Supplement to 'b-bit Marginal Regression’:
proofs and derivations

A Proof of Proposition 1

The proof relies on concentration properties of y2-random variables which can be
found in [4], Section J.

Lemma A.1. Let Z ~ x?(d). Then we have for any t € (0,1/2)

P(Z>d(1+1t)) <exp (—f—ﬁdﬁ) :
P(Z <d(1—1t)) <exp (—idﬁ) :

Proof. (Proposition 1) Note that E[n] = E[ATy/m]| = E[AT (Az* + ¢)/m] = 2%,
where the expectation is w.r.t. both A and e. In the sequel, we will show that

Aly logn
: < Collla*la+o)y/—m (1)

m
with probability at least 1 — cn™!, for suitable constants ¢,Cq > 0. This already
implies the assertion of the proposition, as shown below. Denote

Q") = {J‘ € [nl: laj| > 2Co(la" [ + o)y loin} C 5.

Note that under the event (1), Q(z*) C S(Z). Indeed, by the definition of Z, its
support S(Z) contains the indices corresponding to the s largest entries of 1 (in absolute
magnitude), and under event (1) it holds that min;co =) [7;| > max;cup s+ 15| We
thus bound

.
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max [, Bly]| = max |~/ B

1<j<n 1<j<n

1Z — 2% ||oo = max{[|Zq() — 2G @) lloos ITs(z N@E) — TE@ Nl 1Zmpns@) oo}
< max{[|ng@+) — Elgu)llle: [1s@na@) — ENs@naa]lle
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(1) logn
< 200(||a* |2 + o)y 2.
m

To conclude that this yields the assertion of the proposition with C' = 2v/2Cy, we use

17— 2*ll2 < VIZ = 2ol — 2" o0 < V25]|7 — 2" .

The bound (1) can be established by standard concentration arguments. Applying
the second result from Lemma A.1 with d = m, t = \/8log(n)/m, and using a union
bound, we obtain under the assumption that m > 32logn

1

P (i 413 < m — vin/Slog(m ) < &

SJ)sn n
1
= P ([min JA3/m < 1 Blogim ) < 1.
SJ)sn n




Similarly, invoking the first result of Lemma A.1 under the assumption that m >
(128/3)logn

P ( max || A;]|3/m > 1+ +/(32/3) log(n)/m) <1/n

1<j<n

15 > <1/n.
— P (45182 2m) <1/

Moreover, conditional on the event (¢, {l[4;ll2 < r} with £ = v2m, we have

1
P Jmax. Eg (Aj, Ap) | > tlla*|la | < 2nexp(—m?t?/(26%)) < 2nexp(—mt?/4),
(2)

by a standard Gaussian tail bound. Hence, choosing ¢t = y/8log(n)/m, we obtain

1
P | max —Z(Aj,Ak)xZ > ||z*||2y/8log(n)/m | <2/n.

1<jsn|m !
k#j

Altogether, we have with probability at least 1 — 4/n

|A; (Az™)/m — 27| < ’(1— —

1
+ EZ<Aj,Ak>wz < Col|z"[[2v/1og(n)/m,

k#j

simultaneously for all j € [n], thereby establishing (1) with Cyp = /32/3 + /8 for
o = 0. The case o > 0 follows immediately by the triangle inequality

T * * T * * T .
|AJ— (Ax +5)/m—xj| < |Aj (Az )/m—x]—| + |Aj e/ml|, j € [n],

and a concentration inequality for max,<j<, |A] e/m| similarly to (2). O

B Proof of Lemma 1

Proof. Let ) £ S C {1,...,n}. Then for any unit vector & supported on S, (n,z) <
Ins|l2 which is attained by setting xs = ns/||ns|l2. Consequently,

ol i e~ @) = i = lInsl-

The optimization problem on the right hand side can be solved by finding the index
set of the s largest component (in absolute magnitude) in 7. This yields the claim. O

C Proof of Proposition 2

For the next proof (and others below), we need the following Lemma

Lemma C.1. For all x € R™, we have E[(x,n)] = X (z,x%). In particular, by consid-
ering x = e;, j € [n], where {e;}7_; is the standard basis of R", we have E[n] = \x},.



