Supplemental Material

7 On the sub-optimality of deflation — An example

We provide a simple example demonstrating the sub-optimality of deflation based approaches for computing multiple sparse
components with disjoint supports. Consider the real 4 X 4 matrix

a O O
= o O

with €, 8 > 0 such that e + & < 1. Note that A is PSD; A = BT B for

1 0 0 €

B_ [0 Vo 0O 0

“lo 0 V6 0
0 0 0 +Vi—e&

We seek two 2-sparse components with disjoint supports, i.e., the solution to

2
max > x| Ax; @®)
Xex 7ty
j=1
where

P {X € R**2 ., [[xill2 <1, ||xillo < 2Vie{1,2},supp(x1) Nsupp(x2) = (B}.

Iterative computation with deflation. Following an iterative, greedy procedure with a deflation step, we compute one
component at the time. The first component is

X1 = arg max x " Ax. )
[Ix[lo=2,[Ix[[2=1

Recall that for any unit norm vector x with support I = supp(x),

x"Ax < Amax (A11), (10)
where A 1 denotes the principal submatrix of A formed by the rows and columns indexed by I. Equality can be achieved
in (T0) for x equal to the leading eigenvector of A ;. Hence, it suffices to determine the optimal support for x1. Due to the

small size of the example, it is easy to determine that the set I; = {1, 4} maximizes the objective in (I0) over all sets of two
indices, achieving value

xlTAxl = Amax ([1 ;]) =1+e (11

Since subsequent components must have disjoint supports, it follows that the support of the second 2-sparse component X2
is Iz = {2, 3}, and x2 achieves value

X9 AX2 = Amax ({g gD =34 (12)

In total, the objective value in (8) achieved by the greedy computation with a deflation step is

2
ZX;I—AXj:1+6+5. (13)
j=1

The sub-optimality of deflation. Consider an alternative pair of 2-sparse components x) and x@with support sets

I = {1,2} and I}, = {3, 4}, respectively. Based on the above, such a pair achieves objective value in (8) equal to

(b (e

which clearly outperforms the objective value in (T3) (under the assumption € + § < 1), demonstrating the sub-optimality
of the x1, x2 pair computed by the deflation-based approach. In fact, for small €, § the objective value in the second case is
larger than the former by almost a factor of two.
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8 Construction of Bipartite Graph

k

The following algorithm formally outlines the steps for generating the bipartite graph G = ({U i} J=1 v, E‘) given a weight

d x k matrix W.

Algorithm 4 Generate Bipartite Graph

input Real d x k matrix W
output Bipartite G = ({Uj}?:l, V,E) {Fig.
1: forj=1,...,kdo
U; {ugj),...,ugj)}
end for
UeU?ZlUj {lU| =k - s}
V< {1,....d}
E+~UxV
fori=1,...,ddo
forj=1,...,kdo
9: for each v € U; do
10: w(u,vi) — ij
11: end for
12:  end for
13: end for

AN A Sl

9 Proofs

9.1 Guarantees of Algorithm 2]

Lemma21} For any real d x k matrix W, and Algorithm[2|outputs

k
X = arg max X7, W 2 (14)
0w

in time O(d - (s - k)?2).
Proof. Consider a matrix X € X, andlet I;, 7 = 1..., k denote the support sets of its columns. By the constraints in X},

those sets are disjoint, i.e., I;;, N Ij, = 0Vj1,52 € {1,...,k}, j1 # jo2, and

k

;<vawj>2=2(zxij'wij)2SZ%(Z WE]) (15)

j=1 i€l; i€l;

The last inequality is due to Cauchy-Schwarz and the fact that | X7||2 < 1,Vj € {1,...,k}. In fact, if the supports sets
I;,j=1,...,k were known, the upper bound in (I3) would be achieved by setting X]IJ = Wi- /||W;J |2, i.e., setting
the nonzero subvector of the jth column of X colinear to the corresponding subvector of the jth column of W. Hence, the
key step towards computing the optimal solution X is to determine the support sets [, 7 = 1,..., k of its columns.

