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1 Stochastic Combinatorial Bandits: Regret Lower Bounds

1.1 Proof of Theorem 1

To derive regret lower bounds, we apply the techniques used by Graves and Lai [1] to investigate
efficient adaptive decision rules in controlled Markov chains. First we give an overview of their
general framework.

Consider a controlled Markov chain (Xn)n≥0 on a finite state space S with a control set U . The
transition probabilities given control u ∈ U are parameterized by θ taking values in a compact
metric space Θ: the probability to move from state x to state y given the control u and the parameter
θ is p(x, y;u, θ). The parameter θ is not known. The decision maker is provided with a finite set
of stationary control laws G = {g1, . . . , gK}, where each control law gj is a mapping from S to
U : when control law gj is applied in state x, the applied control is u = gj(x). It is assumed that if
the decision maker always selects the same control law g, the Markov chain is then irreducible with
stationary distribution πgθ . Now the reward obtained when applying control u in state x is denoted by
r(x, u), so that the expected reward achieved under control law g is: µθ(g) =

∑
x r(x, g(x))πgθ (x).

There is an optimal control law given θ whose expected reward is denoted by µ?θ = maxg∈G µθ(g).
Now the objective of the decision maker is to sequentially select control laws so as to maximize
the expected reward up to a given time horizon T . As for MAB problems, the performance of a
decision scheme can be quantified through the notion of regret which compares the expected reward
to that obtained by always applying the optimal control law.

Proof. The parameter θ takes values in [0, 1]d. The Markov chain has values in S = {0, 1}d. The set
of controls corresponds to the set of feasible actionsM, and the set of control laws is alsoM. These
laws are constant, in the sense that the control applied by control law M ∈ M does not depend on
the state of the Markov chain, and corresponds to selecting action M . The transition probabilities
are given as follows: for all x, y ∈ S,

p(x, y;M, θ) = p(y;M, θ) =
∏
i∈[d]

pi(yi;M, θ),

where for all i ∈ [d], if Mi = 0, pi(0;M, θ) = 1, and if Mi = 1, pi(yi;M, θ) = θyii (1 − θi)1−yi .
Finally, the reward r(y,M) is defined by r(y,M) = M>y. Note that the state space of the Markov
chain is here finite, and so, we do not need to impose any cost associated with switching control
laws (see the discussion on page 718 in [1]).

We can now apply Theorem 1 in [1]. Note that the KL number under action M is

klM (θ, λ) =
∑
i∈[d]

Mikl(θi, λi).
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From [1, Theorem 1], we conclude that for any uniformly good rule π,

lim inf
T→∞

Rπ(T )

log(T )
≥ c(θ),

where c(θ) is the optimal value of the following optimization problem:

inf
xM≥0,M∈M

∑
M 6=M?

xM (µ? − µM (θ)), (1)

s.t. inf
λ∈B(θ)

∑
Q 6=M?

xQklQ(θ, λ) ≥ 1. (2)

The result is obtained by observing that B(θ) =
⋃
M 6=M? BM (θ), where

BM (θ) = {λ ∈ Θ : M?
i (θ)(θi − λi) = 0,∀i, µ?(θ) < µM (λ)}.

�

1.2 Proof of Theorem 2

The proof proceeds in three steps. In the subsequent analysis, given the optimization problem P, we
use val(P) to denote its optimal value.

Step 1. In this step, first we introduce an equivalent formulation for problem (1) above by simpli-
fying its constraints. We show that constraint (2) is equivalent to:

inf
λ∈BM (θ)

∑
i∈M\M?

kl(θi, λi)
∑
Q∈M

QixQ ≥ 1, ∀M 6= M?.

Observe that:∑
Q6=M?

xQklQ(θ, λ) =
∑
Q6=M?

xQ
∑
i∈[d]

Qikl(θi, λi) =
∑
i∈[d]

kl(θi, λi)
∑
Q6=M?

QixQ.

Fix M 6= M?. In view of the definition of BM (θ), we can find λ ∈ BM (θ) such that λi = θi,∀i ∈
([d] \M) ∪M?. Thus, for the r.h.s. of the M -th constraint in (2), we get:

inf
λ∈BM (θ)

∑
Q 6=M?

xQklQ(θ, λ) = inf
λ∈BM (θ)

∑
i∈[d]

kl(θi, λi)
∑
Q6=M?

QixQ

= inf
λ∈BM (θ)

∑
i∈M\M?

kl(θi, λi)
∑
Q

QixQ,

and therefore problem (1) can be equivalently written as:

c(θ) = inf
xM≥0,M∈M

∑
M 6=M?

xM (µ? − µM (θ)), (3)

s.t. inf
λ∈BM (θ)

∑
i∈M\M?

kl(θi, λi)
∑
Q

QixQ ≥ 1, ∀M 6= M?. (4)

Next, we formulate an LP whose value gives a lower bound for c(θ). Define λ̂(M) = (λ̂i(M), i ∈
[d]) with

λ̂i(M) =

{
1

|M\M?|
∑
j∈M?\M θj if i ∈M \M?,

θi otherwise.

Clearly λ̂(M) ∈ BM (θ), and therefore:

inf
λ∈BM (θ)

∑
i∈M\M?

kl(θi, λi)
∑
Q

QixQ ≤
∑

i∈M\M?

kl(θi, λ̂i(M))
∑
Q

QixQ,
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Then, we can write:

c(θ) ≥ inf
x≥0

∑
M 6=M?

∆MxM (5)

s.t.
∑

i∈M\M?

kl(θi, λ̂i(M))
∑
Q

QixQ ≥ 1, ∀M 6= M?. (6)

For any M 6= M? introduce: gM = maxi∈M\M? kl(θi, λ̂i(M)). Now we form P1 as follows:

P1: inf
x≥0

∑
M 6=M?

∆MxM (7)

s.t.
∑

i∈M\M?

∑
Q

QixQ ≥
1

gM
, ∀M 6= M?. (8)

Observe that c(θ) ≥ val(P1) since the feasible set of problem (5) is contained in that of P1.

Step 2. In this step, we formulate an LP to give a lower bound for val(P1). To this end, for any
suboptimal basic action i ∈ [d], we define zi =

∑
M MixM . Further, we let z = [zi, i ∈ [d]]. Next,

we represent the objective of P1 in terms of z, and give a lower bound for it as follows:

∑
M 6=M?

∆MxM =
∑

M 6=M?

xM
∑

i∈M\M?

∆M

|M \M?|

=
∑

M 6=M?

xM
∑

i∈[d]\M?

∆M

|M \M?|
Mi

≥ min
M 6=M?

∆M

|M \M?|
·
∑

i∈[d]\M?

∑
M ′ 6=M?

M ′ixM ′

= min
M 6=M?