Proof.

= E[<x ATy/m>

= E[(Az,y) /m]

= E[(a1,z) y1]

=EE[y (a1,2) |a1]

:E[9(< ai, u> <a1a$>]

=E [9((a1, ) <a1,x” —l—xLH

= (z,z;,) E[0(g)g], g ~ N(0,1)
= Az, z}),

where in the third line from the bottom zl = (x, %) 2* and z* denote the orthogonal
projection of z on z and its orthogonal complement, respectively. We then use
that (a1, 2m) and (a1,2},) are Gaussian and uncorrelated and hence also independent
random variables. U

Proof. (Proposition 2) Since ¥ is a minimizer and z}, is a feasible solution, we have
= (%) < = () -
After re-arranging, we obtain that
(ry =%,n = E[n)) + (7, — 7, E[n]) < 0.

Using Holder’s inequality and Lemma C.1, this implies

(@ =2, E[n)) < [lay, =21 lln — B[]

(wy =@ Azy) < Vg = Zllollay — Zl2lln — Efn]lles

ey~ 21 < Vsl — &l lln — Bl

For the last inequality, we have used that

oy, = 23 < 200 = (@, 27)) = 2((x}, 23) — (F,27) = 2((2}, 2}, — 7)),

because ||z}|2 = 1 and ||Z]|2 < 1. Eventually, we obtain that

slogn
I — 7l < 235 28",
m
with probability at least 1 — 1/n by the definition of V. O

D Proof of Proposition 3

Proof. Consider s = |{j : |n;| > ¥y/log(n)/m}| and the optimization problem
min —(n,x) .
willzllo<L[lzllo<s m.2)

Note that for j ¢ S(z*), E[n;] = 0 in view of Lemma C.1, and further by the definition
max

of ¥, we have
jdnax n;| < U+/log(n

with probability at least 1 —1/n. Conditional on this event, we therefore have S(Z) C
S(z*). Similarly we have

n;| > |E[n;]| — +y/log(n)/m = )il — ¥+/log(n)/m

min
jes(z*)

Thus as long as

min_|(zy,);| > (29/A)v/1og(n)/m

JES(z*)

n;| > Uy/log(n)/m and consequently S(z) = S(z*). O

it holds that min;eg(,«)




E Proof of Lemma 2

The proof of Lemma 2 requires three additional lemmas.

Lemma E.1. Let g ~ N(0,1) and ¢ : R — R be any differentiable function satisfy-
ing |((x)xp(x)] — 0 as  — oo, where ¢ denotes the standard Gaussian pdf. Then

E[C(9)g] = E[('(9)]-

Proof. Observe that ¢'(x) = —z¢(x), x € R. Using integration by parts we thus have
Elo)d] = [ aC@o()de = )o@+ [ ¢ o) da
- [ ¢@ola) o =B (o)L

Lemma E.2. For all a, 5 >0 and all p,v € R, one has

/oo 1¢( u)l¢(x—y)d$: 1 p w—v
oo 15} I6] /B2 + a2 /B2 + a2 )"
Proof. Using elementary manipulations, one computes
<1 —p\1 (z—v
/,oo 2o () 3o (557 o

Sl )= e
i P
- 271'045 ( 2(a?

oe)-
L)) o)

(b —v)?
FW (gt )
O

Lemma E.3. Let h be a random variable with a N(0,0?)-distribution. Then for any
a,b € RU{—o00,0}, a < b, we have

¢(a/o) — ¢(b/o)
®(b/o)— P(ajo)’

where ® denotes the standard Gaussian cdf.

