
A Omitted Proofs from Section 3

A.1 Proof of Theorem 3

The algorithm proceeds as follows: Given a dataset S of n samples from the target distribution p
over [N ], it outputs the hypothesis h = hist(S) + η = p̂n(S) + η, where η ∈ RN is sampled from
the N -dimensional Laplace distribution with standard deviation 1/(εn).

It is easy to see that this algorithm is (ε, 0)-differentially private, so it remains to prove that it is
(α, β)-accurate. By properties of the Laplace distribution, it follows that with probability 1 − β/2
we have ‖η‖∞ ≤ O(log(1/β)/(εn)). Hence,

‖η‖1 ≤ O(N log(1/β)/εn) ≤ α .
Moreover, by combining Theorems 1 and 2 we obtain that with probability at least 1− β/2 it holds
dTV (p̂n, p) ≤ α/2. By a union bound we conclude that with probability at least 1− β

dTV (h, p) ≤ dTV (p̂n, p) +
1

2
‖η‖1 ≤ α ,

which completes the proof.

A.2 Proof of Theorem 4

The main idea of the proof is that the differentially private learning problem for Ht(I) can be
effectively reduced to the same problem over distributions of support [t]. The theorem then follows
by an application of Theorem 3. To formally establish this intuitive claim, we need a couple of
definitions. Let p be the unknown target distribution over [N ] and I = {Ii}ti=1 be the known
partition of [N ] into t intervals. We remark that p is potentially arbitrary, and in particular it is not
necessarily the case that p ∈ Ht(I).

The flattened distribution (pf )I corresponding to p and I is the distribution over [N ] defined as
follows: for j ∈ [t] and i ∈ Ij , (pf )I(i) = p(Ij)/|Ij |. That is, (pf )I is obtained from p by
averaging the weight that p assigns to each interval over the entire interval. The reduced distribution
(pr)

I corresponding to p and I is the distribution over [t] that assigns the i-th point the weight p
assigns to the interval Ii; i.e., for j ∈ [t], we have (pr)

I(j) = p(Ij).

Since the partition I is explicitly known to the algorithm, given a sample from p it is straightforward
to simulate a sample from (pr)

I . In view of this observation, our algorithm proceeds as follows:
We use samples from p to simulate samples from (pr)

I . Since (pr)
I is supported on [t], we can use

the algorithm of Theorem 3 to obtain an (ε, 0)-differentially private (α, β)-learning algorithm for
(pr)

I using the desired number of samples. Let (hr)
I be the output of the algorithm of Theorem 3.

Our hypothesis h is obtained by averaging the weight that (hr)
I assigns to its j-th point over the

corresponding interval Ij , i.e., for j ∈ [t] and i ∈ Ij , h(i) = (hr)
I(j)/|Ij |.

The sample size and running time of our algorithm follows from Theorem 3. Since the output of the
first step, i.e., (hr)

I , is (ε, 0)-differentially private and the second step simply post-processes (hr)
I

to obtain h, by the composition of differential privacy our overall algorithm is (ε, 0)-differentially
private. It remains to show that our algorithm is an (α, β)-agnostic learning algorithm. We prove
this in the following paragraph.

Observe that for any pair of distributions p, q and any partition I of [N ] into intervals, we have
that dTV ((pr)

I , (qr)
I) = dTV ((pf )I , (qf )I). Since h ∈ Ht(I), this yields dTV ((pr)

I , (hr)
I) =

dTV ((pf )I , h). We thus have that
∣∣dTV (p, h)− dTV ((pr)

I , (hr)
I)
∣∣ is equal to∣∣dTV (p, h)− dTV ((pf )I , h)

∣∣ = dTV (p, h)− dTV ((pf )I , h) ≤ dTV (p, (pf )I),

where the equality above is equivalent to dTV (p, h) ≥ dTV ((pf )I , h) (which is easily verified by
considering each interval Ii ∈ I separately and applying triangle inequality) and the inequality is the
triangle inequality. Since optt(p) = infg∈Ht(I) dTV (g, p), it follows that there exists g∗ ∈ Ht(I)

such that dTV (g∗, p) = optt(p). This can be shown to imply that dTV (p, (pf )I) ≤ 2optt(p) . The
RHS above is thus bounded by 2optt(p). By Theorem 3, with probability at least 1 − β it holds
dTV ((pr)

I , (hr)
I) ≤ α, and therefore
dTV (p, h) ≤ dTV ((pr)

I , (hr)
I) + dTV (p, (pf )I) ≤ α+ 2optt(p).

