′′+1

T−t′′+1

)
and P{ζt′′ = 0} = 1 − h

( b̃T−t′′+1

T−t′′+1

)
, where

h(ρ) is the probability that one unit of budget will be consumed under EALP2 when the average
remaining budget is ρ, i.e.,

h(ρ) =
ρ−

∑
j′≤j̃(ρ) π̂j,T1

π̂j̃(ρ)+1,T1

πj̃(ρ)+1 +
∑

j′≤j̃(ρ)

πj . (47)

For ζ ′t′′ , we generate its value conditioned on ζt′′ . If b̃′T−t′′+1 = b̃T−t′′+1, then ζ ′t′′ = ζt′′ . If
b̃′T−t′′+1 = b̃T−t′′+1 + 1, then

P
{
ζ ′t′′ = ζt′′ |b̃′T−t′′+1 = b̃T−t′′+1

}
= 1,

P
{
ζ ′t′′ = 1|b̃′T−t′′+1 = b̃T−t′′+1 + 1, ζt′′ = 1

}
= 1,

P
{
ζ ′t′′ = 1|b̃′T−t′′+1 = b̃T−t′′+1 + 1, ζt′′ = 0

}
=
h
( b̃′
T−t′′+1

T−t′′+1

)
− h
( b̃T−t′′+1

T−t′′+1

)
1− h

( b̃T−t′′+1

T−t′′+1

) .

Note that according to the above construction, b̃′T−t′′+1 − b̃T−t′′+1 could only be 0 or 1. We can
verify that the marginals satisfy

(ζt′′ , t
′′ > t′) ∼ (Zt′′ , t

′′ > t′|Zt′−1, Zt′ = 1),

and

(ζ ′t′′ , t
′′ > t′) ∼ (Zt′′ , t

′′ > t′|Zt′−1, Zt′ = 0).

From the construction of the coupling, we know that b̃′τ − b̃τ = 1 if and only if ζt′′ = ζ ′t′′ for all
t′ < t′′ ≤ T − τ . Thus, ∣∣E[bτ |Zt′−1, Zt′ = 1]− E[bτ |Zt′−1, Zt′ = 0]

∣∣
= P

{
ζt′′ = ζ ′t′′ , t

′ < t′′ ≤ T − τ
}

=

T−τ∏
t′′=t′+1

P
{
ζt′′ = ζ ′t′′ |ζs = ζ ′s, t

′ < s ≤ t′′ − 1
}
. (48)

We show that each term in Eq. (48) can be bounded as follows.

Lemma 10. The couplingM satisfies

P
{
ζt′′ = ζ ′t′′ |ζs = ζ ′s, t

′ < s ≤ t′′ − 1
}
≤ 1− 1− σ

T − t′′ + 1
,

where σ = 1−minj
πj

πj+α
.
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Proof. Conditioned on ζs = ζ ′s, t
′ < s ≤ t′′ − 1, we have b̃′T−t′′+1 = b̃T−t′′+1 + 1, and ζt′′ 6= ζ ′t′′

i.f.f. ζ ′t′′ = 0 and ζt′′ = 1. Thus,

P
{
ζt′′ = ζ ′t′′ |ζs = ζ ′s, t

′ < s ≤ t′′ − 1
}

= 1−
h
( b̃′
T−t′′+1

T−t′′+1

)
− h
( b̃T−t′′+1

T−t′′+1

)
1− h

( b̃T−t′′+1

T−t′′+1

) [
1− h

( b̃T−t′′+1

T − t′′ + 1

)]

= 1−
[
h
( b̃′T−t′′+1

T − t′′ + 1

)
− h
( b̃T−t′′+1

T − t′′ + 1

)]
. (49)

To prove Lemma 10, it suffices to show that for any b and τ satisfying b ≤ τ −1, we have h
(
b+1
τ

)
−

h
(
b
τ

)
≥ γ/τ , where γ = minj

πj
πj+α

.

Specifically, from the definition of h(·) in Eq. (47), we know that if j̃
(
b+1
τ

)
= j̃

(
b
τ

)
, we have

h
(
b+1
τ

)
− h
(
b
τ

)
=

π
j̃( b
τ

)

π̂
j̃( b
τ

),T1

· 1
τ ≥ γ/τ .

If j̃
(
b+1
τ

)
> j̃

(
b
τ

)
, we have b

τ −
∑
j≤j̃( bτ ) π̂j,T1

< π̂j̃( bτ )+1,T1
and b+1

τ −
∑
j≤j̃( b+1

τ ) π̂j,T1
> 0.