∆M

|M \M?|
·
∑

i∈[d]\M?

zi

= β(θ)
∑

i∈[d]\M?

zi.

Then, defining

P2: inf
z≥0

β(θ)
∑

i∈[d]\M?

zi

s.t.
∑

i∈M\M?

zi ≥
1

gM
, ∀M 6= M?,

yields: val(P1) ≥ val(P2).

Step 3. Introduce setH satisfying property P (θ) as stated in Section 4. Now define

Z =
{
z ∈ Rd+ :

∑
i∈M\M?

zi ≥
1

gM
, ∀M ∈ H

}
,

and

P3: inf
z∈Z

β(θ)
∑

i∈[d]\M?

zi.
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Observe that val(P2) ≥ val(P3) since the feasible set of P2 is contained in Z . The definition of H
implies that

∑
i∈[d]\M? zi =

∑
M∈H

∑
i∈M\M? zi. It then follows that

val(P3) =
∑
M∈H

β(θ)

gM

≥
∑
M∈H

β(θ)

maxi∈M\M? kl(θi, λ̂i(M))

=
∑
M∈H

β(θ)

maxi∈M\M? kl
(
θi,

1
|M\M?|

∑
j∈M?\M θj

) .
The proof is completed by observing that: c(θ) ≥ val(P1) ≥ val(P2) ≥ val(P3). �

1.3 Proof of Corollary 1

Fix M 6= M?. For any i ∈M \M?, we have:

kl
(
θi,

1

|M \M?|
∑

j∈M?\M

θj

)
≤ 1

|M \M?|
∑

j∈M?\M

kl (θi, θj) (By convexity of kl(., .))

≤ 1

|M \M?|
∑

j∈M?\M

(θi − θj)2

θj(1− θj)

≤ 1

|M \M?|
∑

j∈M?\M

(1− θj)2

θj(1− θj)

≤ 1

|M \M?|
∑

j∈M?\M

(
1

θj
− 1

)
≤ 1

minj∈M?\M θj
− 1

≤ 1

a
− 1,

where the second inequality follows from the inequality kl(p, q) ≤ (p−q)2
q(1−q) for all (p, q) ∈ [0, 1]2.

Moreover, we have that

β(θ) = min
M 6=M?

∆M

|M \M?|
≥ ∆min

maxM |M \M?|
=

∆min

k
.

Applying Theorem 2, we get:

c(θ) ≥
∑
M∈H

β(θ)

maxi∈M\M? kl
(
θi,

1
|M\M?|

∑
j∈M?\M θj

) ≥ ∆mina

k(1− a)
|H|,

which gives the required lower bound and completes the proof. �

1.4 Examples of Scaling of the Lower Bound

1.4.1 Matchings

In the first example, we assume that M is the set of perfect matchings in the complete bipartite
graph Km,m, with |M| = m! and d = m2. A maximal subsetH ofM satisfying property P (θ) can
be constructed by adding all matchings that differ from the optimal matching by only two edges, see
Figure 1 for illustration in the case of m = 4. Here |H| =

(
m
2

)
and thus, |H| scales as m2 = d.
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(a) M? (b) (c) (d) (e) (f) (g)

Figure 1: Matchings in K4,4: (a) The optimal matching M?, (b)-(g) Elements ofH.

(a) M? (b) (c) (d) (e) (f) (g)

Figure 2: Spanning trees in K5: (a) The optimal spanning tree M?, (b)-(g) Elements ofH.

1.4.2 Spanning trees

Consider the problem of finding the minimum spanning tree in a complete graph KN . This corre-
sponds to lettingM be the set of all spanning trees inKN , where |M| = NN−2 (Cayley’s formula).
In this case, we have d =

(
N
2

)
= N(N−1)

2 , which is the number of edges of KN , and m = N − 1.
A maximal subset H of M satisfying property P (θ) can be constructed by composing all span-
ning trees that differ from the optimal tree by one edge only, see Figure 2. In this case, H has
d−m = (N−1)(N−2)

2 elements.

1.4.3 Routing in a grid

Now we give an example, in which |H| is not scaling as Ω(d). Consider routing in an N -by-N
directed grid, whose topology is shown in Figure 3(a) where the source (resp. destination) node is
shown in red (resp. blue). HereM is the set of all

(
2N−2
N−1

)
paths with m = 2(N − 1) edges. We

further have d = 2N(N − 1). In this example, elements of any maximal set H satisfying P (θ) do
not cover all basic actions. For instance, for the grid shown in Figure 3(a), the two edges incident to
the right lower corner do not appear in any arm in H. It can be easily verified that in this case, |H|
scales as N rather than N2 = d.

1.5 Lower Bound Example

Here we provide an example, motivated by [2], to investigate the tightness of the regret bounds of
our algorithms. Consider the topology shown in Figure 4, where there are d

m paths, each consisting
of m links. Let parameter θ be defined such that

θi =

{
0.5 if i belongs to the first path
0.5− δ otherwise.

The first path is the optimal path and for any M 6= 1 we have: ∆M = ∆ = mδ. Since various paths
are independent, this problem reduces to a classical MAB problem with d

m arms. It is observed that
the total reward of each path is the sum of m independent Bernoulli random variables with the same
parameter. Hence, it is distributed according to a binomial distribution. It then follows that

5



(a) (b) (c)

(d) (e)

Figure 3: Routing in a grid: (a) Grid topology with source (red) and destination (blue) nodes, (b)
Optimal path M?, (c)-(e) Elements ofH.

Figure 4: Lower bound example

lim inf
T→∞

R(T )

log(T )
≥

∑
M 6=M?

∆M

KL(Bin(m, 0.5− δ),Bin(m, 0.5))

=

(
d

m
− 1

)
· ∆

mkl(0.5− δ, 0.5)

≥ (d−m)∆

4m2δ2

=
d−m

4∆
,

where the first equality follows from the fact that the KL divergence between two Binomial distri-
butions with respective parameters (m,u) and (m, v) is mkl(u, v), and where the last step is due to
inequality kl(x, y) ≤ (x−y)2

y(1−y) for all x, y ∈ (0, 1).
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2 Stochastic Combinatorial Bandits: Regret Analysis of ESCB

We use the convention that for v, u ∈ Rd, vu = (viui)i∈[d].

2.1 A concentration inequality

We first recall Lemma 1, a concentration inequality derived in [3, Theorem 2].

Lemma 1 There exists a number Cm > 0 depending only onm such that, for allM and all n ≥ 2:

P[(Mt(n))>kl(θ̂(n), θ) ≥ f(n)] ≤ Cmn−1(log(n))−2.