Elh|h € (a,b)] =0

Proof. We have

E[hlh € (a,b)] =

B(b/o) — a/a/ Fo@/o)d

Using the change of variables z = /0 and the fact that ¢'(z) = —z¢(z), the result
follows. O



Before finally turning to the proof of Lemma 2, let us recall the definition of the b-
bit quantization map given at the end of Section 2. In that definition we have used
the symmetry of the Gaussian distribution around 0 so that a partitioning of R
automatically translates into a partitioning of R. For parts of the proofs, however, it
is more convenient to work with the following alternative (albeit equivalent) definition.

Definition E.1. Deﬁne Ql = 77—\),[(, QQ = 77—\),[(,1,.. .,QK = *Rl, QK+k = Rk,
k€ [K] and [i = (—ftxc, - i1, ft1,-- -5 o). Then an equivalent definition of the
quantization map is given by z — Q(z) = Ziil nkl(z € Q). Likewise, we define
T T

t=(—tx,~tk—1,.--,t0,t1,. -, tk—1,tK)

Proof. (Lemma 2) Recall that A\ = Ay, = Mo (t, ) is defined by A = E[g6(g)],

N(0,1), where the map 6 is in turn defined by the relation E[y;|a1] = 0(z1) (here
and below z; = (a;, x*), i € [m]). We have

21)
Elyilai] = Z,UkP y1 € Qk)

k=1
2b

= Zﬁk P(z1 +¢e1 € Qk)
k=1
21)

=Y Pz +er € (fturn))
k=1

= 3 @ ((frir — 21)/0) — (e — 2)/0)}
k=1

We conclude that the map 6 is defined by

Zuk {@((thyr — 2)/0) — ®((tr — 2)/0) } -

Next we invoke Lemma E.1 which yields A = E[z20(z)] = E[0'(z)]. We have

=S i { 20l /)~ 2ol ~ B)fo) ).
k=1

With the help of Lemma E.2, we compute

Zﬂk/{ ztk)/o)—¢((ztk+1)/a)} #(2) dz.

th o1
kz VI+o? 2{¢<\/1+02>¢<\/1+o2>}'




Applying Lemma E.3, the last expression can be rewritten as follows:

i i
Z“’C ito {¢<m>_¢<ﬁ>}

7z~ E[glg € ( tk,thrl {@(?kﬂ/\/lJr—UQ)*‘I)(Zk/m)}a

1402

N(0,1+ 0?)
b
1 2

=1 >l E[glg € QI P(g € Q)
=1

1 K
= > E[glg € Ri)P([g] € Ry)

1L .2
140 k=1

1
= —F t), E(t
s (alt), B() o ),
where the penultimate line follows from the symmetry of the Gaussian distribution
around zero; at this point, we convert the partitioning of R into {Qy}2X, back to the
partitioning of Ry into {Ry}1_, (cf. the remark preceding Definition E.1). The last
line follows by comparison with the definitions in Lemma 2. O

F Proof of Lemma 3
Proof. Let us recall the definition of ¥ = U}, , = ¥y, ,(t, p):

=inf{C > 0: P{maxi<j<n |n; — E[n;]| < C+/log(n)/m} >1—1/n.}.

Expanding n; — E[n;], we obtain that

1 m
15 = EZ ijYi — zgyi])-

Note that since the A;; are i.i.d. N(0, 1) variables while the {y;} are bounded random
variables, the { A;;y; —E[A;;y:]} 72, areii.d. zero-mean sub-Gaussian random variables,
j € [n], cf. e.g. [3]. By using a standard tail bound for such random variables and
a union bound over {1,...,n}, C can be chosen proportional (i.e. up to a universal
constant) to the maximum of the sub-Gaussian norms of {Ay;y1 — E[A1y1]}7_, [3].
In most cases, however, it is involved to compute the sub-Gaussian norm exactly.
However, it is well-known that for a zero-mean Gaussian random variable, the sub-
Gaussian norm is proportional to its standard deviation; the precise value of the
proportionality constant is not relevant to our analysis. In the sequel, we thus resort
to a normal approximation as |z5| — 0, j € [n], m — oo, and evaluate the standard
deviation of the limiting distribution. For this purpose, we derive the pdf f; of the
random variables Ai;y1, j € [n]. Setting X; = Ay, ¥ = y1, and using a well-known
expression for the pdf of a product of random variables (cf. [2], §4.7), we obtain that

fi(z) = Z ﬁijy(z/q,fﬁ

gerange(Q)