Therefore,

h
(b+ 1

τ

)
− h
( b
τ

)
=

j̃( b+1
τ )∑

j=j̃( bτ )+1

πj +

b+1
τ −

∑
j≤j̃( b+1

τ ) π̂j,T1

π̂j̃( b+1
τ )+1,T1

πj̃( b+1
τ )+1 −

b
τ −

∑
j≤j̃( bτ ) π̂j,T1

π̂j̃( bτ )+1,T1

πj̃( bτ )+1

=

j̃( b+1
τ )∑

j=j̃( bτ )+2

πj +
πj̃( bτ )+1

π̂j̃( bτ )+1,T1

[
π̂j̃( bτ )+1,T1

−
( b
τ
−

∑
j≤j̃( bτ )

π̂j,T1

)]
+

πj̃( b+1
τ )+1

π̂j̃( b+1
τ )+1,T1

[
b+ 1

τ
−

∑
j≤j̃( b+1

τ )

π̂j,T1

]

≥
j̃( b+1

τ )∑
j=j̃( bτ )+2

πj
π̂j,T1

π̂j,T1
+ γ

(
1

τ
−

j̃( b+1
τ )∑

j=j̃( bτ )+2

π̂j,T1

)
≥ γ/τ. (50)

Using Lemma 10, we have∣∣E[bτ |Zt′−1, Zt′ = 1]− E[bτ |Zt′−1, Zt′ = 0]
∣∣ ≤

T−τ∏
t′′=t′+1

(
1− 1− σ

T − t′′ + 1

)
(a)
=

τ + σ

T − t′
T−t′−τ−1∏

s=1

(
1 +

σ

τ + s

)
(b)

≤ τ + σ

T − t′
(T − t′ − 1

τ

)σ
≤ 2

( τ

T − t′
)1−σ

.

Equality (a) is obtained by merging the numerator of each term with the denominator of the next
term. Inequality (b) is true because σ < 1, and

log

T−t′−τ−1∏
s=1

(
1 +

σ

τ + s

)
=

T−t′−τ−1∑
s=1

log
(
1 +

σ

τ + s

)
≤
T−t′−τ−1∑

s=1

σ

τ + s
≤ σ log

(T − t′ − 1

τ

)
.

To use the method of averaged bounded differences [23], we note that
T−τ∑
t′=T1

[
2
( τ

T − t′
)1−σ]2

≤ 4τ2−2α ·
[ 1

τ1−2σ
− 1

(T − T1 + 1)1−2σ

]
≤ 4τ. (51)
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Then, according to Corollary 5.1 in [23] and Lemma 9, we have

P
{
|bτ − E[bτ ]| ≥ δτ/4

}
≤ 2 exp

(
− 2(δτ/4)2

4τ

)
= 2 exp

(
− δ2τ

32

)
.

implying Eq. (45) in Lemma 8.

Step 4: Upper bound ofREALP2(T,B). Now we bound the regretREALP2(T,B) using the results
obtained in the previous steps. We analyze the event of “boundary-crossing” in round t, denoted
as Ecross,t, which is the event that j̃(bτ/τ) 6= j̃(ρ). The event of “boundary-crossing” may happen
when the estimates of empirical distribution is inaccurate or the average remaining budget bτ/τ
deviates far from ρ. We study the probability of Ecross,t for t ≤ T1 and t > T1, respectively.

For t ≤ T1, the average remaining budget satisfies ρ − δ/4 ≤ bτ/τ ≤ ρ + δ/4, as discussed in
Step 2. The event Ecross,t may occur only when there is some j such that |π̂j,t − πj | ≥ δ/(4J).
Thus,

P{Ecross,t} ≤ P{∃j, |π̂j,t − πj | ≥ δ/(4J)} ≤ 2J exp(−δ2t/8J2), t ≤ T1. (52)

For t > T1, if the empirical distribution |π̂j,T1
− πj | ≤ α (< δ/(4J) for sufficiently large T ) for

all j, then the average remaining budget satisfies P
{
| bττ − E[ bττ ]| ≥ 3δ/4

}
≤ 2 exp

(
− δ2τ

32

)
due to

Lemma 7 and Lemma 8. Thus,

P{Ecross,t} ≤ P{∃j, |π̂j,T1 − πj | ≥ α}+ P
{
|bτ
τ
− E[

bτ
τ

]| ≥ 3δ/4|∀j, |π̂j,T1 − πj | ≥ α
}

≤ 2J

T 2
+ 2 exp

(
− δ2τ

32

)
, t > T1. (53)

Now we bound the expectation of Cj(T ), i.e., the number of executions under context j.

For j ≤ j̃(ρ),

E[Cj(T )] = E
[ T∑
t=1

1(Xt = j, At = k∗j )

]

≥
T∑
t=1

P{Xt = j, At = k∗j |qEcross,t}P{qEcross,t}

=

T∑
t=1

πj
(
1− P{Ecross,t}

)
≥ πjT −

T1∑
t=1

2J exp(−δ2t/8J2)−
T∑

t=T1+1

[2J

T 2
+ 2 exp

(
− δ2τ

32

)]
= πjT +O(1),

and

E[Cj(T )] ≤ πjT,

Similarly, for j > j̃(ρ) + 1, we have

E[Cj(T )] ≤
T∑
t=1

P{Xt = j, At = k∗j |Ecross,t}P{Ecross,t} = O(1).

(54)

For j = j̃(ρ) + 1, we have

E[Cj(T )] = E[B − b0]−
∑

j 6=j̃(ρ)+1

E[Cj(t)] ≥ B − T
∑
j≤j̃(ρ)

πj −O(1) =
(
ρ−

∑
j≤j̃(ρ)

πj
)
T −O(1).

We complete the proof of Theorem 4 by summing over all contexts:

UEALP2(T,B) =

J∑
j=1

µ∗jE[Cj(T )] ≥ T ṽ(ρ)−O(1) = Û(T,B)−O(1).
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F Constrained Contextual Bandits with Heterogeneous Costs

In this section, we consider the case where the cost for each action k under context j is fixed at
cj,k, which may be different for different j and k. We discuss how to use the insight from unit-cost
systems in heterogeneous-cost systems.