2.2 Proof of Theorem 3

First statement:

Consider q ∈ Θ, and apply the Cauchy-Schwartz inequality:

M>(q − θ̂(n)) =

d∑
i=1

√
ti(n)(qi − θ̂i(n))

Mi√
ti(n)

≤

√√√√ d∑
i=1

Miti(n)(qi − θ̂i(n))2

√√√√ d∑
i=1

Mi

ti(n)

By Pinsker’s inequality, for all (p, q) ∈ [0, 1]2 we have 2(p− q)2 ≤ kl(p, q) so that:

M>(q − θ̂(n)) ≤

√
(Mt(n))>kl(θ̂(n), q)

2

√√√√ d∑
i=1

Mi

ti(n)

Hence, (Mt(n))>kl(θ̂(n), q) ≤ f(n) implies:

M>q = M>θ̂(n) +M>(q − θ̂(n)) ≤M>θ̂(n) +

√√√√f(n)

2

d∑
i=1

Mi

ti(n)
= cM (n).

so that, by definition of bM (n), we have bM (n) ≤ cM (n).

Second statement:

If (Mt(n))>kl(θ̂(n), θ) ≤ f(n) then, by definition of bM (n) we have bM (n) ≥ M>θ. Therefore,
using Lemma 1, there exists Cm such that for all n ≥ 2 we have:

P[bM (n) < M>θ] ≤ P[(Mt(n))>kl(θ̂(n), θ) ≥ f(n)] ≤ Cmn−1(log(n))−2,

which concludes the proof.

2.3 Proof of Theorem 4

We recall the following facts about the KL divergence kl, for all p ∈ [0, 1]:

(i) q 7→ kl(p, q) is strictly convex on [0, 1] and attains its minimum at p, with kl(p, p) = 0.

(ii) Its derivative with respect to the second parameter q 7→ kl′(p, q) = q−p
q(1−q) is strictly

increasing on (p, 1).
(iii) For p < 1, we have kl(p, q) →

q→1−
∞ and kl′(p, q) →

q→1−
∞.

Consider M and n fixed throughout the proof. Define I = {i ∈ M : θ̂i(n) 6= 1}. Consider q? ∈ Θ
the optimal solution of optimization problem:

max
q∈Θ

M>q

s.t. (Mt(n))>kl(θ̂(n), q) ≤ f(n).
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so that bM (n) = M>q?. Consider i 6∈ M , then M>q does not depend on qi and from (i) we get
qi = θ̂i(n). Now consider i ∈M . From (i) we get that 1 ≥ q?i ≥ θ̂i(n). Hence q?i = 1 if θ̂i(n) = 1.
If I is empty, then q?i = 1 for all i ∈M , so that bM (n) = ||M ||1.

Consider the case where I 6= ∅. From (iii) and the fact that t(n)>kl(θ̂(n), q?) <∞ we get θ̂i(n) ≤
q?i < 1. From the Karush-Kuhn-Tucker (KKT) conditions, there exists λ? > 0 such that for all
i ∈ I:

1 = λ?ti(n)kl′(θ̂i(n), q?i ).

For λ > 0 define θ̂i(n) ≤ qi(λ) < 1 a solution to the equation:

1 = λti(n)kl′(θ̂i(n), qi(λ)).

From (i) we have that λ 7→ qi(λ) is uniquely defined, is strictly decreasing and θ̂i(n) < qi(λ) < 1.
From (iii) we get that qi(R+) = [θ̂i(n), 1]. Define the function:

F (λ) =
∑
i∈I

ti(n)kl(θ̂(n), qi(λ)).

From the reasoning below, F is well defined, strictly increasing and F (R+) = R+. Therefore, λ? is
the unique solution to F (λ?) = f(n), and q?i = qi(λ

?). Furthermore, replacing kl′ by its expression
we obtain the quadratic equation:

qi(λ)2 + qi(λ)(λti(n)− 1)− λti(n)θ̂i(n) = 0.

Solving for qi(λ), we obtain that qi(λ) = g(λ, θ̂i(n), ti(n)), which concludes the proof. �

2.4 Proof of Theorem 5

To prove Theorem 5, we borrow some ideas from proof of [2, Theorem 3].

For any n ∈ N, s ∈ Rd, and M ∈ M define hn,s,M =
√

f(n)
2

∑d
i=1

Mi

si
, and introduce the

following events:

Gn = {(M?t(n))>kl(θ̂(n), θ) > f(n)},
Hi,n = {Mi(n) = 1, |θ̂i(n)− θi| ≥ m−1∆min/2}, Hn = ∪di=1Hi,n,

Fn = {∆M(n) ≤ 2hT,t(n),M(n)}.
Then the regret can be bounded as:

Rπ(T ) = E[

T∑
n=1

∆M(n)] ≤ E[

T∑
n=1

∆M(n)(1{Gn}+ 1{Hn})] + E[

T∑
n=1

∆M(n)1{Gn, Hn}]

≤ mE[

T∑
n=1

(1{Gn}+ 1{Hn})] + E[

T∑
n=1

∆M(n)1{Gn, Hn}],

since ∆M(n) ≤ m.

Next we show that for any n such that M(n) 6= M?, it holds that Gn ∪Hn ⊂ Fn. Re-
call that cM (n) ≥ bM (n) for any M and n (Theorem 3). Moreover, if Gn holds, we have
(M?t(n))>kl(θ̂(n), θ) ≤ f(n), which by definition of bM implies: bM?(n) ≥ M?>θ. Hence
we have:

1{Gn, Hn, M(n) 6= M?} = 1{Gn, Hn, ξM(n)(n) ≥ ξM?(n)}

≤ 1{Hn, cM(n)(n) ≥M?>θ}

= 1{Hn, M(n)>θ̂(n) + hn,t(n),M(n) ≥M?>θ}

≤ 1{M(n)>θ + ∆M(n)/2 + hn,t(n),M(n) ≥M?>θ}
= 1{2hn,t(n),M(n) ≥ ∆M(n)}
≤ 1{2hT,t(n),M(n) ≥ ∆M(n)}
= 1{Fn},
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where the second inequality follows from the fact that eventGn implies: M(n)>θ̂(n) ≤M(n)>θ+
∆min/2 ≤M(n)>θ + ∆M(n)/2.

Hence, the regret is upper bounded by:

Rπ(T ) ≤ mE[

T∑
n=1

1{Gn}] +mE[

T∑
n=1

1{Hn}] + E[

T∑
n=1

∆M(n)1{Fn}].

We will prove the following inequalities: (i) E[
∑T
n=1 1{Gn}] ≤ m−1C ′m, with C ′m ≥ 0 inde-

pendent of θ, d, and T , (ii) E[
∑T
n=1 1{Hn}] ≤ 4dm2∆−2

min, and (iii) E[
∑T
n=1 ∆M(n)1{Fn}] ≤

16d
√
m∆−1

minf(T ).