Consider the set of binary matrices
22 {7 € {0,1}* 1|27 |lo < s ¥ € [K], supp(Z") N supp(Z) = 0 V3,5 € [K],i # i} .

The set represents all possible supports for the members of X}. Taking into account the previous discussion, the maximization
in (T4) can be written with respectto Z € Z:

k
J AT WA
g 2 W= gD 3 2 W o)

Let Z € Z denote the optimal solution, which corresponds to the (support) indicator of X. Next, we show that computing

Z boils down to solving a maximum weight matching problem on the bipartite graph generated by Algorithm Recall that
given W € R4k, Algorithmgenerates a complete weighted bipartite graph G = (U, V, E)) where

* Visaset of d vertices vy, . . ., vq, corresponding to the d variables, i.e., the d rows of X.
« U is a set of k - s vertices, conceptually partitioned into k£ disjoint subsets Uy, ..., Uy, each of cardinality s. The
jth subset, U, is associated with the support Z;; the s vertices ufj), a=1,...,sin Uj serve as placeholders for the

variables/indices in 7.
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* Finally, the edge setis E = U x V. The edge weights are determined by the d X k matrix W in (). In particular, the
weight of edge (u(of ), v;) is equal to WZZJ Note that all vertices in U; are effectively identical; they all share a common

neighborhood and edge weights.

It is straightforward to verify that any Z € Z corresponds to a perfect matching in G and vice versa; Z;; = 1 if and only if
vertex v; € V is matched with a vertex in Uj (all vertices in U are equivalent with respect to their neighborhood). Further,
for a given Z € Z the objective value in @5 is equal to the weight of the corresponding matching in G. More formally, For
a given perfect matching M C F, the corresponding indicator matrix Z € Z (and equivalently the support of its columns)
is determined by setting

L« {ield: (uv)eMuel;}, j=1,...k (17)
The weight of the matching M is
> ww) =3 > ww) =3,

(u,v)EM i=1 (u,v;)EM: Jj=
uwelU;

k
ILCED 9 SIS ag)
Li€l;

Jj=1l1i=1

which is equal to the objective function in (I6). Conversely, any given indicator matrix Z € Z corresponds to a perfect
matching M C E. In particular, letting I;£supp(Z7), and for an arbitrary ordering o : [s] — I; of the elements of I,

M(—{ ((;), a](a)) O¢=1,...,8,j=1,...,k‘}

is a perfect matching in G. The weight of the matching M is equal to the objective value in (T6) for that Z:

kE d
Sz, wE=Y Y wE=Y Y w feyg = D wlwv). a9

j=1li=1 j=1li€l; j=la=1 (u,v)EM

It follows that to determine Z that maximizes (T6) with respect to Z € Z, it suffices to compute a maximum weight perfect
matching in G. Then Z is obtained as described in (T7). Finally, the values of the non-zero entries of X are determined as
described in the beginning of the proof (lines 4-7 of Algorithm , guaranteeing the optimality of X for the maximization
in (19

The weighted bipartite graph G is generated in O(d - (s - k)). The running time of Algorithm [2]is dominated by the

computation of the maximum weight matching of G. For the case of unbalanced bipartite graph with |U| = s-k <
d = |V the Hungarian algorithm can be modified [22]] to compute the maximum weight bipartite matching in time
O(|E||U| + |U|?1og |U|) = O(d - (s - k)?). This completes the proof. O

9.2 Guarantees of Algorithm[I]— Proof of Theorem[I]

We first prove a more general version of Theorem |I| for arbitrary constraint sets. Combining that with the guarantees of
Algorithm[2] we prove the Theorem [T}

Lemma 9.2. For any real d X d rank-r PSD matrix A and arbitrary set X C RE*k et X, 2 arg maxx ey TR (XTKX) .
Assuming that there exists an operator Py : R&** — X such that Px (W) = argmaxxcy <x]- , Wy >2, then Algorithm
outputs X € X such that

TR(X'AX) > (1—¢) - TR(X] AX.),
in time Tsyp(r) + O ( (%)T'k . (TX + kd) ), where T is the time required to compute Px () and Tsyp(r) the time required

to compute the truncated SVD of A.

