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1 Derivation of the ADF filtering equations for linear dynamics

1.1 Setting and notation

In the main text, we have presented our model in an open-loop setting, where the process X is
passively observed. Here we consider a more general setting, incorporating a control process Uy, so
the dynamics are

where, in general, U; is a function of ;.

For the purposes of the derivation, it is convenient to work with precision matrices rather than
variance matrices. We write F = X1 'R = X' and Q, = X;!. Thus the density of the process
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where M £ (F’1 + R’l)fl.

We denote by P (-,t) the posterior density of X; given A;, and by EX, [-] the posterior expectation
based on observations up to time ¢t. We will simply write Ep [-] when the time ¢ is obvious from
context.

1.2 Filtering equations between spikes
1.2.1 Exact filtering equations for the first two moments

As seen in [1], the PDE for the posterior density,
At (0,2) = A ()
n At (0)

still holds in the closed-loop case. Here L; is the posterior infinitesimal generator, defined with an
additional conditioning on N,

AP (z,t) = L3P (z,t)dt + P (z, t)/ (N (dt x d6) — X, (0) df dt> @
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and L} is its adjoint. Note that in this closed-loop setting, the infinitesimal generator is itself a
random operator, due to its dependence on past observations through the control law, and that NV, is
no longer a doubly-stochastic Poisson process.

Between spikes, (4) simplifies to

gP(amﬁ) =L;P(x,t) —P(x,t)/

ot (At 0,x) — 5\t (9)) de,

n

so for a sufficiently well-behaved function f,
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= Ep |:Ltf (Xe)+ f (Xt)/ (;\t () — A (Q,Xt)) d@] .
Assuming the state evolves as in (1), the (closed loop) infinitesimal generator is
1
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so, letting 1y = Ep Xy, X; = Xy — e, 5 = Ep {th(ﬂ,

% = Ep[A(Xy)]+B(U;)+Ep |:Xt/ (Xt (0) — At (Q’Xt)> dﬁ} )
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1.2.2 ADF approximation

The computations that follow frequently require multiplying Gaussian functions, sometimes with a
possibly degenerate precision matrix. To this end, we use the following slightly generalized form of
a well-known result about the sum of quadratic forms.

Claim. Letxz,a,b € R™ and A, B € R™*" be symmetric matrices such that A + B is non-singular.
Then
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Proof. This is proved by a straightforward completion of squares. If A, B are invertible,
lz —al’y +llz = bl5 = =z} —2"Aa = a" Az + |la|} + 2|5 — 2" Bb— " B + |bl|7;
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By continuity, the claim also holds when A, B are not both invertible, provided (A + B) is invert-
ible. ]

Computing the expectations in (5) involves computation of integrals containing P (z,t) ¢ (0, x).
Taking the ADF approximation P (x,t) &~ N (x; us, 2¢), and using the claim above, we have
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where H,~! is any right inverse of H, and
¢ & H'c
M 2 F(F+R 'R=(F'+R)
pM A (Qu+ HTMH) ™ (Qupe + HT MHE)
QM 2 Q (Q+H"MH) 'H'MH=(I+H"MHS,) ' H'MH.
An alternate form for Q@ may be derived from the Woodbury identity as follows,
QM = (I+H"MHS,)  H'MH
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Now we define

>
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and compute its value as follows:
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To simplify the expression under the square root, we note that
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and, using the matrix determinant lemma and (6)
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A similar computation yields additional terms from (5), expressed in terms of g;.
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Assuming X has linear dynamics, substituting these results into (5) yields the following filtering
equations between spikes (we abuse notation and use p;, >4 to refer to the ADF-approximate quan-
tities from here on),
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where we have used the Woodbury identity and (6). Substituting into (7) we obtain the form
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1.3 Effect of spikes
When a spike occurs at time ¢ in preferred location 6, the update according to (4) is
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To compute this ratio we note that P (z,t) \; (6, ), under the ADF approximation, may be written

as a single Gaussian in z,
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Now P (z,t™") is given by the normalized Gaussian,
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giving the full filtering SDE

dus = Apgdt + B (Uy)dt + g: X HTSM (Hpy — ¢)dt + %, HTSE / (0 — Hy,— ) N (dt x db),

feR™
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2 Non-linear dynamics

In case of non-linear dynamics
dXi = (A(Xy) + B(Uy)) dt + D dW,

the ADF approximation may also be applied to the terms involving A (X;) in (5). Assume AW the
i-th element of A, is given by a power series around ji;, written in multi-index notation,