F.1 Approximation of the Oracle Algorithm

Similar to unit-cost systems, we first study the case with known statistics. We generalize the upper
bound and the ALP algorithm in Section 3 to general-cost systems.

F.1.1 Upper Bound

With known statistics, the agent knows the context distribution πj’s, the costs cj,k’s, and the expected
rewards uj,k’s. In heterogeneous-cost systems, the quality of a context-action pair (j, k) is roughly
captured by the normalized reward, denoted by ηj,k = uj,k/cj,k. However, unlike the unit-cost
case, the agent cannot only focus on the “best” action with highest normalized reward, i.e., k∗j =
arg maxk ηj,k, when making a decision under context j. This is because there may exist another
action k such that ηj,k < ηj,k∗j , but uj,k > uj,k∗j (and of course, cj,k > cj,k∗j ). If there is sufficient
budget allocated for context j, then the agent may take action k to maximize the expected reward.
Therefore, the agent needs to consider all actions under each context. Let pj,k be the probability that
action k is taken under context j. We define the following LP problem:

(LP ′T,B) maximize
J∑
j=1

πj

K∑
k=1

pj,kuj,k, (55)

subject to
J∑
j=1

πj

K∑
k=1

pj,kcj,k ≤ B/T, (56)

K∑
k=1

pj,k ≤ 1, ∀j, (57)

pj,k ∈ [0, 1].

The above LP problem LP ′T,B can be solved efficiently by optimization tools. Let v̂(ρ) be the
maximum value of LP ′T,B . Similar to Lemma 1, we can show that T v̂(ρ) is an upper bound of the
expected total reward, i.e., T v̂(ρ) ≥ U∗(T,B).

To obtain insight from the solution of LP ′T,B , we derive an explicit representation for the solution
by analyzing the structure of LP ′T,B . Note that there are two types of (non-trivial) constraints in
LP ′T,B , one is the “inter-context” budget constraint (56), the other is the “intra-context” constraint
(57). These constraints can be decoupled by first allocating budget for each context, and then solving
a subproblem with the allocated budget constraint for each context. Specifically, let ρj be the budget
allocated to context j, then LP ′T,B can be decomposed as follows:

maximize
J∑
j=1

πj v̂j(ρj),

subject to
J∑
j=1

πjρj ≤ B/T,

where

(SPj) vj(ρj) = maximize
K∑
k=1

pj,kuj,k, (58)

subject to
K∑
k=1

pj,kcj,k ≤ ρj , (59)
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K∑
k=1

pj,k ≤ 1, (60)

pj,k ∈ [0, 1].

Next, by analyzing sub-problem SPj , we show that some actions can be deleted without affecting
the performance, i.e., the probability is 0 in the optimal solution.

Lemma 11. For any given ρj ≥ 0, there exists an optimal solution of SPj , i.e., p∗j =
(p∗j,1, p

∗
j,2, . . . , p

∗
j,K), satisfies:

(1) For k1, if there exists another action k2, such that ηj,k1 ≤ ηj,k2 and uk1 ≤ uk2 , then p∗j,k1 = 0;
(2) For k1, if there exists two actions k2 and k3, such that ηj,k2 ≤ ηj,k1 ≤ ηj,k3 , uj,k2 ≥ uj,k1 ≥
uj,k3 , and uj,k1−uj,k3

cj,k1−cj,k3
≤ uj,k2−uj,k3

cj,k2−cj,k3
, then p∗j,k1 = 0.

Intuitively, the first part of Lemma 11 shows that if an action has small normalized and original
expected reward, then it can be removed. The second part of Lemma 11 shows that if an action has
small normalized expected reward and medium original expected reward, but the increasing rate is
smaller than another action with larger expected reward, then it can also be removed.

Proof. The key idea of this proof is that, if the conditions is satisfied, and there is a feasible solution
pj = (pj,1, pj,2, . . . , pj,K) such that pj,k1 > 0, then we can construct another feasible solution p′j
such that p′j,k1 = 0, without reducing the objective value vj(ρj).

We first prove part (1). Under the conditions of part (1), if pj is a feasible solution of SPj with
pj,k1 > 0, then consider another solution p′j , where p′j,k = pj,k for k /∈ {k1, k2}, p′j,k1 = 0, and
p′j,k2 = pj,k2 + pj,k1 min{ cj,k1cj,k2

, 1}. Then, we can verify that p′j is a feasible solution of (SPj), and
the objective value under p′j is no less than that under pj .