Hence as announced:

Rπ(T ) ≤ 16d
√
m∆−1

minf(T ) + 4dm3∆−2
min + C ′m.

Inequality (i): An application of Lemma 1 gives

E[

T∑
n=1

1{Gn}] =

T∑
n=1

P[(M?t(n))>kl(θ̂(n), θ) > f(n)]

≤ 1 +
∑
n≥2

Cmn
−1(log(n))−2 ≡ m−1C ′m <∞.

Inequality (ii): Fix i and n. Define s =
∑n
n′=1 1{Hn′,i}. Observe that Hn′,i implies Mi(n

′) = 1,
hence ti(n) ≥ s. Therefore, applying [4, Lemma B.1], we have that

∑T
n=1 P[Hn,i] ≤ 4m2∆−2

min.
Using the union bound:

∑T
n=1 P[Hn] ≤ 4dm2∆−2

min.

Inequality (iii): Let ` > 0. For any n introduce the following events:

Sn = {i ∈M(n) : ti(n) ≤ 4mf(T )∆−2
M(n)},

An = {|Sn| ≥ `},
Bn = {|Sn| < `, [∃i ∈M(n) : ti(n) ≤ 4`f(T )∆−2

M(n)]}.

We claim that for any n such that M(n) 6= M?, we have Fn ⊂ (An ∪ Bn). To prove this, we
show that when Fn holds and M(n) 6= M?, the event An ∪Bn cannot happen. Let n be a time
instant such that M(n) 6= M? and Fn holds, and assume that An ∪Bn = {|Sn| < `, [∀i ∈M(n) :
ti(n) > 4`f(T )∆−2

M(n)]} happens. Then Fn implies:

∆M(n) ≤ 2hT,t(n),M(n) = 2

√
f(T )

2

√√√√ ∑
i∈[d]\Sn

Mi(n)

ti(n)
+
∑
i∈Sn

Mi(n)

ti(n)

< 2

√
f(T )

2

√
m

∆2
M(n)

4mf(T )
+ |Sn|

∆2
M(n)

4`f(T )
< ∆M(n), (9)

where the last inequality uses the observation that An ∪Bn implies |Sn| < `. Clearly, (9) is a
contradiction. Thus Fn ⊂ (An ∪Bn) and consequently:

T∑
n=1

∆M(n)1{Fn} ≤
T∑
n=1

∆M(n)1{An}+

T∑
n=1

∆M(n)1{Bn}. (10)

To further bound the r.h.s. of the above, we introduce the following events for any i:

Ai,n = An ∩ {i ∈M(n), ti(n) ≤ 4mf(T )∆−2
M(n)},

Bi,n = Bn ∩ {i ∈M(n), ti(n) ≤ 4`f(T )∆−2
M(n)}.
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It is noted that: ∑
i∈[d]

1{Ai,n} = 1{An}
∑
i∈[d]

1{i ∈ Sn} = |Sn|1{An} ≥ `1{An},

and hence: 1{An} ≤ 1
`

∑
i∈[d] 1{Ai,n}. Moreover 1{Bn} ≤

∑
i∈[d] 1{Bi,n}. Let each basic

action i belong to Ki suboptimal arms, ordered based on their gaps as: ∆i,1 ≥ · · · ≥ ∆i,Ki > 0.
Also define ∆i,0 =∞. Plugging the above inequalities into (10), we have
T∑
n=1

∆M(n)1{Fn} ≤
T∑
n=1

d∑
i=1

∆M(n)

`
1{Ai,n}+

T∑
n=1

d∑
i=1

∆M(n)1{Bi,n}

=

T∑
n=1

d∑
i=1

∆M(n)

`
1{Ai,n, M(n) 6= M?}+

T∑
n=1

d∑
i=1

∆M(n)1{Bi,n, M(n) 6= M?}

≤
T∑
n=1

d∑
i=1

∑
k∈[Ki]

∆i,k

`
1{Ai,n, M(n) = k}+

T∑
n=1

d∑
i=1

∑
k∈[Ki]

∆i,k
1{Bi,n, M(n) = k}

≤
d∑
i=1

T∑
n=1

∑
k∈[Ki]

∆i,k

`
1{i ∈M(n), ti(n) ≤ 4mf(T )(∆i,k)−2, M(n) = k}

+

d∑
i=1

T∑
n=1

∑
k∈[Ki]

∆i,k
1{i ∈M(n), ti(n) ≤ 4`f(T )(∆i,k)−2, M(n) = k}

≤ 8df(T )

∆min

(m
`

+ `
)
,

where the last inequality follows from Lemma 2, which is proven next. The proof is completed by
setting ` =

√
m. �

Lemma 2 Let C > 0 be a constant independent of n. Then for any i such that Ki ≥ 1:
T∑
n=1

Ki∑
k=1

1{i ∈M(n), ti(n) ≤ C(∆i,k)−2, M(n) = k}∆i,k ≤ 2C

∆min
.

Proof. We have:
T∑
n=1

Ki∑
k=1

1{i ∈M(n), ti(n) ≤ C(∆i,k)−2, M(n) = k}∆i,k

=

T∑
n=1

Ki∑
k=1

k∑
j=1

1{i ∈M(n), ti(n) ∈ (C(∆i,j−1)−2, C(∆i,j)−2], M(n) = k}∆i,k

≤
T∑
n=1

Ki∑
k=1

k∑
j=1

1{i ∈M(n), ti(n) ∈ (C(∆i,j−1)−2, C(∆i,j)−2], M(n) = k}∆i,j

≤
T∑
n=1

Ki∑
k=1

Ki∑
j=1

1{i ∈M(n), ti(n) ∈ (C(∆i,j−1)−2, C(∆i,j)−2], M(n) = k}∆i,j

≤
T∑
n=1

Ki∑
j=1

1{i ∈M(n), ti(n) ∈ (C(∆i,j−1)−2, C(∆i,j)−2], M(n) 6= M?}∆i,j

≤ C

∆i,1
+

Ki∑
j=2

C((∆i,j)−2 − (∆i,j−1)−2)∆i,j

≤ C

∆i,1
+

∫ ∆i,2

∆i,Ki

Cx−2dx ≤ 2C

∆i,Ki
≤ 2C

∆min
,

which completes the proof. �
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2.5 EPOCH-ESCB: An algorithm with lower computational complexity

ESCB with time horizon T has a complexity of O(|M|T ) as neither bM nor cM can be written as
M>y for some vector y ∈ Rd. SinceM typically has exponentially many elements, we deduce that
ESCB is not computationally efficient. Assuming that the offline (static) combinatorial problem
is solvable in O(V (M)) time, the complexity of CUCB algorithm in [5] and [2] after T rounds is
O(V (M)T ). Thus, if the offline problem is efficiently implementable, i.e., V (M) = O(poly(d)),
CUCB is efficient, whereas ESCB is not. We next propose an extension to ESCB, called EPOCH-
ESCB, that attains almost the same regret as ESCB while enjoying much better computational
complexity.