AW (2) =AY () (z = ),
where the sum is over all multi-indices «. Then, assuming the ADF approximation X; ~
N (e, X)),
Ep [A9 (X0)] = 30 A9 () Ba (%),
where E,, (X) is defined as E (Z*) = E[[, Z* for Z ~ N (0,X), and may be computed from
Isserlis’ theorem. Similarly,
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where ¢; is j-th standard basis vector (the multi-index corresponding to the single index j).

T
Writing A, = (A((ll), . Ag")) andE, 1 = (Eate, (X¢),- .., Eate, (3¢)) the filtering equations
become
dpe = Y Ao (i) Ea (3¢) + B (Uy) dt

+g: X HYSM (Hpy — ¢)dt +%,- H'SE / (0 — Hpy— ) N (dt x db)
QGRWL
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Analogous comments apply when the noise gain D; is a non-linear function D (X,), provided each

element [D (x)D (x)T} ~ may be expanded as a power series.
ij

3 Comparison of estimated posterior variance and MSE

In the main text, we studied optimal encoding using the posterior variance as a proxy for the MSE.
Letting u¢, 2; denote the approximate posterior moments given by the filter, the MSE and posterior
variance are related as follows,

MSE, £ E [tr (Xt — pe) (Xe — Mt)T} = EEptr (X; — ) (Xe — o)

B [tr (Varp X,)] + B [tr (1 — EpX0) (e — BpX0) "]

9



- <(Ht_Xt)2 >

— (o)

- <(Nt*Xt)2 >/<Ut2 >
- <(Ht_Xt)2 /Utz >

0 50 100 150 200
t
Figure 1: Posterior variance vs. MSE when filtering a one-dimensional process dX; = —0.1X;dt +

0.5dW; (the steady-state variance of this process is 3 = 1.25). The top plot shows the MSE

and mean posterior variance. The bottom plot shows the ratio of means MSE/ (2;) and the mean

ratio (SE/%,) where SE is the squared error (p; — X;)?. Sensory parameters are ¢ = 0, 0oy =
0.1,02, = 0.01,A° = 10. The means were taken across 1000 trials. Shaded areas indicate error

estimates obtained as sample standard deviation divided by square root of number of trials.
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Figure 2: Mean Square Error as a function of model parameters. This figure is based on the same
data as Figure 3 in the main text, with Root Mean Square Error (RMSE) plotted instead of estimated
posterior variance. See Figure 3 of main text for more details.

where E%, [], Varls [-] are resp. the mean and covariance conditioned on N;, and tr is the trace
operator. Thus for an exact filter, having p; = E}Xt, X = VarfDXt, we would have MSE; =
trace[E(X;)]. Conversely, if we find that MSE; = trace[EX;], it suggests that the errors are small
(though this is not guaranteed, since the errors in u; and 3; may effect the MSE in opposite direc-
tions, if the variance is underestimated).

Figure 1 shows the variance and MSE in estimating a linear one-dimensional process, after averaging
across 1000 trials. Although the posterior variance is, on average, overestimated at the start of trials,
in the steady state it approximates the square error reasonably well.

We also show here variants of the Figures 3 and 4 from the main text (Figures 2 and 3, respectively),
showing the MSE rather than the variance. The results look similar but noisier, except in Figure 3b
for small population variance, where the ADF estimation is poor due to very few spikes occurring.
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Figure 3: Optimal population distribution depends on prior variance relative to tuning curve width.
This figure is based on the same data as Figure 4 in the main text, with MSE plotted instead of
estimated posterior variance. See Figure 4 of main text for more details.
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