
5 Empirical Affinity SVRG

Algorithm 4 Empirical Affinity SVRG algorithm. The parameters c1 > 1 > c2 were tuned for the
MNIST dataset to 1.2, 0.8, and reused elsewhere.

1. w0 = ŵ0 = 0 ∈ Rd, A0
i = 0 ∀i ∈ [n].

2. For τ ∈ {1, . . . }:

(a) w̃τ = ŵτ

(b) Compute ṽτ = ▽F (w̃τ )

(c) Define rτ = 2
µ ‖ṽτ‖ (by µ strong convexity, w∗ ∈ B (w̃τ , r))

(d) For each i, compute L̃τ
i,r = maxw∈B(w̃τ ,r)▽2φi

(
x⊤
i w
)

(e) pτi ∝
(
pτ,1i + pτ,2i

)
/2, where pτ,1i ∝ L̃τ

i,r and pτ,2i ∝ A
(τ−1)m
i

(f) L̂τ
i =

{
L̃i,r τ = 1

At
i otherwise

(g) ητ = 1/
(
8maxi

(
L̂τ
i / (np

τ
i )
))

(h) For t ∈ [(τ − 1)m+ 1, τm]:
i. Choose it ∼ pτ

ii. ∆t
it = ▽φit

(
wt−1

)
− ▽φit (x̃)

iii. At
j =





c1L̃
τ
j,r j = it;

∣∣∆t
j

∣∣ > 0

c2A
t−1
j j = it; ∆t

j = 0

At−1
j otherwise

∀j ∈ [n]

iv. vt = ∆t
it/ (npit) + ṽ

v. wt = wt−1 − ηvt

(i) ŵτ = m−1
∑

t∈[(τ−1)m+1,τm]w
t

6 Proof of Theorem 10

Proof. In step 2a we identify B = B (w̃τ , r) such that w∗ = w (α∗) ∈ B. Then using Lemma 9,
the set of points Iτ defined in step 2b have α

(τ−1)m
i set to α∗

i in step 2c, and that correct value is
retained for all t ≥ (τ − 1)m because pτi = 0 henceforth. Also, φi are affine on B. Now consider a
problem that is equivalent on B, where φi for i ∈ Iτ are replaced by their affine approximations at
w̃τ :

φi (w) =

{
φi (w̃

τ ) + (w − w̃τ )
⊤▽φi (w̃

τ ) i ∈ Iτ

φi otherwise
;

the conjugates φ
∗
i of the affine approximations admit (are finite on) only the correct value α∗

i . Then
the iterations of Algorithm 2 in substeps of 2e behave exactly like Iprox-SDCA of [9] (the full
version of [10]) applied to the modified problem. Now note that since Iprox-SDCA assigns pi ∝
1+Li (nµ)

−1, and φi have Li = 0 on Iτ , hence ignores them completely, progress of Iprox-SDCA
on the modified problem is equal to that on a reduced modified problem from which Iτ are removed
entirely (having P ′ (w) = n−1

∑
i∈[n]\Iτ φi (w) + R (w)). By Lemma 2 of [9] and weak duality,

we have

ED′ (α∗)−D′ (αt
)
≥ ED′ (αt+1

)
−D′ (αt

)
≥ s

n′
[
P ′ (w

(
αt
))

−D′ (αt
)]

≥ s

n′
[
D′ (α∗)−D

(
αt
)]

.

Then on one hand it is enough to achieve ε ≥ n′

s [D′ (α∗)−D′ (αt)] ≥ P ′ (w (αt)) − D (αt),
and on the other D′ (α∗) − ED′ (αt+1

)
≤
(
1− s

n′
)
(D′ (α∗)−D′ (αt)) and hence D′ (α∗) −

ED′ (αt+k
)

≤
(
1− s

n′
)k

(D′ (α∗)−D′ (αt)) ≤ exp
(
− sk

n′
)
(D′ (α∗)−D′ (αt)). Then it is

10



enough to have n′

s exp
(
− sk

n′
)
ετ ≤ ε ⇐⇒ k ≥ n′

s log
(

n′ετ

sε

)
. Applying Proposition 2 of [9]

to the reduced and modified problem, we obtain

n′

s
= n′ + µ−1


n−1

∑

i∈[n]\Iτ

Li


 .

7 Empirical results for SVRG
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SVRG solving smoothed hinge loss SVM on Mushroom. 
Loss gradient is 3.33e+01 Lip. smooth. 1.23e-04 strong convexity.
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SVRG solving smoothed hinge loss SVM on w8a. 
Loss gradient is 3.33e+01 Lip. smooth. 2.01e-05 strong convexity.
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Empirical Affinity SVRG (Alg. 4)
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SVRG solving smoothed hinge loss SVM on Dorothea. 
Loss gradient is 3.33e+01 Lip. smooth. 1.25e-03 strong convexity.
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Local SVRG (Alg. 1)

Empirical Affinity SVRG (Alg. 4)
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SVRG solving smoothed hinge loss SVM on ijcnn1. 
Loss gradient is 3.33e+01 Lip. smooth. 5.22e-06 strong convexity.
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Figure 5: SVRG variant results on four additional datasets. For the Mushroom dataset, the global
plot occludes the uniform.
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