For the second part, if the conditions are satisfied and pj,k1 > 0, then we construct a new solution p′j
by re-allocating the budget consumed by action k1 to actions k2 and k3, without violating the con-
straints. Specifically, we set the probability the same as the original solution for other actions, i.e.,
p′j,k = pj,k for k /∈ {k1, k2, k3}, and set p′j,k1 = 0 for action k1. For k2 and k3, to maximize the ob-
jective function, we would like to allocate as much budget as possible to k3 unless there is remaining
budget. Therefore, we set p′j,k2 = pj,k2 and p′j,k3 = pj,k3 +

pj,k1cj,k1
cj,k3

, if
∑
k 6=k1 pj,k+

pj,k1cj,k1
cj,k3

≤ 1;

or, p′j,k2 = pj,k2 +
pj,k1cj,k1−(1−

∑
k 6=k1

pj,k)cj,k3
cj,k2−cj,k3

and p′j,k3 = pj,k3 +
(1−

∑
k 6=k1

pj,k)cj,k2−pj,k1cj,k1
cj,k2−cj,k3

,

if
∑
k 6=k1 pj,k +

pj,k1cj,k1
cj,k3

> 1. We can verify that pj satisfies the constraints of (SPj) but the
objective value is no less than that under pj .

With Lemma 11, the agent can ignore some actions that will obviously be allocated with zero prob-
ability under a given context j. We call the set of the remaining actions as candidate set for context
j, denoted as Aj . We propose an algorithm to construct the candidate action set for context j, as
shown in Algorithm 4.

For context j, assume that the candidate setAj = {kj,1, kj,2, . . . , kj,Kj} has been sorted in descend-
ing order of their normalized rewards, i.e., ηj,kj,1 ≥ ηj,kj,2 ≥ . . . ≥ ηj,kj,Kj . From Algorithm 4, we
know that uj,kj,1 < uj,kj,2 < . . . < uj,kj,Kj , and cj,kj,1 < cj,kj,2 < . . . < cj,kj,Kj .

The agent now only needs to consider the actions in the candidate set Aj . To decouple the “intra-
context” constraint (57), we introduce the following transformation:

pj,kj,a =

{
p̃j,kj,a − p̃j,kj,a+1

, if 1 ≤ a ≤ Kj − 1,
p̃j,kj,Kj , if a = Kj ,
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Algorithm 4 Find Candidate Set for Context j
Input: cj,k’s, uj,k’s, for all 1 ≤ k ≤ K;
Output: Aj ;
Init: Aj = {1, 2, . . . ,K} ;
Calculate normalized rewards: ηj,k = uj,k/cj,k;
Sort actions in descending order of their normalized rewards:

ηj,k1 ≥ ηj,k2 ≥ . . . ≥ ηj,kK .

for a = 2 to K do
if ∃a′ < a such that uj,ka ≤ uj,ka′ then
Aj = Aj\{ka};

end if
end for
a = 1;
while a ≤ K − 1 do

Find the action with highest increasing rate:

a∗ = arg max
a′:a′>a,ka′∈Aj

uj,ka′ − uj,ka
cj,ka′ − cj,ka

.

Remove the actions in between:

Aj = Aj\{ka′ : a < a′ < a∗}.

Move to the next candidate action: a = a∗;
end while

where p̃j,kj,a ∈ [0, 1], and p̃j,kj,a ≥ p̃j,kj,a+1
for 1 ≤ a ≤ Kj − 1. Substituting the transformations

into (SPj) and reorganize it as

(S̃Pj) maximize
Kj∑
a=1

p̃j,kj,a ũj,kj,a ,

subject to
Kj∑
a=1

p̃j,kj,a c̃j,kj,a ≤ ρj ,

p̃j,kj,a ≥ p̃j,kj,a+1
, 1 ≤ a ≤ Kj − 1, (61)

p̃j,kj,a ∈ [0, 1], ∀a,

where

ũj,kj,a =

{
uj,kj,1 , if a = 1,
uj,kj,a − uj,kj,a−1 , if 2 ≤ a ≤ Kj ,

c̃j,kj,a =

{
cj,kj,1 , if a = 1,
cj,kj,a − cj,kj,a−1

, if 2 ≤ a ≤ Kj .

Next, we show that the constraint (61) can indeed be removed. For each kj,a, we can view c̃j,kj,a
and ũj,kj,a as the cost and expected reward of a virtual action. Let η̃j,kj,a = ũj,kj,a/c̃j,kj,a be the
normalized expected reward of virtual action kj,a. For a = 1, using

uj,kj,1
cj,kj,1

≥ uj,kj,2
cj,kj,2

, we can show

that η̃j,kj,1 ≥ η̃j,kj,2 . For 2 ≤ a ≤ Kj − 1, using
uj,kj,a−uj,kj,a−1

cj,kj,a−cj,kj,a−1
≥ uj,kj,a+1

−uj,kj,a−1

cj,kj,a+1
−cj,kj,a−1

, we can
show that η̃j,kj,a ≥ η̃j,kj,a+1 . In other words, we can verify that η̃j,kj,1 ≥ η̃j,kj,2 ≥ . . . ≥ η̃j,kj,Kj .
Thus, without constraint (61), the optimal solution p̃∗j = [p̃∗j,k1 , p̃

∗
j,k2

, . . . , p̃∗j,kKj
] automatically

satisfies p̃∗j,k1 ≥ p̃
∗
j,k2
≥ . . . ≥ p̃∗j,kKj . Hence, we can remove the constraint (61), and thus decouple

the probability constraint under a context.
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With the above transformations, we can thus rewrite the global LP problem

(L̃P
′
T,B) maximize

J∑
j=1

Kj∑
a=1

πj p̃j,kj,a ũj,kj,a ,

subject to
J∑
j=1

Kj∑
a=1

πj p̃j,kj,a c̃j,kj,a ≤ B/T,

p̃j,kj,a ∈ [0, 1], ∀j, and 1 ≤ a ≤ Kj .