Proof. Let A = ﬁKﬁT denote the truncated eigenvalue decomposition of A; A is a diagonal r x 7 whose ith diagonal
entry A;; is equal to the ith largest eigenvalue of A, while the columns of U contain the corresponding eigenvectors. By the
Cauchy-Schwartz inequality, for any x € R9,

xTAx = |[A"*T x|2 > (A°T 'x,¢)?, VeeR :|cfz=1. 0)

In fact, equality in @) is achieved for ¢ colinear to Kl/ Qﬁx, and hence,

x Ax = max (A/°T'x, c)2 @D
cesy Tt
In turn,
k
TR(XTAX) = Z AX/ =  max Z(A *TTxI, o) 2)

C:CjES V]J 1
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Recall that X is the optimal solution of the trace maximization on A e,
X, 2 arg max TR (XTKX> .
Xex

Let C, be the maximizing value of C in @) for X = X, i.e., C4 is an 7 X k matrix with unit-norm columns such that for
allj € {1,...,k},

e T —— _ T — s

Xi'AX] = (K'*UTX], ¢i)2 23)
Algorithm |l|iterates over the points (r X k matrices) C in ./\/’3]2C <S£_1> , the kth cartesian power of a finite €/2-net of the
r-dimensional l2-unit sphere. At each such point C, it computes a candidate

X = X7, UAY2C7)?
ar}g(en}?szl< >

via AlgorithmH(See Lemma(9.1|for the guarantees of Algorithm . By construction, the set N/ S’; <S;* 1) contains a Cy
such that

ICs — Cilloo2 = s ||CJ Cll2 < e/2. 24)

Based on the above, forall j € {1,...,k},
(X1'AX])V? = (R/*T "X, ©)
= [(R?*T'X], ¢y + (AV*T'X], (Tl - )|

12T

< |[(&?UTXL, )| + (AU, (©1 - o))

< [(R*TTRL, o)) + KT

X[l -
<|(RV*TTXL, C)| + (e/2) - (XL A2, (25)

The first step follows by the definition of C,, the second by the linearity of the inner product, the third by the triangle
inequality, the fourth by Cauchy-Schwarz inequality and the last by (24). Rearranging the terms in 23],

(AVPUTRI, o) 2 (1- ) (XITAXI) Y2 >0,

and in turn,
(RPTTX], )’ > (1-5) XIAXI > (1-¢)-X] AX] (26)
Summing the terms in 26) overall j € {1,...,k},
k
SRR €f)? > (1- o Tr(X]AX.). @
j=1

Let Xy € X be the candidate solution produced by the algorithm at Cy, i.e.,

Xuf arg max Z<XJ’ UAl/2 ﬁ>2'

Jj=1

(28)
Then,

~ )
TR(X]AX,) = max AY2O XJ cJ
(x7Ax,) c.cicer- 1WJZI< )2

2
>Z<A T XJ cl)
V5 (X1, OR?ci)?
> Z % 9

=

(%) o
> (1-¢ TR(X]AX.), (29)

where () follows from the observation in . (B) from the sub-optimality of Cy, (7) by the definition of Xy in
while (8) follows from 27). According to , at least one of the candidate solutions produced by Algorithm (I} namely X,
achieves an objective value within a multiplicative factor (1 — €) from the optimal, implying the guarantees of the lemma.

Finally, the running time of Algorithmfollows immediately from the cost per iteration and the cardinality of the €/2-net on
the unit-sphere. Note that matrix multiplications can exploit the singular value decomposition which is performed once. [
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Theorem For any real d x d rank-r PSD matrix A, desired number of components k, number s of nonzero entries per
component, and accuracy parameter ¢ € (0,1), Algorithmoutputs X € X}, such that

TR(X AX) > (1-¢) - TR(X]AX,),
where X2 arg maxy ¢ x, TR(XTAX), in time Tsyp(r) + O((%)TAIC ~d - (s k)2). Tsyp(r) is the time required to
compute the truncated SVD of A.