= Y PO =X =

q€range(Q)

K
3 iqs(z/uk) (P(Y = juelX; = /) + P (Y = il X; = 2/ — )}
k=1



In the second line, the joint density fx,y of (X;,Y) is factorized into the marginal
density of X, and the conditional density (here discrete) of Y given X;. In the third
line, we use that the range of Q is {—px, ..., —p1, p1, ..., s } and that ¢(x) = ¢(—x)
for all x € R. We now derive expressions for the conditional probabilities inside the
curly brackets. Recall that Y = py if and only if Y = (a1,2*) + oe1 € (tr_1,tr),
k € [K]. We need to compute the probabilities of the events {Y € (tp_1,t)|X; =
2/} and {Y € (—tg, —tx—1)|X; = 2/ — ur}. Note that (X;,Y) follow a bivariate
Gaussian distribution with mean zero and the following second moments: Var(X;) =1,
Var(Y) = 1 + 02, Cov(X,,Y) = x}. Denoting p = z7/v1+ 02 and making use of
closed form expressmns for the two conditional distributions (see e.g. [1]) associated
with a bivariate Gaussian distribution, we obtain for any k € [K]

P (Y = uk|X; = z/px) = P(Y € (to—1, t4)|X; = 2/pz)
B (e N il GO0 T Y W (0 W V4 Wil G 20))
V1= 721+ o2 V1= 7p2V/1+ o2 ’

Likewise, for any k € [K] we have

P(Y——/LHX —Z/ k) Y —tk, —tp—1 |X —Z/ k)
U 1= pV1+ 0% (—z/ur) —t — pV1+02(—2/p)
V1= p2V1+ 0?2 V1= p2V1+ 0?2
o (VP )\ (s = VTP /)
V1= p2V1+ 0?2 V1= p2V1+ 0?2

using that ®(—z) = 1 —®(z) for all x € R. Altogether, we conclude that for all j € [n]

L . te —pV1i+o2(z/pe) \ o [ te=1 = pVI+ 02 (2/ k)
9=2 ¢(/“k>2{‘1’< mm) ‘I)( VIVt o )}

Now note that as |acj| — 0, all f;s converge pointwise to

Z w/uk{ (@(ty/V/T+02) = B(ts1/V1+07) }

P[] € m(t))u—lkqxx/uk), G~ N(0,1+0%)

MwiMwi

ak(t)ﬁ‘b(x/,uk)-

B
Il

1

with a(t) as defined in Lemma 2. Observe that fy equals the density of a Gaussian
scale mixture with mixture proportions a(t) and scales {yu}%_ ;. The standard devi-

ation of this distribution is given by /{a(t), u © w).

In light of the above, we conclude that as |z}| — 0, Aijy1 — E[A1y1] converges
to the Gaussian scale mixture with density fo, j € [n]. By the central limit the-
orem, /m(n; — E[n;]) converges to a Gaussian distribution with standard devia-
tion y/(a(t),p © ) as m — oo, j € [n]. Consequently, the sub-Gaussian norm of
vm(n; — E[n;]) is proportional to \/(a(t), u © p) as m — oo, j € [n]. O

G  Proof of Theorem 1

Proof. Consider the optimization problem

LG
min Q4 (t, u) = min ———
t.p t.p



By Lemma 2 and Lemma 3, the above minimization problem is equivalent to
(aft), p © p)
(a(t), E(t) © p)’

where the term o2 + 1 in A, has been dropped as it does not depend on t or u. We
start by claiming that