EPOCH-ESCB algorithm in epochs of varying lengths. Epoch k comprises rounds {Nk, . . . , Nk+1−
1}, where Nk+1 (and thus the length of the k-th epoch) is determined at time n = Nk. The algo-
rithm simply consists in playing the arm with the maximal index at the beginning of every epoch,
and playing the current leader (i.e., the arm with the highest empirical average reward) in the rest of
rounds. If the leader is the arm with the maximal index, the length of epoch k will be set twice as
long as the previous epoch k − 1, i.e., Nk+1 = Nk + 2(Nk −Nk−1). Otherwise, it will be set to 1.
In contrast to ESCB, EPOCH-ESCB computes the maximal index infrequently, and more precisely
(almost) at an exponentially decreasing rate. Thus, one might expect that after T rounds, the max-
imal index will be computed O(log(T )) times. The pseudo-code of EPOCH-ESCB is presented in
Algorithm 1.

Algorithm 1 EPOCH-ESCB
Initialization: Set k = 1 and N0 = N1 = 1.
for n ≥ 1 do

Compute L(n) ∈ argmaxM∈MM>θ̂(n).
if n = Nk then

Select arm M(n) ∈ argmaxM∈M ξM (n).
if M(n) = L(n) then

Set Nk+1 = Nk + 2(Nk −Nk−1).
else

Set Nk+1 = Nk + 1.
end if
Increment k.

else
Select arm M(n) = L(n).

end if
Observe the rewards, and update ti(n) and θ̂i(n), ∀i ∈M(n).

end for

We assess the performance of EPOCH-ESCB through numerical experiments in the next subsection,
and leave the analysis of its regret as a future work. These experiments corroborate our conjecture
that he complexity of EPOCH-ESCB after T rounds will be O(V (M)T + log(T )|M|). Compared
to CUCB, the complexity is penalized by |M| log(T ), which may become dominated by the term
V (M)T as T grows large.

2.6 Numerical Experiments

In this section, we compare the performance of ESCB against existing algorithms through numer-
ical experiments for some classes ofM. When implementing ESCB we replace f(n) by log(n),
ignoring the term proportional to log(log(n)), as is done when implementing KL-UCB in practice.

2.6.1 Experiment 1: Matching

In our first experiment, we consider the matching problem with N1 = N2 = 5, which corresponds
to d = 52 = 25 and m = 5. We also set θ such that θi = a if i ∈ M?, and θi = b otherwise, with
0 < b < a < 1. In this case the lower bound becomes c(θ) = m(m−1)(a−b)

2kl(b,a) .

Figure 5(a)-(b) depicts the regret of various algorithms for the case of a = 0.7 and b = 0.5. The
curves in Figure 5(a) are shown with a 95% confidence interval. We observe that ESCB-1 has
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Figure 5: Regret of various algorithms for matchings with a = 0.7 and b = 0.5.
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Figure 6: Regret of various algorithms for matchings with a = 0.95 and b = 0.3.

the lowest regret. Moreover, ESCB-2 significantly outperforms CUCB and LLR, and is close to
ESCB-1. Moreover, we observe that the regret of EPOCH-ESCBattains is quite close to that of
ESCB-2.

Figures 6(a)-(b) presents the regret of various algorithms for the case of a = 0.95 and b = 0.3.
The difference compared to the former case is that ESCB-1 significantly outperforms ESCB-2.
The reason is that in the former case, mean rewards of the most of the basic actions were close to
1/2, for which the performance of UCB-type algorithms are closer to their KL-divergence based
counterparts. On the other hand, when mean rewards are not close to 1/2, there exists a significant
performance gap between ESCB-1 and ESCB-2. Comparing the results with the ‘lower bound’
curve, we highlight that ESCB-1 gives close-to-optimal performance in both cases. Furthermore,
similar to previous experiment, EPOCH-ESCBattains a regret whose curve is almost indistinguish-
able from that of ESCB-2.

The number of epochs in EPOCH-ESCB vs. time for the two examples is displayed in Figure 7(a)-
(b), where the curves are shown with 95% confidence intervals. We observe that in both cases, the
number of epochs grows at a rate proportional to log(n)/n at round n. Since the number of epochs
is equal to the number of times the algorithm computes indexes, these curves suggest that index
computation after n rounds requires a number of operations that scales as |M| log(n).

2.6.2 Experiment 2: Spanning Trees

In the second experiment, we consider spanning trees problem described in Section 1.4.2 for the
case of N = 5. In this case, we have d =

(
5
2

)
= 10, m = 4, and |M| = 53 = 125.

Figure 8 portrays the regret of various algorithms with 95% confidence intervals, with ∆min = 0.54.
Our algorithms significantly outperform CUCB and LLR.
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Figure 7: Number of epochs in EPOCH-ESCB vs. time for Experiment 1 and 2 (%95 confidence
interval).
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Figure 8: Regret of various algorithms for spanning trees with N = 5 and ∆min = 0.54.

3 Supplementary Material for Adversarial Combinatorial Bandits

3.1 Proof of Theorem 6

We first prove a simple result:

Lemma 3 For all x ∈ Rd, we have Σ+
n−1Σn−1x = x, where x is the orthogonal projection of x

onto span(M), the linear space spanned byM.

Proof: Note that for all y ∈ Rd, if Σn−1y = 0, then we have

y>Σn−1y = E
[
y>MM>y

]
= E

[
(y>M)2

]
= 0, (11)

whereM has law pn−1 such that
∑
M Mipn−1(M) = q′n−1(i), ∀i ∈ [d] and q′n−1 = (1−γ)qn−1+

γµ0. By definition of µ0, each M ∈M has a positive probability. Hence, by (11), y>M = 0 for all
M ∈ M. In particular, we see that the linear application Σn−1 restricted to span(M) is invertible
and is zero on span(M)⊥, hence we have Σ+

n−1Σn−1x = x. �

Lemma 4 We have for any η ≤ γλ
m3/2 and any q ∈ P ,

T∑
n=1

q>X̃(n)−
T∑
n=1

q>n−1X̃(n) ≤ η

2

T∑
n=1

q>n−1X̃
2(n) +

KL(q, q0)

η
,

where X̃2(n) is the vector that is the coordinate-wise square of X̃(n).