Proof. Recall that X}, is the set of d X k matrices X whose columns have unit length and pairwise disjoint supports.
Algorithm[2] given any W € R4**_ computes X € X}, that optimally solves the constrained maximization in line 5. (See
Lemmal9.1[for the guarantee of Algorithm[2). in time O (d - (s - k)?). The desired result then follows by Lemmafor the
constrained set X. a

9.3 Guarantees of Algorithm 3]— Proof of Theorem 2]

We prove Theorem|2|with the approximation guarantees of Algorithm@
Lemma 9.3. For any d x d PSD matrices A and A, and any set X C REXF [et

X, 2 arg max TR (XTAX) , and X,%2argmaxTR (XTKX).
Xex Xex

Then, for any X € X such that TR (XTKX) >~-TR (XIKX*) for some 0 < v < 1,

TR(X ' AX) >~ TR(X] AX,) —2-[|A — A5 - max |1 X3
€
Proof. By the optimality of X, for A,
TR (XIKTC*) > TR(XIKX*) .
In turn, for any X € X such that TR (XTK)?) >~ TR(X] AX,) for some 0 < v < 1,
TR (X Ax) >~ . TR (x* AX*) . 30)

Let E2A — A. By the linearity of the trace,

Tr(X'AX) = Tr (X AX) - Tr(XEX)
< TR(X'AX) + |Tr(X"EX))|. 31
By Lemma[10.9]
ITR(X"EX) | < IKlle - Xl - [Bll2 < Bl - max [X]? 2 £ (32)
Continuing from (1),
TR (XTK)T) < TR(XTAX> +R. (33)

Similarly,

TR (XI KX*) = Tr (XI AX*) ~ TR (XI EX*)

i\

Tr(X]AX.) - |TR(X]EX. )|

(\Y

TR (XIAX*) R (34)
Combining the above, we have
Tr(X"AX) > Tr(X"AX) - R
> TR(XIKX*) - R
> . (TR(XIAX*) - R) ~R
= TR(X]AX.) = (147) R
> - TR(XIAX*> —2.R,

where the first inequality follows from (33)) the second from (30), the third from (34), and the last from the fact that R > 0
and 0 < v < 1. This concludes the proof. |
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Remark 9.1. Ifin Lemmathe PSD matrices A and A € R4*% are such that A — A is also PSD, then the following
tighter bound holds:

k
TR(X'AX) > 7 TR(X]AX,) — S Xi(A - A).
=1
Proof. This follows from the fact that if E2A — A is PSD, then
d
TR (XTEX) =3 x]Ex; >0,
j=1
and the bound in (3T) can be improved to
TR(XTKX) =Tr (XTAX) - TR(XTEX) < Tr (XTAX) .

Further, by Lemma[T0.10] the bound in (32) can be improved to
k
TR(XEX) < > X(E) 2 R.
i=1

The rest of the proof follows as is. d

Theorem For any n x d input data matrix S, with corresponding empirical covariance matrix A = 1/n - STS, any
desired number of components k, and accuracy parameters € € (0, 1) and r, Algorithmoutputs X(r) € X, such that

TR(X[)AX () > (1—€) TR(X]AX,) -2k [|[A—A]2,

where X 2 arg maxx ¢ x, TR (XTAX), in time Tsxprcu(r) + Tsvo(r) + O((%)r'k -d-(s- k)2)

Proof. The theorem follows from Lemma[0.3]and the approximation guarantees of Algorithm|[T} O

