5 Empirical Affinity SVRG

Algorithm 4 Empirical Affinity SVRG algorithm. The parameters c; > 1 > ¢y were tuned for the
MNIST dataset to 1.2, 0.8, and reused elsewhere.

1. w® =% =0€eR, A) =0Vi € [n].
2. Forre{l,...}:
(@ w" =w"
(b) Compute 0™ = VF (w")
(c) Define r™ = % lo7]| (by w strong convexity, w* € B (w7, r))

(d) For each i, compute [NJ’T = maxyepar,r) V20 (2] w)
(e) pT o (piT’l + p;’2) /2, where p]"! o i{r and p]*? o AET_l)m

f/i,r T = 1
At otherwise

<f)ﬁ2={

(@ " =1/ (Smax; (L7/ (7)) )
(h) Fort € [(t—1)m+1,7m]:

i. Choose it ~ p”

ii. Al =V (w'™) — Vo (2)

oLl j=i]Al >0

iii. Al = At =i AL=0 Vjen]
A;_l otherwise

iv. vt = Aﬁt/ (npgt) + 0

v. wt = wtt — gt

() @7 =m™! ZtE[(T—l)m+1,Tm] w'

6 Proof of Theorem 10

Proof. In step 2a we identify B = B (@™, ) such that w* = w («*) € B. Then using Lemma 9,
the set of points I, defined in step 2b have aETﬁl)m set to o in step 2c, and that correct value is
retained for all ¢ > (7 — 1) m because p] = 0 henceforth. Also, ¢; are affine on B. Now consider a
problem that is equivalent on B, where ¢; for ¢ € I” are replaced by their affine approximations at

T .

w
— i@+ (w—aT) e (wT) ielT
?i(w) = {¢i otherwise’

the conjugates 5: of the affine approximations admit (are finite on) only the correct value o;. Then
the iterations of Algorithm 2 in substeps of 2e behave exactly like Iprox-SDCA of [9] (the full
version of [10]) applied to the modified problem. Now note that since Iprox-SDCA assigns p;
14+L; (n,u)fl, and ¢, have L; = 0 on I”, hence ignores them completely, progress of Iprox-SDCA
on the modified problem is equal to that on a reduced modified problem from which I™ are removed
entirely (having P’ (w) = n~! dic\ I ¢; (w) + R (w)). By Lemma 2 of [9] and weak duality,
we have

ED' (a*)-D' (a') > ED' (o't")—D’ (a!) > = [P’ (w (') — D' (a")] > i/ [D' (a*) = D (a")].

n

Then on one hand it is enough to achieve ¢ > 2 [D' (o) — D’ (o!)] > P’ (w (o)) — D (a'),
and on the other D’ (a*) — ED’ (a!™!) < (1— %) (D’ (a*) — D' (a')) and hence D' (a*) —
t *) — D’ (at)). Then it is

ED' (atth) < (1—2)" (D' (a) = D (o)) < exp (=) (D' (a
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enough to have L exp (—£) ™ < ¢ = k > 2 log (”;ZT ) Applying Proposition 2 of [9]
to the reduced and modified problem, we obtain
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7 Empirical results for SVRG
SVRG solving smoothed hinge loss SVM on Mushroom. SVRG solving smoothed hinge loss SVM on w8a.
L%g gradieqt is 3.?‘,3e+01‘ Lip. srpooth. ‘1.23e-‘04 strqng convexity. L?8§ gradiept is 3A3‘.3e+01‘ Lip. sr:nooth ‘2401e-‘05 strqng convexity.
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Figure 5: SVRG variant results on four additional datasets. For the Mushroom dataset, the global
plot occludes the uniform.
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