Proof: We have

KL(q, q̃n)−KL(q, qn−1) =
∑
i∈[d]

q(i) log
qn−1(i)

q̃n(i)
= −η

∑
i∈[d]

q(i)X̃i(n) + logZn,

13



with

logZn = log
∑
i∈[d]

qn−1(i) exp
(
ηX̃i(n)

)
≤ log

∑
i∈[d]

qn−1(i)
(

1 + ηX̃i(n) + η2X̃2
i (n)

)
(12)

≤ ηq>n−1X̃(n) + η2q>n−1X̃
2(n), (13)

where we used exp(z) ≤ 1 + z + z2 for all |z| ≤ 1 in (12) and log(1 + z) ≤ z for all z > −1 in
(13). Later we verify the condition for the former inequality.

Hence we have

KL(q, q̃n)−KL(q, qn−1) ≤ ηq>n−1X̃(n)− ηq>X̃(n) + η2q>n−1X̃
2(n).

Generalized Pythagorean inequality (see Theorem 3.1 in [6]) gives

KL(q, qn) + KL(qn, q̃n) ≤ KL(q, q̃n).

Since KL(qn, q̃n) ≥ 0, we get

KL(q, qn)−KL(q, qn−1) ≤ ηq>n−1X̃(n)− ηq>X̃(n) + η2q>n−1X̃
2(n).

Finally, summing over n gives
T∑
n=1

(
q>X̃(n)− q>n−1X̃(n)

)
≤ η

T∑
n=1

q>n−1X̃
2(n) +

KL(q, q0)

η
.

To satisfy the condition for the inequality (12), i.e., η|X̃i(n)| ≤ 1, ∀i ∈ [d], we find the upper bound
for maxi∈[d] |X̃i(n)| as follows:

max
i∈[d]
|X̃i(n)| ≤ ‖X̃(n)‖2

= ‖Σ+
n−1M(n)Yn‖2

≤ m‖Σ+
n−1M(n)‖2

≤ m
√
M(n)>Σ+

n−1Σ+
n−1M(n)

≤ m‖M(n)‖2
√
λmax

(
Σ+
n−1Σ+

n−1

)
= m3/2

√
λmax

(
Σ+
n−1Σ+

n−1

)
= m3/2 λmax

(
Σ+
n−1

)
=

m3/2

λmin (Σn−1)
,

where λmax(A) and λmin(A) respectively denote the maximum and the minimum nonzero eigen-
value of matrix A. Note that µ0 induces uniform distribution over M. Thus by q′n−1 =
(1−γ)qn−1 +γµ0 we see that pn−1 is a mixture of uniform distribution and the distribution induced
by qn−1. Note that, we have:

λmin (Σn−1) = min
‖x‖2=1,x∈span(M)

x>Σn−1x.

Moreover, we have

x>Σn−1x = E
[
x>M(n)M(n)>x

]
= E

[
(M(n)>x)2

]
≥ γE

[
(M>x)2

]
,

where in the last inequality M has law µ0. By definition, we have for any x ∈ span(M) with
‖x‖2 = 1,

E
[
(M>x)2

]
≥ λ,
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so that in the end, we get λmin(Σn−1) ≥ γλ, and hence η|X̃i(n)| ≤ ηm3/2

γλ , ∀i ∈ [d]. Finally, we

choose η ≤ γλ
m3/2 to satisfy the condition for the inequality we used in (12).

�

We have

En
[
X̃(n)

]
= En

[
YnΣ+

n−1M(n)
]

= En
[
Σ+
n−1M(n)M(n)>X(n)

]
= Σ+

n−1Σn−1X(n) = X(n),

where the last equality follows from Lemma 3 and X(n) is the orthogonal projection of X(n) onto
span(M). In particular, for any mq′ ∈ Co(M), we have

En
[
mq′>X̃(n)

]
= mq′>X(n) = mq′>X(n).

Moreover, we have:

En
[
q>n−1X̃

2(n)
]

=
∑
i∈[d]

qn−1(i)En
[
X̃2
i (n)

]
=
∑
i∈[d]

q′n−1(i)− γµ0(i)

1− γ
En
[
X̃2
i (n)

]
≤ 1

m(1− γ)

∑
i∈[d]

mq′n−1(i)En
[
X̃2
i (n)

]
=

1

m(1− γ)
En
[∑
i∈[d]

M̃i(n)X̃2
i (n)

]
,

where M̃(n) is a random arm with the same law as M(n) and independent of M(n). Note that
M̃2
i (n) = M̃i(n), so that we have

En
[∑
i∈[d]

M̃i(n)X̃2
i (n)

]
= En

[
X(n)>M(n)M(n)>Σ+

n−1M̃(n)M̃(n)>Σ+
n−1M(n)M(n)>X(n)

]
≤ m2En[M(n)>Σ+

n−1M(n)],

where we used the bound M(n)>X(n) ≤ m. By [7, Lemma 15], En[M(n)>Σ+
n−1M(n)] ≤ d, so

that we have:
En
[
q>n−1X̃

2(n)
]
≤ md

1− γ
.

Observe that

En
[
q?>X̃(n)− q′>n−1X̃(n)

]
= En

[
q?>X̃(n)− (1− γ)q>n−1X̃(n)− γµ0>X̃(n)

]
= En

[
q?>X̃(n)− q>n−1X̃(n)

]
+ γq>n−1X(n)− γµ0>X(n)

≤ En
[
q?>X̃(n)− q>n−1X̃(n)

]
+ γq>n−1X(n)

≤ En
[
q?>X̃(n)− q>n−1X̃(n)

]
+ γ.

Using Lemma 4 and the above bounds, we get withmq? the optimal arm, i.e. q?(i) = 1
m iffM?

i = 1,

RCOMBEXP(T ) = E
[ T∑
n=1

mq?>X̃(n)−
T∑
n=1

mq′>n−1X̃(n)
]

≤ E
[ T∑
n=1

mq?>X̃(n)−
T∑
n=1

mq>n−1X̃(n)
]

+mγT

≤ ηm2dT

1− γ
+
m logµ−1

min

η
+mγT,
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since

KL(q?, q0) = − 1

m

∑
i∈M?

logmµ0
i ≤ logµ−1

min.

Choosing η = γC with C = λ
m3/2 gives

RCOMBEXP(T ) ≤ γCm2dT

1− γ
+
m logµ−1

min

γC
+mγT

=
Cm2d+m−mγ

1− γ
γT +

m logµ−1
min

γC

≤ (Cm2d+m)γT

1− γ
+
m logµ−1

min

γC
.

The proof is completed by setting γ =

√
m log µ−1

min√
m log µ−1

min+
√
C(Cm2d+m)T

. �

3.2 Proof of Proposition 1

We first provide a simple result:

Lemma 5 For all probability vectors q ∈ Rd++, the KL-divergence z 7→ KL(z, q) is 1-strongly
convex with respect to the ‖ · ‖1 norm.