10 Auxiliary Technical Lemmata

Lemma 10.4. For any real d x n matrix M, and any r, k < min{d,n},

r+k

k
> o) < ——— - M,
i=r+1 T+
where o;(M) is the ith largest singular value of M.
Proof. By the Cauchy-Schwartz inequality,
rk r+k r+k 1/2 r+k 1/2
Do)=Y feM)[< | > of(M) Akl =vVE- [ > oF (M)
i=r+1 i=r+1 i=r+1 i=r+1
Note that 41 (M), . .., 04 (M) are the k smallest among the r + k largest singular values. Hence,
r+k k r+k min{d,n} i
2 2 2 2
(M) < “(M) < (M) = M||g.
> A< S At < S A = M
i=r+1 =1 =1
Combining the two inequalities, the desired result follows. |
Corollary 1. For any real d x n matrix M and k < min{d,n}, o)(M) < k=1/2 . | M||E.
Proof. Tt follows immediately from Lemma[T0.4] O
Lemma 10.5. Letai,...,an andby,. .., by be 2n real numbers and let p and q be two numbers such that 1/p+1/q =1

and p > 1. We have

n n 1/p n 1/q
Sl < (3] (Some)
i=1 i=1 i=1
Lemma 10.6. For any two real matrices A and B of appropriate dimensions,

[AB|lr < min{[|All2]Bllr, [|AllelBll2}-
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Proof. Let b; denote the ¢th column of B. Then,
[AB|Z =D [[Abi[3 <> [IA[3Ibill3 = [|AI3 D b3 = [|A[3]BZ.

Similarly, using the previous inequality,
TAT T T
|AB|E = BTAT|E < BT3]|AT|E = BI3|AlZ
Combining the two upper bounds, the desired result follows. a

Lemma 10.7. Forany A,B € R"*k,
(A, B)|2[TR(ATB)| < [|A][e]B]r.

Proof. The inequality follows from Lemma[T0.5|for p = g = 2, treating A and B as vectors. O

Lemma 10.8. For any real m X n matrix A, and any k < min{m, n},

A 1/2
_ 2
e, 1Yl = <Z o; (A)> :

—
YTy=1, ¢
The maximum is attained by Y coinciding with the k leading right singular vectors of A.

Proof. LetUXV'T be the singular value decomposition of A; U and V are m X m and n X n unitary matrices respectively,

while ¥ is a diagonal matrix with ¥;; = o, the jth largest singular value of A, j =1, ..., d, where d& min{m,n}. Due
to the invariance of the Frobenius norm under unitary multiplication,
T T
AY [ = [USVTY|E = |V TY|. (33)
Continuing from (33),
K d
2
T 2 T 2v T T 2 T 2 T
ISVTY|2 = TR(Y vs2v Y) =3y (Z o2 - v;v] )yi =323 <vj yi> .
i=1 j=1 j=1 i=1
2
Let Zjé Zle (vayi) ,j =1,...,d. Note that each individual z; satisfies
k 2
0<223 (vivi) <lvl=1,
i=1

where the last inequality follows from the fact that the columns of Y are orthonormal. Further,

d d k 5 k d 5 k

T T 2

s =30 () =X (W) = X ilP =k
j=1 j=1i=1 i=1j=1 i=1

Combining the above, we conclude that

d
IAY[f = oF 2 <of +... 40} (36)
j=1
Finally, it is straightforward to verify thatif y; = v4,4 = 1,..., k, then (36) holds with equality. O

Lemma 10.9. For any real d x n matrix A, and pair of d x k matrix X and n x k matrix Y such that XX = 1, and
YTY =1 withk < min{d, n}, the following holds:

TR (XTAY)| < VE- (i 2(a))"”
B =1 ' .

Proof. By Lemma[l0.7]
(X, AY)| = |TR<XTAY>|

IN

Xl - [AY [l = V& - | AY ||r.

where the last inequality follows from the fact that [|X|[|2 = TR(X "X) = TR(I;) = k. Combining with a bound on
[|AY||F as in LemmalT0.8] completes the proof. O

Lemma 10.10. For any real d x d PSD matrix A, and k x d matrix X with k < d orthonormal columns,
k
TR (xTAX) <> N(A)
i=1
where \i(A) is the ith largest eigenvalue of A. Equality is achieved for X coinciding with the k leading eigenvectors of A.