IR}P R(t,p), R(t,p)= (3)

o = e Ew o EW) @

for all p with distinct, non-zero entries. The above lower bound is attained by choosing
w o E(t) (note that the minimizing p is only defined up to a positive constant as
R(t,cp) = R(t, p) for all ¢ > 0). Inequality (4) follows from the Cauchy-Schwarz
inequality. Denote by A(t) the diagonal matrix whose diagonal is given by the entries
of a(t). We then have

(a(t), B(t) © p) = <A1/2<t>E<t>, A2(6))

< (A2 () B(t), A2 () B(0)\ /(A2 (6) . AV2(0)p1)

with equality holding if and only if
AZ)E(t) = cA2(t)p & E(t) = cp,

for some ¢ > 0, where the above < follows from the fact that the entries of t are
required to be distinct so that the matrix A'/? is regular. We conclude that

1
min R(t, p) = min R(t, E(t)) = min . 5
pp () = R BO) =i e B 0 B o)
We will now show that the above minimization problem in t is equivalent to the b-bit
Lloyd-Max quantization problem of a random variable h ~ N(0,1 + ¢2), which we
re-state here for convenience:

min B[{h — Q(h;t, 1)}*) = min E[{h — sign(h) Sizy uul (bl € Ri(6))}] (6

For the above problem, it is not hard to see that for any fixed choice of t, the minimizing
p*(t) is given by u(t) = E[hlh € Ri(t)] = Ex(t), k € [K], where we recall that Ej(t)
is the k-th component of E(t) as appearing above. To finish the proof of the first part
of the Theorem 1, it thus remains to show that after substituting p*(t) back into (6),
the resulting minimization problem in t is equivalent to (5). We have

mtinE { — sign(h ZI |h] € Ri(t) )E[h|h € Rk(t)]}

=2min E
t

I(h € Ry.(t))(h — E[h|h € Rk(t)])Q]

=2minE
t

7 T

I(h € Ry(t)) {n* — 2h E[h|h € Ry (t)] + E[h|h € Rk(t)]Q}]

ol
Il

1

— E[h?] + thin{ 2 E[hlh € Ri(t)] E[I(h € Ri(t))h]+

k=1
+) P(h € Ry(t)) E[hlh € Ri(t )]}
N k=1
=1+ min — > E[h|h € Ri(t)]* P(|h| € R (t))
k=1

=1+ min— (E(t) © E(t), a(t)),



which establishes the equivalence to (5) as claimed.

We now prove the second part of the Theorem. Denote by t{; the Lloyd-Max optimal
thresholds for o = 0, i.e. for a N(0,1) variable. Clearly, t* = t% = V1 + o2t{; for any
o > 0. Evaluating 3 (t*, u*), we obtain in view of (5)

1+0?
Via(t), B(t*) © E(t"))
_ 1+ o2

V{@(tsVIT0?), EtgvI+o?) o E(tsVI+ o))

Qb(t*, /1,*) X

Evaluating the expression in the denominator, we obtain that

ar(tgyV1+02) =P(|g] € Ri(ti V1 +02)) = P(|g] € Ri(t])), k € [K],

where g ~ N(0,1+ 02), g ~ N(0,1). Moreover, with the help of Lemma E.3

B(t3V/1+0%) = (Blglg € RultsV/T+ 7))

k=1

= Vi+a2(Efglge Rk(tg)])f—l

Putting together the pieces, we obtain that
140 VT
View(t), (1+ 02 Eo(t) © Eo(t)) v/ Avolts, po)

where the a(t), Eo(t) and Ay o(t, ) refer to the definitions of a(t), E(t), Ay (t, p) for
o = 0. This completes the proof. O

Qb(t*a l"’*) X

H Derivations for the paragraph 'Beyond additive
noise’