Proof. To prove the lemma, it suffices to show that for any x, y ∈ P:

(∇KL(x, q)−∇KL(y, q))>(x− y) ≥ ‖x− y‖21.

We have

(∇KL(x, q)−∇KL(y, q))>(x− y) =
∑
i∈[d]

(
1 + log

x(i)

q(i)
− 1− log

y(i)

q(i)

)
(x(i)− y(i))

=
∑
i∈[d]

(1 + log x(i)− 1− log y(i))(x(i)− y(i))

=
(
∇
∑
i∈[d]

x(i) log x(i)−∇
∑
i∈[d]

y(i) log y(i)
)>

(x− y)

≥ ‖x− y‖21,

where the last inequality follows from strong convexity of the entropy function z 7→
∑
i∈[d] zi log zi

with respect to the ‖ · ‖1 norm [8, Proposition 5.1]. �

Recall that un = arg minp∈P KL(p, q̃n) and that qn is an εn-optimal solution for the projection
step, that is

KL(un, q̃n) ≥ KL(qn, q̃n)− εn.

Using Lemma 5 and [6, Theorem 3.1], we have

KL(qn, q̃n)−KL(un, q̃n) ≥ (qn − un)>∇KL(un, q̃n) +
1

2
‖qn − un‖21 ≥

1

2
‖qn − un‖21,

where we used (qn − un)>∇KL(un, q̃n) ≥ 0 due to first-order optimality condition for un. Hence
KL(qn, q̃n)−KL(un, q̃n) ≤ εn implies that ‖qn − un‖∞ ≤ ‖qn − un‖1 ≤

√
2εn.

Consider q?, the distribution over P for the optimal arm, i.e. q?(i) = 1
m iff M?

i = 1. Recall that
from proof of Lemma 4, for q = q? we have

KL(q?, q̃n)−KL(q?, qn−1) ≤ ηq>n−1X̃(n)− ηq?>X̃(n) + η2q>n−1X̃
2(n). (14)
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Generalized Pythagorean Inequality (see Theorem 3.1 in [6]) gives

KL(q?, q̃n) ≥ KL(q?, un) + KL(un, q̃n). (15)

Let q
n

= mini∈M? qn(i). Observe that

KL(q?, un) =
∑
i∈[d]

q?(i) log
q?(i)

un(i)
= − 1

m

∑
i∈M?

logmun(i)

≥ − 1

m

∑
i∈M?

logm(qn(i) +
√

2εn) ≥ − 1

m

∑
i∈M?

(
logmqn(i) +

√
2εn
q
n

)
≥ −
√

2εn
q
n

− 1

m

∑
i∈M?

logmqn(i) = −
√

2εn
q
n

+ KL(q?, qn),

Plugging this into (15), we get

KL(q?, q̃n) ≥ KL(q?, qn)−
√

2εn
q
n

+ KL(un, q̃n) ≥ KL(q?, qn)−
√

2εn
q
n

.

Putting this together with (14) yields

KL(q?, qn)−KL(q?, qn−1) ≤ ηq>n−1X̃(n)− ηq?>X̃(n) + η2q>n−1X̃
2(n) +

√
2εn
q
n

.

Finally, summing over n gives

T∑
n=1

(
q?>X̃(n)− q>n−1X̃(n)

)
≤ η

T∑
n=1

q>n−1X̃
2(n) +

KL(q?, q0)

η
+

1

η

T∑
n=1

√
2εn
q
n

.

Defining

εn =

(
q
n

logµ−1
min

)2

32n2 log3(n+ 1)
, ∀n ≥ 1,

and recalling that KL(q?, q0) ≤ logµ−1
min, we get

T∑
n=1

(
q?>X̃(n)− q>n−1X̃(n)

)
≤ η

T∑
n=1

q>n−1X̃
2(n) +

logµ−1
min

η
+

logµ−1
min

η

T∑
n=1

√
2

32n2 log3(n+ 1)

≤ η
T∑
n=1

q>n−1X̃
2(n) +

2 logµ−1
min

η
,

where we used the fact
∑
n≥1 n

−1(log(n + 1))−3/2 ≤ 4. We remark that by the properties of KL
divergence and since q′n−1 ≥ γµ0 > 0, we have q

n
> 0 at every round n, so that εn > 0 at every

round n.

Using the above result and following the same lines as in the proof of Theorem 6, we have

RCOMBEXP(T ) ≤ ηm2dT

1− γ
+

2m logµ−1
min

η
+mγT.

Choosing η = γC with C = λ
m3/2 gives

RCOMBEXP(T ) ≤ (Cm2d+m)γT

1− γ
+

2m logµ−1
min

γC
.

The proof is completed by setting γ =

√
2m log µ−1

min√
2m log µ−1

min+
√
C(Cm2d+m)T

. �
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3.3 Proof of Theorem 7

We calculate the time complexity of the various steps of COMBEXP at round n ≥ 1.

(i) Mixing: This step requires O(d) time.

(ii) Decomposition: Using the algorithm of [9], the vector mq′n−1 may be represented as a
convex combination of at most d + 1 arms in O(d4) time, so that pn−1 may have at most
d + 1 non-zero elements (observe that the existence of such a representation follows from
Carathéodory Theorem).

(iii) Sampling: This step takes O(d) time since pn−1 has at most d+ 1 non-zero elements.

(iv) Estimation: The construction of matrix Σn−1 is done in time O(d2) since pn has at most
d+1 non-zero elements andMM> is formed inO(d) time. Computing the pseudo-inverse
of Σn−1 costs O(d3).

(v) Update: This step requires O(d) time.

(vi) Projection: The projection step is equivalent to solving a convex program up to accuracy
εn = O(n−2 log−3(n)). We use the Interior-Point Method (Barrier method). The total
number of Newton iterations to achieve accuracy εn is O(

√
s log(s/εn)) [10, Ch. 11].

Moreover, the cost of each iteration isO((d+ c)3) [10, Ch. 10], so that the total cost of this
step becomes O(

√
s(c+ d)3 log(s/εn)). Plugging εn = O(n−2 log−3(n)) and noting that

O(
∑T
n=1 log(s/εn)) = O(T log(T )), the cost of this step is O(

√
s(c+ d)3T log(T )).

Hence the total time complexity after T rounds is O(T [
√
s(c+ d)3 log(T ) + d4]), which completes

the proof. �

3.4 Implementation: The Case of Graph Coloring

In this subsection, we present an iterative algorithm for the projection step of COMBEXP, for the
graph coloring problem described next.