Proof. Let A = V'V be a factorization of the PSD matrix A. Then, TR(XTAX) = TR(XTVVTX) = [|[VTX|]2.
The desired result follows by Lemma and the fact that \;(A) = 02(V),i=1,...,d. O

11 Additional Experimental Results
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k = 6 components, s = 10 nnz/component s = 10 nnz/component
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Figure 3: Cumulative variance captured by k s-spars components computed on the word-by-word
matrix — BAGOFWORDS:NIPS dataset [30]. Sparsity is arbitrarily set to s = 10 nonzero entries
per component. Fig. B(a)|depicts the cum. variance captured by k = 6 components. Deflation leads
to a greedy formation of components; first components capture high variance, but subsequent ones
contribute less. On the contrary, our algorithm jointly optimizes the & components and achieves
higher total cum. variance. Fig. 3(b) depicts the total cum. variance achieved for various values
of k. Our algorithm operates on a rank-4 approximation of the input.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8
I: network algorithm  neuron parameter object classifier word noise
2: model data cell point image net speech control
3: learning system pattern distribution recognition classification level dynamic
& 4: input error layer hidden images class context step
% 5: function weight information  space task test hmm term
& 6: neural problem signal gaussian features order character optimal
7: unit result visual linear feature examples processing component
8: set number field probability representation  rate non equation
9: training method synaptic mean performance values approach single
10: output vector firing case view experiment trained analysis
I1: network algorithm  neuron parameter recognition control classifier noise
12: model data cell distribution object action classification  order
13: input weight pattern point image dynamic class term
5 14: learning error layer linear word step net component
% 15 neural problem signal probability performance optimal test rate
E 16: function output information  space task policy speech equation
@ 17: unit result visual gaussian features states examples single
18: set number synaptic hidden representation  reinforcement  approach analysis
19: system method field case feature values experiment large
20: training vector response mean images controller trained form
21: data function neuron unit learning network model training
22: distribution  algorithm  cell weight space input parameter hidden
. 23! gaussian set visual layer action neural information performance
% 24: probability  error direction net order system control recognition
E 25: component  problem firing task step output dynamic classifier
< 26: approach result synaptic connection linear pattern mean test
%f 27: analysis number response activation case signal noise word
“ 28: mixture method spike architecture values processing field speech
29: likelihood vector activity generalization  term image local classification
30: experiment  point motion threshold optimal object equation trained

Total Cum. Variance
TPOWER 2.5999 - 10°
SPANSPCA 2.5981 - 10°
SPCABIPART 3.2090 - 103

Table 4: BAGOFWORDS:NIPS dataset [30]. We run various SPCA algorithms for ¥ = 8 com-
ponents (topics) and s = 10 nonzero entries per component. The table lists the words selected by
each component (words corresponding to higher magnitude entries appear higher in the topic). Our
algorithm was configured to use a rank-4 approximation of the input data.
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SPANSPCA TPOWER

SPCABIPART

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8
1: percent zzz_bush team school women ZzzZ_enron drug palestinian
2: company zzz-al_gore game student show firm patient zz7_israel
3: million president season program book zzz_arthur_andersen  doctor zzzisraeli
4: companies  official player high com deal system zzz_yasser_arafat
5: market zzz_george_bush  play children look lay problem attack
6: stock campaign games right american  financial law leader
7: business government point group need energy care peace
8: money plan run home part executives cost israelis
9: billion administration coach public family accounting help israeli
10: fund zzz_white_house ~ win teacher found partnership health zzz_west_bank
I1: percent team zzzbush palestinian school cup show won
12: company game zzz_al_gore attack student minutes com night
13: million season president zzz-united_states  children add part left
14: companies  player zzz_george bush  zzz_u_s program tablespoon look big
15: market play campaign military home teaspoon need put
16: stock games official leader family oil book win
17: business point government zzz_israel women pepper called hit
18: money run political zzz_-american public water hour job
19: billion right election war high large american  ago
20: plan coach group country law sugar help zzz_new_york
21: percent zzz_united_states  zzz_bush company team cup school zz7_al_gore
22: million V77 Ry official companies game minutes student zzz_george_bush
23: money zzz_american government market season add children campaign
24: high attack president stock player tablespoon women election
25: program military group business play oil show plan
26: number palestinian leader billion point teaspoon book tax
27: need war country analyst run water family public
28: part administration political firm right pepper look zzz_washington
29: problem zzz-white_house  american sales home large hour member
30: com games law cost won food small nation
Total Cum. Variance