This completes the proof.
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CHOOSINGMECHANISM(S ∈ [N ]n, privacy parameters ε, δ, failure probability β)
1. Let OPT = maxI∈I q(I;S). Compute ÕPT = OPT + Laplace(4/εn). If ÕPT <

8
εn ln(8dlogNe/βεδ), halt and return ⊥.

2. Let G(S) = {S ∈ I : q(J ;S) ≥ 1}. Sample I ∈ I from the exponential mechanism
with privacy parameter ε, that is, according to the density Zeεq(I;S)/2, where Z is the
appropriate normalization constant.

Figure 4: Choosing mechanism for the Maximum Error Rule (MERR)

B Omitted Proofs from Section 4

Lemma 2. For every ε ∈ (0, 2), δ > 0, MaximumErrorRule satisfies (ε, δ)-differential privacy.

Proof. To prove the claim we first note that the choosing mechanism as described in Bun et al. [9]
requires a parameterB such that the score function q(J ;S) satisfies a technical condition called “B-
bounded growth”. This condition enforces that a change in one element in S can change the score
function for at most B choices of S. Moreover, the score function must be (1/n)-sensitive, meaning
that a change to one element in S can change any single score by at most (1/n). We implicitly set
the growth parameter to B = 2dlog(N)e and this is justified for the following reason. A single data
point is contained in at most B/2 dyadic intervals. Hence, replacing on data point by another can
affect the score of at most B intervals. We can now make use of the following lemma:

Lemma 3 ([25, 9]). Fix δ > 0 and 0 < ε ≤ 2. If q is a B-bounded growth score function, then the
choosing mechanism is (ε, δ)-differentially private.

By the previous lemma, each invocation of the choosing mechanism satisfies (ε/2T, δ/T )-
differential privacy. We claim that each update step satisfies (ε/2, 0)-differential privacy.
This follows because we evaluate the weight on two disjoint intervals. A single data point
can only participate in one of the two intervals and therefore, the `1-sensitivity of the pair
(weight([1, l], S),weight([l + 1, r], S) is bounded by 1/n. Hence, adding Laplacian noise of mag-
nitude 1/(2nε) to each number ensures (ε/2, 0)-differential privacy. By the basic composition rule
for differential privacy, each step of our algorithm satisfies (ε/T, δ/T )-differential privacy so that
the entire algorithm satisfies (ε, δ)-differential privacy.

We note that we could have alternatively applied the advanced composition rule [30] to obtain a
better dependence on T in setting the privacy parameter in each step (namely, O(

√
T ) rather than

T ). However, the algorithm typically converges in a very small number of steps so that this setting
leads to worse empirical performance due to the overhead of the advanced composition rule in terms
of constants and an extra factor of log(1/δ).

Proposition 2. MERR runs in time O(Tn logN). Furthermore, for every step t, with probability
1− β, we have that the interval I selected at step t satisfies

|weight(I, At−1)− weight(I, S)| ≥ OPT−O
(

1

εn
· log

(
n logN · log(1/βεδ)

))
.

Recall that OPT = maxJ∈I |weight(J,At−1)− weight(J, S)|.

Proof. The claim about run time is straightforward to prove. While there are O(N logN) dyadic
intervals, we only need to compute the weight for those that contain at least one data point. This can
be done in time O(n logN) per iteration.

The second claim follows from Lemma 3.8 in [9].

C Additional Experiments

In our synthetic data experiments, we start with a truncated continuous mixture distribution of Gaus-
sian, Beta, or Gamma components (see the first row in Figure 5 for the corresponding densities). We
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then convert this truncated distribution to a discrete distribution over a given domain size N . In
each run of the experiment, we draw n samples and pass these samples as input to the non-private
histogram learning algorithm of [4] and our private learning algorithm. As parameters, we choose
k = 20 histogram bins and m = 20 steps of the maximum error rule. The final error metric is the
`1-distance between the hypothesis produced by the algorithms and the true underlying distribution.

The experiments show two main points. (i) There is a price for privacy, but more samples can
compensate it: in the regime of smaller values of n, the `1-learning error achieved by the private
algorithm is worse than the non-private counterpart (second row of Figure 5). However, for larger
values of n, the private algorithm achieves the same learning error as the non-private histogram
learning algorithm. (ii) As predicted by our theoretical analysis, row three of Figure 5 shows that
the learning error of our algorithm is essentially independent of the domain size. The maximum
error rule achieves the same learning error for domain sizes ranging from N = 106 to N = 1010.
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Figure 5: Evaluation of our private distribution learning algorithm on synthetic data. Row 1: The
three test distributions. Row 2: Private vs. non-private learning error. Row 3: Private learning error
for various domain sizes. Every data point is averaged over ten independent trials.
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