The solution of L̃P
′
T,B follows a threshold structure. We sort all context-(virtual-)action pairs (j, ka)

in descending order of their normalized expected reward. Let j(i), k(i) be the context index and
action index of the i-th pair, respectively. Namely, η̃j(1),k(1) ≥ η̃j(2),k(2) ≥ . . . ≥ η̃j(M),k(M) ,
where M =

∑J
j=1Kj is the total number of candidate actions for all contexts. Define a threshold

corresponding to ρ = B/T ,

ĩ(ρ) = max{i :

i∑
i′=1

πj(i′) c̃j(i′),k(i′) ≤ ρ}, (62)

where ρ = B/T is the average budget. We can verify that the following solution is optimal for
L̃P
′
T,B :

p̃j(i),k(i)(ρ) =


1, if 1 ≤ i ≤ ĩ(ρ),
ρ−

∑ĩ(ρ)

i′=1
π
j(i
′) c̃j(i′),k(i′)

π
j(ĩ(ρ)+1) c̃j(ĩ(ρ)+1),k(ĩ(ρ)+1)

, if i = ĩ(ρ) + 1,

0, if i > ĩ(ρ) + 1.

Then, the optimal solution of L̃P
′
T,B can be calculated using the reverse transformation from

p̃j,k(ρ)’s to pj,k(ρ)’s

F.1.2 ALP Algorithm

Similar to unit-cost systems, the ALP algorithm replaces the average constraintB/T in LP ′T,B with
the average remaining budget bτ/τ , and obtains probability pj,k(bτ/τ). Under context j, the ALP
algorithm take action k with probability pj,k(bτ/τ).

Unlike unit-cost systems, the remaining budget bτ does not follow any classic distribution in
heterogeneous-cost systems. However, we can show that the concentration property still holds for
this general case by using the method of averaged bounded differences [23].
Lemma 12. For 0 < δ < 1, there exists a positive number κ, such that under the ALP algorithm,
the remaining budget bτ satisfies

P{bτ > (ρ+ δ)τ} ≤ e−κδ
2τ ,

P{bτ < (ρ− δ)τ} ≤ e−κδ
2τ .

Proof. We prove the lemma using the method of averaged bounded differences [23]. The process
is similar to Section 7.1 in [23], except that we consider the remaining budget and the successive
differences of the remaining budget are bounded by cmax.

Specifically, let c̃t′ , 1 ≤ t′ ≤ T be the budget consumed under ALP, and let c̃t′ = (c̃1, c̃2, . . . , c̃t′).
Then the remaining budget at round t (the remaining time τ = T − t+ 1), i.e., bT−t+1 is a function
of c̃t. We note that under ALP, the expectation of the ratio between the remaining budget and the
remaining time does not change, i.e., for any b ≤

∑
j=1 πjc

∗
j (here c∗j = maxk cj,k), if bτ = b, then

E[bτ−1/(τ − 1)] = b/τ . Thus, we can verify that for any 1 ≤ t′ ≤ t, we have

E[bT−t+1|c̃t′ ] = bT−t′+1 −
bT−t′+1

T − t′ + 1
(t− t′). (63)
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Note that ∆b = bT−t′+2 − bT−t′+1 ≤ cmax and bT−t′+2 ≥ −cmax, we have∣∣E[bT−t+1|c̃t′ ]− E[bT−t+1|c̃t′−1]
∣∣

≤ max
0≤∆b≤cmax

{∣∣∆b− bT−t′+2

T − t′ + 2

∣∣} T − t+ 1

T − t′ + 1

≤ 2cmax(T − t+ 1)

T − t′ + 1
. (64)

Moreover,
t∑

t′=1

[2cmax(T − t+ 1)

T − t′ + 1

]2
= 4c2max(T − t+ 1)2

t∑
t′=1

1

(T − t′ + 1)2

= 4c2max(T − t+ 1)2
T∑

τ ′=T−t+1

1

(τ ′)2

≈ 4c2max(T − t+ 1)2

∫ T

T−t+1

1

(τ ′)2
dτ ′

= 4c2max(T − t+ 1)
t− 1

T
. (65)

According to Theorem 5.3 in [23], and noting τ = T − t+ 1, E[bτ ] = ρτ , we have

P{bτ > E[bτ ] + δτ} ≤ e−
2T (δρτ)2

4c2max(T−t+1)(t−1) ≤ e−
Tδ2B2τ

2c2maxT
2(t−1) ≤ e−

δ2ρ2

2c2max
τ
, (66)

and similarly,

P{bτ < E[bτ ]− δτ} ≤ e−
δ2ρ2

2c2max
τ
, (67)

Choosing κ = ρ2

2c2max
concludes the proof.

Then, using similar methods in Section 3, we can show that the generalized ALP algorithm achieves
O(1) regret in non-boundary cases, and O(

√
T ) regret in boundary cases, where the boundaries are

now defined as Qi =
∑i
i′=1 πj(i′) c̃j(i′),k(i′) .