TPOWER 45.4014

SPANSPCA 46.0075

SPCABIPART 47.7212
Table 5: BAGOFWORDS:NYTIMES dataset [30]. We run various SPCA algorithms for & = 8

components (topics) and s = 10 nonzero entries per component. The table lists the words selected
by each component (words corresponding to higher magnitude entries appear higher in the topic).
Our algorithm was configured to use a rank-4 approximation of the input data.
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TPOWER

SPANSPCA

SPCABIPART

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8
I: percent zzz_bush team school com Z77Z_enron law palestinian
2: company zzz-al_gore game student women firm drug zz7_israel
3: million zzz_george_bush  season program book deal court zzzisraeli
4: companies campaign player children web financial case zzz_yasser_arafat
5: market right play show american zzz_arthur_andersen  federal peace
6: stock group games public information chief patient israelis
7: money political point need look executive system israeli
8: business zzz_united_states  run part site analyst decision military
9: government  zzz_u.s coach family zzznew._york  executives bill zzz_palestinian
10: official administration home help question lay member zzz_west_bank
I'1: billion leader win job number investor lawyer war
12: president attack won teacher called energy doctor security
13: plan zzz-white_house  night country find investment cost violence
14: high tax left problem found employees care killed
15: fund zzz-washington guy parent ago accounting health talk
16: percent team official zzz_al_gore cup show public night
17: company game zzz_bush zzz_george_bush  minutes com member big
18: million season zzz-united_states ~ campaign add part system set
19: companies player attack election tablespoon look case film
: market play 72708 political teaspoon need number find
. stock games palestinian vote oil book question room
22: business point military republican pepper women job place
money run leader voter water family told friend
. billion right Zzz_american democratic large called put took
plan win war school sugar children zzz_washington start
26: government  coach zzz-israel presidential serving help found car
. president home country zzz_white_house  butter ago information feel
28: high won administration law chopped zzz_new_york federal half
29: cost left terrorist zzz_republican hour program student guy
30: group hit american tax pan problem court early
31: company show cup team percent zzz-al_gore official school
32: companies home minutes game million zzz_george_bush zzz_bush student
33: stock run add season money campaign government children
34: market com tablespoon player plan right president women
35: billion high oil play business election zzz-united_states  book
36: zzz_enron need teaspoon games tax political 77708 family
37: firm look pepper coach cost point group called
38: analyst part water guy cut leader attack hour
39: industry night large yard job zzz_washington Zzz_american friend
40: fund zzz_new_york sugar hit pay administration country found
41: investor help serving played deal question military find
42: sales left butter playing quarter member american set
43: customer put chopped ball chief won war room
44: investment ago fat fan executive win law film
45: economy big food shot financial told public small
Total Cum. Variance
TPOWER 48.140645
SPANSPCA 48.767864
SPCABIPART 51.873063

Table 6: BAGOFWORDS:NYTIMES dataset [30]. We run various SPCA algorithms for & = 8
components (topics) and cardinality s = 15 per component. The table lists the words corresponding
to each component (words corresponding to higher magnitude entries appear higher in the topic).