Consider a graph G = (V,E) consisting of m nodes indexed by i ∈ [m]. Each node can use one
of the c ≥ m available colors indexed by j ∈ [c]. A feasible coloring is represented by a matrix
M ∈ {0, 1}m×c, where Mij = 1 if and only if node i is assigned color j. Coloring M is feasible
if (i) for all i, node i uses at most one color, i.e.,

∑
j∈[c]Mij ∈ {0, 1}; (ii) neighboring nodes are

assigned different colors, i.e., for all i, i′ ∈ [m], (i, i′) ∈ E implies for all j ∈ [c], MijMi′j = 0. In
the following we denote by K = {K`, ` ∈ [k]} the set of maximal cliques of the graph G. We also
introduce K`i ∈ {0, 1} such that K`i = 1 if and only if node i belongs to the maximal clique K`.
There is a specific case where our algorithm can be efficiently implementable: when the convex hull
Co(M) can be captured by polynomial in m many constraints. Note that this cannot be ensured
unless restrictive assumptions are made on the graph G since there are up to 3m/3 maximal cliques
in a graph with m vertices [11]. There are families of graphs in which the number of cliques
is polynomially bounded. These families include chordal graphs, complete graphs, triangle-free
graphs, interval graphs, and planar graphs. Note however, that a limited number of cliques does
not ensure a priori that Co(M) can be captured by a limited number of constraints. To the best of
our knowledge, this problem is open and only particular cases have been solved as for the stable set
polytope (corresponding to the case c = 2, Xi1 = 1 and Xi2 = 0 with our notation) [12].

For the coloring problem described above we have

Co(M) = Co{∀i,
∑
j∈[c]

Mij ≤ 1, ∀`, j,
∑
i∈[m]

K`iMij ≤ 1}. (16)

Note that in the special case where G is the complete graph, such a representation becomes

Co(M) = Co{
∑
j∈[c]

Mij ≤ 1, ∀i,
∑
i∈[m]

Mij ≤ 1, ∀j}.
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We now give an algorithm for the projection a distribution p onto P using KL divergence. Since P
is a scaled version of Co(M), we give an algorithm for the projection of mp onto Co(M) given by
(16).

Set λi(0) = µj(0) = 0 for all i, j and then define for t ≥ 0,

∀i ∈ [m], λi(t+ 1) = log
(∑

j

mpije
−µj(t)

)
(17)

∀j ∈ [c], µj(t+ 1) = max
`

log
(∑

i

Ki`mpije
−λi(t+1)

)
. (18)

We can show that

Proposition 1 Let p?ij = limt→∞ pije
−λi(t)−µj(t). Then mp? is the projection of mp onto Co(M)

using the KL divergence.

Although this algorithm is shown to converge, we must stress that the step (18) might be expensive
as the number of distinct values of ` might be exponential in m. When G is a complete graph, this
step is easy and our algorithm reduces to Sinkhorn’s algorithm (see [13] for a discussion).

Proof: First note that the definition of projection can be extended to non-negative vectors thanks to
the relation

KL(p?, q) = min
p∈Ξ

KL(p, q).

More precisely, given an alphabetA and a vector q ∈ RA+, we have for any probability vector p ∈ RA+∑
a∈A

p(a) log
p(a)

q(a)
≥
∑
a

p(a) log

∑
a p(a)∑
a q(a)

= log
1

‖q‖1
,

thanks to the log-sum inequality. Hence we see that p?(a) = q(a)
‖q‖1 is the projection of q onto the

simplex of RA+.

Now define Ai = Co{Mij ,
∑
jMij ≤ 1} and B`j = Co{Mij ,

∑
iK`iMij ≤ 1}. Hence⋂

iAi
⋂⋂

`j B`j = Co(M). By the argument described above, iteration (17) (resp. (18)) cor-
responds to the projection onto Ai (resp.

⋂
` B`j) and the proposition follows from Theorem 5.1 in

[6]. �

3.5 Examples

In this subsection, we compare the performance of COMBEXP against state-of-the-art algorithms
(refer to Table 2 for the summary of regret of various algorithms).

3.5.1 m-sets

In this case,M is the set of all d-dimensional binary vectors with m ones. We have

µmin = min
i

1(
d
m

) ∑
M

Mi =

(
d−1
m−1

)(
d
m

) =
m

d
.

Moreover, according to [7, Proposition 12], we have λ = m(d−m)
d(d−1) . When m = o(d), the regret of

COMBEXP becomes O(
√
m3dT log(d/m)), namely it has the same performance as COMBAND

and EXP2 WITH JOHN’S EXPLORATION.

3.5.2 Matching

LetM be the set of perfect matchings in Km,m, where we have d = m2 and |M| = m!. We have

µmin = min
i

1

m!

∑
M

Mi =
(m− 1)!

m!
=

1

m
,

Furthermore, from [7, Proposition 4] we have that λ = 1
m−1 , thus giving RCOMBEXP(T ) =

O(
√
m5T log(m)), which is the same as the regret of COMBAND and EXP2 WITH JOHN’S EX-

PLORATION in this case.
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3.5.3 Spanning Trees

In our next example, we assume thatM is the set of spanning trees in the complete graph KN . In
this case, we have d =

(
N
2

)
, m = N −1, and by Cayley’s formulaM hasNN−2 elements. Observe

that

µmin = min
i

1

NN−2

∑
M

Mi =
(N − 1)N−3

NN−2
,

which gives for N ≥ 2

logµ−1
min = log

(
NN−2

(N − 1)N−3

)
= (N − 3) log

(
N

N − 1

)
+ logN

≤ (N − 3) log 2 + log(N) ≤ 2N.

From [7, Corollary 7], we also get λ ≥ 1
N −

17
4N2 . For N ≥ 6, the regret of COMBAND takes the

form O(
√
N5T log(N)) since m

dλ < 7 when N ≥ 6. Further, EXP2 WITH JOHN’S EXPLORATION

attains the same regret. On the other hand, we get

RCOMBEXP(T ) = O(
√
N5T log(N)), N ≥ 6,

and therefore it gives the same regret as COMBAND and EXP2 WITH JOHN’S EXPLORATION.

3.5.4 Cut sets

Consider the case whereM is the set of balanced cuts of the complete graphK2N , where a balanced
cut is defined as the set of edges between a set of N vertices and its complement. It is easy to verify
that d =

(
2N
2

)
and m = N2. Moreover,M has

(
2N
N

)
balanced cuts and hence

µmin = min
i

1(
2N
N

) ∑
M

Mi =

(
2N−2
N−1

)(
2N
N

) =
N

4N − 2
,

Moreover, by [7, Proposition 9], we have

λ =
1

4
+

8N − 7

4(2N − 1)(2N − 3)
, N ≥ 2,

and consequently, the regret of COMBEXP becomes O(N4
√
T ) for N ≥ 2, which is the same as

that of COMBAND and EXP2 WITH JOHN’S EXPLORATION.
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