F.2 ε-First ALP Algorithm

When the expected rewards are unknown, it is difficult to combine UCB method with the proposed
ALP for general systems. As a special case, when all actions have the same cost under a given
context, i.e., cj,k = cj for all k and j, the normalized expected reward ηj,k represents the quality of
action k under context j. In this case, the candidate set for each context only contains one action,
which is the action with the highest expected reward. Thus, the ALP algorithm for the known
statistics case is simple. When the expected rewards are unknown, we can extend the UCB-ALP
algorithm by managing the UCB for the normalized expected rewards.

When the costs for different actions under the same context are heterogeneous, it is difficult to
combine ALP with the UCB method since the ALP algorithm in this case not only requires the
ordering of ηj,k’s, but also the ordering of uj,k’s and the ratios uj,k1−uj,k2

cj,k1−cj,k2
. We propose an ε-First

ALP Algorithm that explores and exploits separately: the agent takes actions under all contexts in
the first ε(T ) rounds to estimate the expected rewards, and runs ALP based on the estimates in the
remaining T − ε(T ) rounds.

For the ease of exposition, we assume cj,k1 6= cj,k2 for any j and k1 6= k2
2, and let ∆

(c)
min be the

minimal difference, i.e.,
∆

(c)
min = min

j∈X
k1,k2∈{0}∪A

{|cj,k1 − cj,k2 |}.

2For the case with cj,k1 = cj,k2 for some j and k1 6= k2 (and uj,k1 6= uj,k2 ), we can correctly remove the
suboptimal action with high probability by comparing their empirical rewards ūj,k1 = ūj,k2 .
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Algorithm 5 ε-First ALP
Input: Time horizon T , budget B, exploration stage length ε(T ), and cj,k’s, for all j and k;
Init: Remaining budget b = B;
Cj,k = 0, ūj,k = 0;
for t = 1 to ε(T ) do

if b > 0 then
Take action At = arg mink∈A CXt,k (with random tie-breaking);
Observe the reward YAt,t;
Update counter CXt,At = CXt,At + 1; update remaining budget b = b− cXt,At ;
Update the reward estimate:

ūXt,At =
(CXt,At − 1)ūXt,At + YAt,t

CXt,At
.

end if
end for
for t = ε(T ) + 1 to T do

Remaining time τ = T − t+ 1;
if b > 0 then

Obtain the probabilities pj,k(b/τ)’s by solving the problem (LP ′τ,b) with uj,k replaced by
ūj,k;
Take action k with probability pXt,k(b/τ);
Remaining budget b = b− cXt,At ;

end if
end for

Let ξj,k1,k2 =
uj,k1−uj,k2
cj,k1−cj,k2

for j ∈ X , k1, k2 ∈ {0} ∪ A, and k1 6= k2 (recall that uj,0 = 0 and

cj,0 = 0 for the dummy action), ξ̄j,k1,k2 be its estimate at the end of the exploration stage, i.e.,
ξ̄j,k1,k2 =

ūj,k1−ūj,k2
cj,k1−cj,k2

. Let ∆
(ξ)
min be the minimal difference between any ξj1,k11,k12 and ξj2,k21,k22 ,

i.e.,

∆
(ξ)
min = min

j1,j2∈X
k11,k12,k21,k22∈{0}∪A

{|ξj1,k11,k12 − ξj2,k21,k22 |}.

Moreover, let πmin = minj∈X πj and let ∆∗ = ∆
(c)
min∆

(ξ)
min. Then, the following lemma states that

under ε-First ALP with a sufficiently large ε(T ), the agent will obtain a correct ordering of ξj,k1,k2 ’s
with high probability at the end of the exploration stage.

Lemma 13. Let 0 < δ < 1. Under ε-First ALP, if

ε(T ) =

⌈
K

(1− δ)πmin
+ log T max

{ 1

δ2
,

16K

(1− δ)πmin(∆∗)2

}⌉
,

then for any contexts j1, j2 ∈ X , and actions k11, k12, k21, k22 ∈ {0}∪A, if ξj1,k11,k12 < ξj2,k21,k22 ,
then at the end of the ε(T )-th round, we have

P
{
ξ̄j1,k11,k12 ≥ ξ̄j2,k21,k22

}
≤ (J + 4)T−2.

Moreover, the agent ranks all the ξj,k1,k2 ’s correctly with probability no less than 1−(4K+1)JT−2.

Proof. We first analyze the number of executions for each context-action pair (j, k) in the explo-
ration stage. Let Nj =

∑ε(T )
t=1 1(Xt = j) be the number of occurrences of context j up to round

ε(T ). Recall that the contexts Xt arrive i.i.d. in each round. Thus, using Hoeffding-Chernoff Bound
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for each context j, we have

P
{
∀j ∈ X , Nj ≥ (1− δ)πjε(T )

}
≥ 1−

J∑
j=1

P
{
Nj < (1− δ)πjε(T )

}
≥ 1− Je−2δ2ε(T )

≥ 1− Je−2 log T

= 1− JT−2 (68)

On the other hand, the lower bound (1 − δ)πjε(T ) ≥ K + 16K log T
(∆∗)2 . From the implementation of

the exploration stage in Algorithm 5, we know that if Nj ≥ (1− δ)πjε(T ), then

Cj,k ≥
⌊
1 +

16 log T

(∆∗)2

⌋
≥ 16 log T

(∆∗)2
, ∀k ∈ A. (69)