Our algorithm was configured to use a rank-4 approximation of the input data.
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TPOWER

SPANSPCA

SPCABIPART

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8
1. percent zzz_bush team school com zzz_enron drug palestinian
2: company zzz-al_gore game student women court patient zz7_israel
3: million zzz_george_bush  season program book case doctor zzz_israeli
4: companies campaign player children web firm cell zzz_yasser_arafat
5: market zzz_united_states  play show site federal care peace
6: stock 77708 games public information lawyer disease israelis
7: government political point part zzz_new_york  deal health israeli
8: official attack run family WWW decision medical zzz_palestinian
9: money zzz_american home system hour chief test zzz_west_bank
10: business american coach help find power hospital security
I1: president administration win problem mail industry research violence
12: billion leader won law found executive cancer killed
13: plan country left job put according treatment talk
14: group election night called set financial study meeting
I5: high zzz-washington hit look room office death soldier
16: right military guy member big analyst human minister
17: fund zzz-white_house  yard question told executives heart zzz_sharon
18: need war played ago friend zzz_arthur_andersen  blood fire
19: cost tax start teacher director employees trial zzz_ariel _sharon
20: number nation playing parent place investor benefit zzz_arab
21: percent team zzz_al_gore attack school cup com drug
22: company game zzz_bush zzz-united_states  student minutes web patient
23: million season zzz_george_bush  zzz_u_s children add site cell
24: companies player campaign palestinian program tablespoon information doctor
25: market play election military family oil computer disease
26: stock games political zzz_american women teaspoon find care
27: business point tax zzz_israel show pepper big health
28: money run republican war help water zzznew_york  test
29: billion win zzz_white_house  country told large WWW research
30: government home vote terrorist parent sugar mail human
31: president won law american problem serving set medical
32: plan coach administration zzztaliban book butter put study
33: high left democratic zzz_afghanistan job chopped director death
34: group night voter security found hour industry cancer
35: official hit leader zzz_israeli friend pan room hospital
36: need guy public nation ago fat small treatment
37: right yard zzz_republican member question bowl car scientist
38: part played presidential support teacher gram zzz_internet according
39: cost look federal called case food place blood
40: system start zzz_washington forces number medium film heart
41: palestinian percent zzz-al_gore cup school team company official
42: zzz_israel million zzz_bush minutes right game companies government
43: zzz-israeli money zzz_-george_bush  add group season market president
44: zzz_yasser_arafat  billion campaign tablespoon show player stock zzz united_states
45: peace business election oil home play Zzz_enron 77708
46: war fund political teaspoon high games analyst attack
47: terrorist tax zzz_white_house  pepper program point firm zzz_american
48: zzz_taliban cost administration water need run industry country
49: zzz_afghanistan cut republican hour part coach investor law
50: forces job leader large com win sales plan
51: bin pay vote sugar american won customer public
52: troop economy democratic serving look left price zzz_washington
53: laden deal presidential butter help night investment member
54: student big zzz_clinton chopped problem hit quarter system
55: zzz_pakistan chief support pan called guy executives nation
56: product executive 7727-CONgress fat zzznew_york  yard consumer case
57: zzz-internet financial military bowl number played technology federal
58: profit start policy gram question ball share information
59: earning record court food ago playing prices power
60: shares manager security league told lead growth effort
Total Cum. Variance

TPOWER 50.7686

SPANSPCA 52.8117

SPCABIPART 54.8906

Table 7: BAGOFWORDS:NYTIMES dataset [30]. We run various SPCA algorithms for £ = 8
components (topics) and cardinality s = 20 per component. The table lists the words corresponding
to each component (words corresponding to higher magnitude entries appear higher in the topic).
Our algorithm was configured to use a rank-4 approximation of the input data.
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Figure 4: Cumulative variance captured by %k s-sparse (s = 10) extracted components on the word-
by-word matrix — BAGOFWORDS:NYTIMES dataset [30]. Fig. f(a)] depicts the cum. variance
captured by k£ = 6 components. Deflation leads to a greedy formation of components; first com-
ponents capture high variance, but subsequent ones contribute less. On the contrary, our algorithm
jointly optimizes the k components and achieves higher total cum. variance. Fig. d(b)] depicts the
total cum. variance achieved for various values of k. Sparsity is arbitrarily set to s = 10 nonzero
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