We fix ¢ = 0 and the corresponding Lloyd-Max optimal choices t = t§, u = pg so
that i, = Eglg € Re], g ~ N(0,1) with Ry, = Ry(t5), k € [K].
Mechanism (I)

In order to evaluate A = Ay p,, we first need to derive an expression for the corresponding
map . Recalling Definition E.1, we have

Elyi|a:] = Zukl (a1,2%) € Q) +po—y ZMIJ (a1,27) ¢ Qi)
and thus
217
0(z)=(1 ZMkIZ’EQk +P Z,uk] ¢ Q)
k=1



It follows that for g ~ N(0,1)
~ 1
Moy = Bly 0]l = > { (1= 9 Blal(g € Q) + b Bial(o ¢ Q)] }

=S { (1= D BloTls € 0] + gy Blat1 ~ Iy € 0]

2

= ﬁk{(lp)%}E[gI(gerﬂ

:Zp(lglERk)E[g|geRk]2{(1_p)_ p }

=<ao<t3>,Eo<ts>@Eo<ts>>{(1—p>— P }

26 —1
p
)\b,o{(lp)2b1}7

where ag(tf) and Ey(t) are defined at the end of the preceding proof. From the last
expression we deduce the breakdown point p, = 1 — 1/2°.

For evaluating Uy, ,, (up to a positive constant), we make use of the asymptotic expres-
sion ¥y o o v/(a(t), 0 © p) derived in Lemma 3. The only thing that changes under
Mechanism (I) are the probabilities e(t) which become

ar(t) = P(lg| € Ri(£))(1 =) + 515 > Plgl € Rult)), k€ [K].
1+k

Mechanism (II)
Following the same route as for Mechanism (I), one derives

0(z) = (1—p) Y fnd(z € Q) + p{—pnxl(z>0)+ puxl(z < 0)}

k=1

and accordingly for g ~ N(0,1)

Moy =E[g0(g)] = (1-p) > _P(lg| € Ri) Elglg € Ri]* — pux Blglg > 0]
k=1

=1 =p) Ao —Pur\2/m

so that the breakdown points results as p, = Ap,0/ (b0 +r/2/7). As for Mechanism
(IT), Wy, is obtained by evaluating the changes in a(t). We have

ar(t) = (1 —p) P(lg] € Ri(t)), ke[K—1],

ak(t)=p Y P(lgl € Ri(t)) +P(lg| € Ri(t)).
k=1

I Proof of Proposition 4

Proof. In the sequel, we derive tail bounds of the form

P() > (1+¢€))") < exp(—eme?),
P(1) < (1 —e)*) < exp(—2cme?).

10



for ¢ € (0,1) and ¢ = 2{¢/(t/1*)}?. This implies that the probability of the event
¥

—1
w*

>e€

is upper bounded by 2 exp(—cme?).
1) Upper tail

H$2O+@WWP<¢1GS+mq)ZO+@W>

e (5 <2 (1) -
p(Z-e[2]<2{o (5 ) -2 (3)})

t t /v
Y (R Y U d
((1 + E)w*> <¢) /tl/<w*<1+e>> o) du

‘We have

« tl g
<ol /v7) 5 = 0 /)
for £ € (0,1). Thus
P() > (1+2)07) <P (- —E || <eg/(ta /o))

2) Lower tail

Similarly, we obtain that

P(@g(1—a)w*)§P<%—E[%} 22{@<(1—tﬁ) _q)(%)})

We have

" B[ h s o
® (m) - @ (%) = /tl/w* d(u) du > d(t1 /1 )% T2 (t1/Y")e.

Thus,

P < (1-2)") <P (B[] < 2e(=¢/(t1/07)) -

Note that m; is a Binomial random variable. Applying Hoeffding’s inequality to 1)
and 2), we obtain that

P(¢ > (14 e)p*) < exp (—2me{¢/ (t:1/47)}?)
P()) < (1 —e)p*) < exp (—4me{¢/ (t1/v*)}?) .

which proves the claim made above. O

Y
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