Therefore,

P
{
∀j ∈ X ,∀k ∈ A, Cj,k ≥

16 log T

(∆∗)2

}
≥ 1− JT−2 (70)

Next, we study the relationship between the estimates ξ̄j1,k11,k12 and ξ̄j2,k21,k22 at the end of the
exploration stage. We note that

ξ̄j1,k11,k12 ≥ ξ̄j2,k21,k22

⇔
(
ξ̄j1,k11,k12 − ξj1,k11,k12 −

ξj2,k21,k22 − ξj1,k11,k12
2

)
−
(
ξ̄j2,k21,k22 − ξj2,k21,k22 +

ξj2,k21,k22 − ξj1,k11,k12
2

)
≥ 0

⇔
( ūj1,k11 − uj1,k11
cj1,k11 − cj1,k12

− ξj2,k21,k22 − ξj1,k11,k12
4

)
−
( ūj1,k12 − uj1,k12
cj1,k11 − cj1,k12

+
ξj2,k21,k22 − ξj1,k11,k12

4

)
−
( ūj2,k21 − uj2,k21
cj2,k21 − cj2,k22

+
ξj2,k21,k22 − ξj1,k11,k12

4

)
+
( ūj2,k22 − uj2,k22
cj2,k21 − cj1,k22

− ξj2,k21,k22 − ξj1,k11,k12
4

)
≥ 0.

(71)

Thus, for the event ξ̄j1,k11,k12 ≥ ξ̄j2,k21,k22 to be true, we require that at least one term (with the
sign) in the last inequation above is no less than zero. Conditioned on Cj,k ≥ 16 log T

(∆∗)2 , we can bound
the probability of each term according to the Hoeffding-Chernoff bound. For example, for the first
term, we have

P
{ ūj1,k11 − uj1,k11
cj1,k11 − cj1,k12

− ξj2,k21,k22 − ξj1,k11,k12
4

≥ 0

|Cj1,k11 ≥
16 log T

(∆∗)2

}
≤ P

{
ūj1,k11 ≥ uj1,k11 +

∆∗

4
|Cj1,k11 ≥

16 log T

(∆∗)2

}
≤ e−2 log T = T−2.

The conclusion then follows by considering the event
{
Cj,k ≥ 16 log T

(∆∗)2 ,∀j ∈ X ,∀k ∈ X
}

and its
negation.
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Theorem 5. Let 0 < δ < 1. Under ε-First ALP, if

ε(T ) ≥ K

(1− δ)πmin
+ log T max

{
1

δ2
,

16K

(1− δ)πmin(∆∗)2

}
,

then the regret of ε-First ALP satisfies:
1) if ρ = B/T 6= Qi, then Rε−FirstALP(T,B) = O(log T );

2) if ρ = B/T = Qi, then Rε−FirstALP(T,B) = O(
√
T ).

Proof. (Sketch) The key idea of proving this theorem is considering the event where the ξj,k1,k2 ’s are
ranked correctly and its negation. When the ξj,k1,k2 ’s are ranked correctly, we can use the properties
of the ALP algorithm with modification on the time horizon and budget (subtracting the time and
budget in the exploration stage, which is O(log T )); otherwise, if the agent obtains a wrong ranking
results, the regret is bounded as O(1) because the probability is O(T−2) and the reward in each
round is bounded.

F.3 Deciding ε(T ) without Prior Information

In Theorem 5, the agent requires the value of ∆∗ (in fact ∆
(ξ)
min because ∆

(c)
min is known) to calculate

ε(T ). This is usually impractical since the expected rewards are unknown a priori. Thus, without
the knowledge of ∆

(ξ)
min, we propose a Confidence Level Test (CLT) algorithm for deciding when to

end the exploration stage.

Specifically, assume ∆
(ξ)
min > 0 and is unknown by the agent. In each round of the exploration stage,

the agent tries to solve the problem (LP ′τ,b) with uj,k replaced by ūj,k using comparison, i.e., using
Algorithm 4 and sorting the virtual actions. For each comparison, the agent tests the confidence
level according to Algorithm 6. If all comparisons pass the test, i.e., flagSucc = true for all
comparisons, then the agent ends the exploration stage and starts the exploitation stage.

Algorithm 6 Confidence Level Test (CLT)
Input: Time horizon T , estimates ξ̄j1,k11,k12 , ξ̄j2,k21,k22 , number of executions Cj1,k11 , Cj1,k12 ,
Cj2,k21 , and Cj2,k22 ;
Output: flagSucc;
Init: flagSucc = false,

∆′ =
∆

(c)
min(ξ̄j1,k11,k12−ξ̄j2,k21,k22 )

2 ;
if e−2(∆′)2 min{Cj1,k11 ,Cj1,k12} ≤ T−2 & e−2(∆′)2 min{Cj2,k21 ,Cj2,k22} ≤ T−2 then
flagSucc = true;

end if
return flagSucc;

Next, we show that the ε-First policy with CLT will achieveO(log T ) regret except for the boundary
cases, where it achieves O(

√
T ) regret. On one hand, according to Hoeffding-Chernoff bound, if all

comparisons pass the confidence level test, then with probability at least 1−JK2T−2, the algorithm
obtains the correct rank and provide a right solution for the problem (LP ′τ,b). On the other hand,
because ∆∗ > 0, from the analysis in the previous section, we know that the exploration stage will
end within O(log T ) rounds with high probability. Therefore, the expected regret is the same as that
in the case with known ∆

(ξ)
min.

G Numerical Experiments

In this section, we evaluate the regret of the proposed algorithms through numerical simulations. We
study the performance of the proposed algorithms here for unit-cost systems as the parameter setting
is relatively simple to control while providing us useful insights. The performance in heterogeneous-
cost systems is similar as we have shown theoretically, and omitted here. In the case with known
statistics, we compare the proposed PB (two-context case) and ALP algorithms with Fixed LP (FLP)
algorithm that uses a fixed average budget constraint B/T since both [17] and [20] use fixed aver-
age budget constraint. Then, the UCB-based FLP, i.e., UCB-FLP, is evaluated in the case without
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knowledge of expected rewards. We also evaluate algorithms for the case without knowledge of
context distribution. When the context distribution is unknown to the agent, we use the Empirical
ALP (EALP) algorithm, that uses the empirical distribution (histogram) of context for making de-
cisions, in the case with known expected rewards. Then, the UCB-based EALP is proposed for the
case without knowledge of expected rewards. The results are averaged from 5,000 independent runs
of the simulations.

G.1 Two-Context Systems
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Figure 1: Comparison of algorithms for the two-context systems with perfect knowledge (π1 =
0.4, π2 = 0.6), (a) ρ = 0.39, (b) ρ = 0.4, (c) ρ = 0.41.
We first consider a two-context scenario with K = 3 arms and Bernoulli rewards: the context
distribution vector is π = [0.4, 0.6], the expected rewards are u1 = 0.8 × [1/3, 2/3, 1] for context
1, and u2 = 0.4 × [1/3, 2/3, 1] for context 2. The boundary is q1 = π1 = 0.4 and we study the
cases with normalized budget ρ = 0.39, 0.4, and 0.41, respectively.

Figure 1 shows the regret of different algorithms in the case with known expected rewards. In the
non-boundary cases (i.e., ρ = 0.39, 0.41), the ALP algorithm achieves near optimal performance.
Even without the knowledge of context distribution, the EALP algorithm performs much better than
FLP. In the boundary case, i.e., ρ = 0.4, the regret of ALP increases with T but is still lower than
that of FLP. The EALP algorithm achieves higher regret than ALP and FLP due to the empirical
distribution errors.
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Figure 2: Comparison of algorithms for the two-context systems without perfect knowledge (π1 =
0.4, π2 = 0.6), (a) ρ = 0.39, (b) ρ = 0.4, (c) ρ = 0.41.

Figure 2 shows the regret of different algorithms in the case without knowledge of expected rewards.
We can see that in the non-boundary cases, UCB-ALP and UCB-EALP achieves regret that is very
close to UCB-PB and outperforms UCB-FLP. Interestingly, we can even see that UCB-ALP achieves
slightly lower regret than UCB-PB in the case with ρ = 0.41. This is because under UCB-PB, the
better context may be skipped and wasted if it does not have the highest UCB. In contrast, the UCB-
ALP algorithm may allocate certain resource to the better context, even when it does not have the
highest UCB. On the boundary case, the regrets of UCB-ALP and UCB-EALP become larger than
that of UCB-PB, but are still sublinear in T .

G.2 Multi-Context Systems

Next, we study a multi-context scenario with J = 10 contexts, K = 5 arms,
and Bernoulli rewards. Specifically, the context distribution vector is π =
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[0.025, 0.05, 0.075, 0.15, 0.2, 0.2, 0.15, 0.075, 0.05, 0.025]. The expected reward of action k

under context j is uj,k = jk
JK . One boundary in this system is q5 = 0.5. We study the cases with

average budget ρ = 0.49, 0.5, and 0.51, respectively. In this case, it is difficult to calculate the
expected total reward obtained by the oracle solution. Thus, we calculate the regret by comparing
with the upper bound, i.e., Û(T,B) = Tv(ρ).
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Figure 3: Comparison of algorithms for the multi-context systems with perfect knowledge (Q5 =
0.5), (a) ρ = 0.49, (b) ρ = 0.5, (c) ρ = 0.51.
Figure 3 shows the regret of different algorithms in the case with known expected rewards. In the
non-boundary cases, both the ALP and EALP algorithm achieve similar performance as in the two-
context case. The regret of EALP is even lower than FLP in the boundary case, since the ratio of
contexts that are executed with correct probability is higher than that in the two-context systems.
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Figure 4: Comparison of algorithms for the multi-context systems without perfect knowledge (Q5 =
0.5), (a) ρ = 0.49, (b) ρ = 0.5, (c) ρ = 0.51.
Figure 4 shows the regret of different algorithms in the case without knowledge of expected rewards.
We can see that all algorithms achieve sublinear regret, but the difference between the non-boundary
cases and the boundary case is small. This is rooted in the fact that when the number of contexts
and the number of actions are large, it requires more time to learn the expected rewards. Hence, the
constant in the log T term is much larger than that in the

√
T term, and the log T term dominates the

regret and the impact of the
√
T term could be small. Exploring the structure of the reward function

in contextual bandits, e.g., similarity [6] and linearity [5], to reduce the exploration time is part of
our future work.
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